Basics of Probabilistic/Bayesian Modeling and Parameter Estimation

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 9, 2019

• Prob-Stats refresher tutorial tomorrow (Thursday, Jan 10), 6:30pm-7:45pm, KD-101

- Prob-Stats refresher tutorial tomorrow (Thursday, Jan 10), 6:30pm-7:45pm, KD-101
 - Also posted some refresher slides on class webpage (under lecture-1 readings)

- Prob-Stats refresher tutorial tomorrow (Thursday, Jan 10), 6:30pm-7:45pm, KD-101
 - Also posted some refresher slides on class webpage (under lecture-1 readings)
- A regular class this Saturday, Jan 12 (following Monday schedule)

- Prob-Stats refresher tutorial tomorrow (Thursday, Jan 10), 6:30pm-7:45pm, KD-101
 - Also posted some refresher slides on class webpage (under lecture-1 readings)
- A regular class this Saturday, Jan 12 (following Monday schedule)
- Sign up on Piazza if you haven't already

- Prob-Stats refresher tutorial tomorrow (Thursday, Jan 10), 6:30pm-7:45pm, KD-101
 - Also posted some refresher slides on class webpage (under lecture-1 readings)
- A regular class this Saturday, Jan 12 (following Monday schedule)
- Sign up on Piazza if you haven't already
- Regularly watch out for slides, readings etc., on class webpage

Keep in mind these two simple rules of probability: sum rule and product rule

$$P(a) = \sum_{b} P(a, b)$$
 (Sum Rule)
 $P(a, b) = P(a)P(b|a) = P(b)P(a|b)$ (Product Rule)

Keep in mind these two simple rules of probability: sum rule and product rule

$$P(a) = \sum_{b} P(a, b)$$
 (Sum Rule)
 $P(a, b) = P(a)P(b|a) = P(b)P(a|b)$ (Product Rule)

ullet Note: For continuous random variables, sum is replaced by integral: $P(a)=\int P(a,b)db$

Keep in mind these two simple rules of probability: sum rule and product rule

$$P(a) = \sum_{b} P(a, b)$$
 (Sum Rule)
 $P(a, b) = P(a)P(b|a) = P(b)P(a|b)$ (Product Rule)

- ullet Note: For continuous random variables, sum is replaced by integral: $P(a)=\int P(a,b)db$
- Another rule is the Bayes rule (can be easily obtained from the above two rules)

$$P(b|a) = \frac{P(b)P(a|b)}{P(a)} = \frac{P(b)P(a|b)}{\int P(a,b)db} = \frac{P(b)P(a|b)}{\int P(b)P(a|b)db}$$

Keep in mind these two simple rules of probability: sum rule and product rule

$$P(a) = \sum_b P(a, b)$$
 (Sum Rule)
$$P(a, b) = P(a)P(b|a) = P(b)P(a|b)$$
 (Product Rule)

- Note: For continuous random variables, sum is replaced by integral: $P(a) = \int P(a, b)db$
- Another rule is the Bayes rule (can be easily obtained from the above two rules)

$$P(b|a) = \frac{P(b)P(a|b)}{P(a)} = \frac{P(b)P(a|b)}{\int P(a,b)db} = \frac{P(b)P(a|b)}{\int P(b)P(a|b)db}$$

All of probabilistic modeling and inference is based on consistently applying these two simple rules

$$\mathbf{x}_n \sim p(\mathbf{x}|\theta, m), \quad n = 1, \dots, N$$

• Assume data $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$ generated from a probability distribution with parameters θ

$$\mathbf{x}_n \sim p(\mathbf{x}|\theta, m), \quad n = 1, \dots, N$$

• $p(\mathbf{x}|\theta, m)$ is also known as the likelihood (a function of the parameters θ)

$$\mathbf{x}_n \sim p(\mathbf{x}|\theta, m), \quad n = 1, \dots, N$$

- $p(\mathbf{x}|\theta, m)$ is also known as the likelihood (a function of the parameters θ)
- Assume a prior distribution $p(\theta|m)$ on the parameters θ

$$\mathbf{x}_n \sim p(\mathbf{x}|\theta, m), \quad n = 1, \dots, N$$

- $p(\mathbf{x}|\theta, m)$ is also known as the likelihood (a function of the parameters θ)
- Assume a prior distribution $p(\theta|m)$ on the parameters θ
- Note: Here m collectively denotes "all other stuff" about the model

$$\mathbf{x}_n \sim p(\mathbf{x}|\theta, m), \quad n = 1, \ldots, N$$

- $p(x|\theta, m)$ is also known as the likelihood (a function of the parameters θ)
- Assume a prior distribution $p(\theta|m)$ on the parameters θ
- Note: Here m collectively denotes "all other stuff" about the model, e.g.,
 - An "index" for the type of model being considered (e.g., "Gaussian", "Student-t", etc)

$$\mathbf{x}_n \sim p(\mathbf{x}|\theta, m), \quad n = 1, \ldots, N$$

- $p(\mathbf{x}|\theta, m)$ is also known as the likelihood (a function of the parameters θ)
- Assume a prior distribution $p(\theta|m)$ on the parameters θ
- Note: Here m collectively denotes "all other stuff" about the model, e.g.,
 - An "index" for the type of model being considered (e.g., "Gaussian", "Student-t", etc)
 - Any other (hyper)parameters of the likelihood/prior

$$\mathbf{x}_n \sim p(\mathbf{x}|\theta, m), \quad n = 1, \ldots, N$$

- $p(\mathbf{x}|\theta, m)$ is also known as the likelihood (a function of the parameters θ)
- Assume a prior distribution $p(\theta|m)$ on the parameters θ
- Note: Here m collectively denotes "all other stuff" about the model, e.g.,
 - An "index" for the type of model being considered (e.g., "Gaussian", "Student-t", etc)
 - Any other (hyper)parameters of the likelihood/prior
- Note: Usually we will omit the explicit use of *m* in the notation

$$\mathbf{x}_n \sim p(\mathbf{x}|\theta, m), \quad n = 1, \ldots, N$$

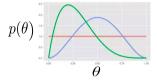
- $p(\mathbf{x}|\theta, m)$ is also known as the likelihood (a function of the parameters θ)
- Assume a prior distribution $p(\theta|m)$ on the parameters θ
- Note: Here m collectively denotes "all other stuff" about the model, e.g.,
 - An "index" for the type of model being considered (e.g., "Gaussian", "Student-t", etc)
 - Any other (hyper)parameters of the likelihood/prior
- Note: Usually we will omit the explicit use of *m* in the notation
 - In some situations (e.g., when doing model comparison/selection), we will use it explicitly

$$\mathbf{x}_n \sim p(\mathbf{x}|\theta, m), \quad n = 1, \dots, N$$

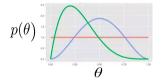
- $p(\mathbf{x}|\theta, m)$ is also known as the likelihood (a function of the parameters θ)
- Assume a prior distribution $p(\theta|m)$ on the parameters θ
- Note: Here m collectively denotes "all other stuff" about the model, e.g.,
 - An "index" for the type of model being considered (e.g., "Gaussian", "Student-t", etc)
 - Any other (hyper)parameters of the likelihood/prior
- ullet Note: Usually we will omit the explicit use of m in the notation
 - In some situations (e.g., when doing model comparison/selection), we will use it explicitly
- Note: For some models, the likelihood is not defined explicitly using a probability distribution but implicitly via a probabilistic simulation process (more on such implicit probability models[†] later)

• The prior distribution $p(\theta|m)$ plays a key role in probabilistic (especially Bayesian) modeling

- The prior distribution $p(\theta|m)$ plays a key role in probabilistic (especially Bayesian) modeling
 - Reflects our prior beliefs about possible parameter values before seeing the data

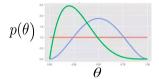


- The prior distribution $p(\theta|m)$ plays a key role in probabilistic (especially Bayesian) modeling
 - Reflects our prior beliefs about possible parameter values before seeing the data



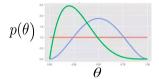
• Can be "subjective" or "objective" (also a topic of debate, which we won't get into)

- The prior distribution $p(\theta|m)$ plays a key role in probabilistic (especially Bayesian) modeling
 - Reflects our prior beliefs about possible parameter values before seeing the data



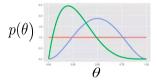
- Can be "subjective" or "objective" (also a topic of debate, which we won't get into)
- Subjective: Prior (our beliefs) derived from past experiments
- Objective: Prior represents "neutral knowledge" (e.g., uniform, vague prior)

- The prior distribution $p(\theta|m)$ plays a key role in probabilistic (especially Bayesian) modeling
 - Reflects our prior beliefs about possible parameter values before seeing the data



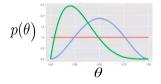
- Can be "subjective" or "objective" (also a topic of debate, which we won't get into)
- Subjective: Prior (our beliefs) derived from past experiments
- Objective: Prior represents "neutral knowledge" (e.g., uniform, vague prior)
- Can also be seen as a regularizer (connection with non-probabilistic view)

- The prior distribution $p(\theta|m)$ plays a key role in probabilistic (especially Bayesian) modeling
 - Reflects our prior beliefs about possible parameter values before seeing the data



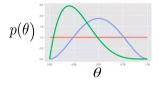
- Can be "subjective" or "objective" (also a topic of debate, which we won't get into)
- Subjective: Prior (our beliefs) derived from past experiments
- Objective: Prior represents "neutral knowledge" (e.g., uniform, vague prior)
- Can also be seen as a regularizer (connection with non-probabilistic view)
- The goal of probabilistic modeling is usually one or more of the following

- The prior distribution $p(\theta|m)$ plays a key role in probabilistic (especially Bayesian) modeling
 - Reflects our prior beliefs about possible parameter values before seeing the data



- Can be "subjective" or "objective" (also a topic of debate, which we won't get into)
- Subjective: Prior (our beliefs) derived from past experiments
- Objective: Prior represents "neutral knowledge" (e.g., uniform, vague prior)
- Can also be seen as a regularizer (connection with non-probabilistic view)
- The goal of probabilistic modeling is usually one or more of the following
 - Infer the unknowns/parameters θ given data **X** (to summarize/understand the data)

- ullet The prior distribution p(heta|m) plays a key role in probabilistic (especially Bayesian) modeling
 - Reflects our prior beliefs about possible parameter values before seeing the data



- Can be "subjective" or "objective" (also a topic of debate, which we won't get into)
- Subjective: Prior (our beliefs) derived from past experiments
- Objective: Prior represents "neutral knowledge" (e.g., uniform, vague prior)
- Can also be seen as a regularizer (connection with non-probabilistic view)
- The goal of probabilistic modeling is usually one or more of the following
 - \bullet Infer the unknowns/parameters θ given data **X** (to summarize/understand the data)
 - Use the inferred quantities to make predictions

Can infer the parameters by computing the posterior distribution (Bayesian inference)

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)}$$

Can infer the parameters by computing the posterior distribution (Bayesian inference)

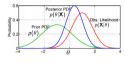
$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta}$$

• Can infer the parameters by computing the posterior distribution (Bayesian inference)

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$

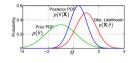
• Can infer the parameters by computing the posterior distribution (Bayesian inference)

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$



Can infer the parameters by computing the posterior distribution (Bayesian inference)

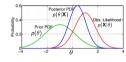
$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$



• Note: Marginal likelihood p(X|m) is another very important quantity (more on it later)

Can infer the parameters by computing the posterior distribution (Bayesian inference)

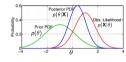
$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$



- Note: Marginal likelihood p(X|m) is another very important quantity (more on it later)
- Cheaper alternative: Point Estimation of the parameters.

Can infer the parameters by computing the posterior distribution (Bayesian inference)

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$

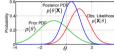


- Note: Marginal likelihood p(X|m) is another very important quantity (more on it later)
- Cheaper alternative: Point Estimation of the parameters. E.g.,
 - \bullet Maximum likelihood estimation (MLE): Find θ that makes the observed data most probable

$$\hat{\theta}_{ML} = \arg\max_{\theta} \log p(\mathbf{X}|\theta)$$

Can infer the parameters by computing the posterior distribution (Bayesian inference)

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$



- ullet Note: **Marginal likelihood** $p(\mathbf{X}|m)$ is another very important quantity (more on it later)
- Cheaper alternative: Point Estimation of the parameters. E.g.,
 - ullet Maximum likelihood estimation (MLE): Find heta that makes the observed data most probable

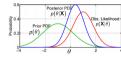
$$\hat{\theta}_{ML} = \arg\max_{\theta} \log p(\mathbf{X}|\theta)$$

• Maximum-a-Posteriori (MAP) estimation: Find θ that has the largest posterior probability

$$\hat{\theta}_{MAP} = \arg\max_{\theta} \log p(\theta|\mathbf{X})$$

Can infer the parameters by computing the posterior distribution (Bayesian inference)

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$



- Note: Marginal likelihood p(X|m) is another very important quantity (more on it later)
- Cheaper alternative: Point Estimation of the parameters. E.g.,
 - ullet Maximum likelihood estimation (MLE): Find heta that makes the observed data most probable

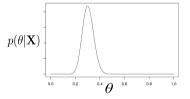
$$\hat{\theta}_{ML} = \arg\max_{\theta} \log p(\mathbf{X}|\theta)$$

ullet Maximum-a-Posteriori (MAP) estimation: Find heta that has the largest posterior probability

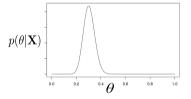
$$\hat{\theta}_{MAP} = \arg\max_{\theta} \log p(\theta|\mathbf{X}) = \arg\max_{\theta} [\log p(\mathbf{X}|\theta) + \log p(\theta)]$$

ullet Posterior provides us a holistic view about heta given observed data

- ullet Posterior provides us a holistic view about heta given observed data
- \bullet A simple unimodal posterior distribution for a scalar parameter θ might look something like

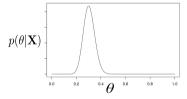


- ullet Posterior provides us a holistic view about heta given observed data
- ullet A simple unimodal posterior distribution for a scalar parameter heta might look something like



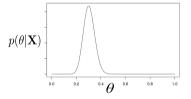
 \bullet Various types of estimates regarding θ can be obtained from the posterior

- ullet Posterior provides us a holistic view about heta given observed data
- ullet A simple unimodal posterior distribution for a scalar parameter heta might look something like



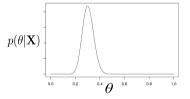
- Various types of estimates regarding θ can be obtained from the posterior, e.g.,
 - Mode of the posterior (same as the MAP estimate)

- ullet Posterior provides us a holistic view about heta given observed data
- ullet A simple unimodal posterior distribution for a scalar parameter heta might look something like



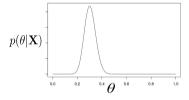
- ullet Various types of estimates regarding heta can be obtained from the posterior, e.g.,
 - Mode of the posterior (same as the MAP estimate)
 - Mean and median of the posterior

- ullet Posterior provides us a holistic view about heta given observed data
- \bullet A simple unimodal posterior distribution for a scalar parameter θ might look something like



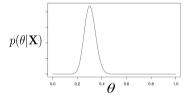
- ullet Various types of estimates regarding heta can be obtained from the posterior, e.g.,
 - Mode of the posterior (same as the MAP estimate)
 - Mean and median of the posterior
 - Variance/spread of the posterior (uncertainty in our estimate of the parameters)

- ullet Posterior provides us a holistic view about heta given observed data
- A simple unimodal posterior distribution for a scalar parameter θ might look something like

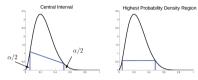


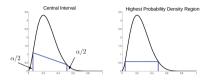
- ullet Various types of estimates regarding heta can be obtained from the posterior, e.g.,
 - Mode of the posterior (same as the MAP estimate)
 - Mean and median of the posterior
 - Variance/spread of the posterior (uncertainty in our estimate of the parameters)
 - Any quantile (say 0 < α < 1 quantile) of the posterior, e.g., θ_* s.t. $p(\theta \le \theta_*) = \alpha$

- ullet Posterior provides us a holistic view about heta given observed data
- ullet A simple unimodal posterior distribution for a scalar parameter heta might look something like



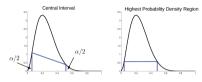
- ullet Various types of estimates regarding heta can be obtained from the posterior, e.g.,
 - Mode of the posterior (same as the MAP estimate)
 - Mean and median of the posterior
 - Variance/spread of the posterior (uncertainty in our estimate of the parameters)
 - Any quantile (say $0 < \alpha < 1$ quantile) of the posterior, e.g., θ_* s.t. $p(\theta \le \theta_*) = \alpha$
 - Various types of intervals/regions..





• $100(1-\alpha)\%$ Credible interval: Region in which $1-\alpha$ fraction of posterior's mass resides

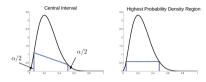
$$\mathcal{C}_{\alpha}(\mathbf{X}) = (\ell, u) : p(\ell \leq \theta \leq u | \mathbf{X}) = 1 - \alpha$$



• $100(1-\alpha)\%$ Credible interval: Region in which $1-\alpha$ fraction of posterior's mass resides

$$C_{\alpha}(\mathbf{X}) = (\ell, u) : p(\ell \leq \theta \leq u | \mathbf{X}) = 1 - \alpha$$

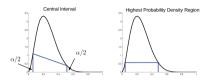
ullet Credible Interval is not unique (there can be many 100(1-lpha)% intervals)



• $100(1-\alpha)$ % Credible interval: Region in which $1-\alpha$ fraction of posterior's mass resides

$$C_{\alpha}(\mathbf{X}) = (\ell, u) : p(\ell \leq \theta \leq u | \mathbf{X}) = 1 - \alpha$$

- Credible Interval is not unique (there can be many $100(1-\alpha)\%$ intervals)
- Central Interval is is a symmetrized version of Credible Interval ($\alpha/2$ mass on each tail)

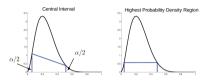


• $100(1-\alpha)\%$ Credible interval: Region in which $1-\alpha$ fraction of posterior's mass resides

$$C_{\alpha}(\mathbf{X}) = (\ell, u) : p(\ell \leq \theta \leq u | \mathbf{X}) = 1 - \alpha$$

- Credible Interval is not unique (there can be many $100(1-\alpha)\%$ intervals)
- Central Interval is is a symmetrized version of Credible Interval ($\alpha/2$ mass on each tail)
- Another useful interval: The (1α) Highest Probability Density (HPD) region is defined as

$$\mathcal{C}_{lpha}(\mathbf{X}) = \{ heta : p(heta | \mathbf{X}) \geq p^* \}$$



• $100(1-\alpha)\%$ Credible interval: Region in which $1-\alpha$ fraction of posterior's mass resides

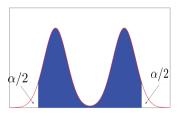
$$C_{\alpha}(\mathbf{X}) = (\ell, u) : p(\ell \leq \theta \leq u | \mathbf{X}) = 1 - \alpha$$

- Credible Interval is not unique (there can be many $100(1-\alpha)\%$ intervals)
- Central Interval is is a symmetrized version of Credible Interval ($\alpha/2$ mass on each tail)
- ullet Another useful interval: The (1-lpha) Highest Probability Density (HPD) region is defined as

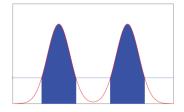
$$\mathcal{C}_{lpha}(\mathbf{X}) = \{ heta: p(heta|\mathbf{X}) \geq p^*\}, \quad ext{s.t.} \quad 1 - lpha = \int_{ heta: p(heta|\mathbf{X}) \geq p^*} p(heta|\mathbf{X}) d heta$$

• CI, HPD, etc. can also be defined for multi-modal posteriors

Central Interval

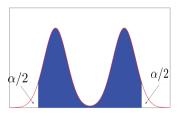


Highest Probability Density Region

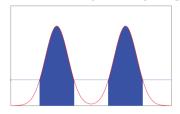


CI, HPD, etc. can also be defined for multi-modal posteriors

Central Interval



Highest Probability Density Region



Computing quantiles, CI, HPD, etc. may require inverting the CDF of the posterior

• Posterior can be used to compute the posterior predictive distribution (PPD) of new observation

- Posterior can be used to compute the posterior predictive distribution (PPD) of new observation
- ullet The PPD of a new observation $oldsymbol{x}_*$ given previous observations

$$p(x_*|\mathbf{X},m) = \int p(x_*,\theta|\mathbf{X},m)d\theta$$

- Posterior can be used to compute the posterior predictive distribution (PPD) of new observation
- The PPD of a new observation x_* given previous observations

$$p(\mathbf{x}_*|\mathbf{X},m) = \int p(\mathbf{x}_*,\theta|\mathbf{X},m)d\theta = \int p(\mathbf{x}_*|\theta,\mathbf{X},m)p(\theta|\mathbf{X},m)d\theta$$

- Posterior can be used to compute the posterior predictive distribution (PPD) of new observation
- The PPD of a new observation x_* given previous observations

$$p(\mathbf{x}_*|\mathbf{X},m) = \int p(\mathbf{x}_*,\theta|\mathbf{X},m)d\theta = \int p(\mathbf{x}_*|\theta,\mathbf{X},m)p(\theta|\mathbf{X},m)d\theta$$
$$= \int p(\mathbf{x}_*|\theta,m)p(\theta|\mathbf{X},m)d\theta$$

- Posterior can be used to compute the posterior predictive distribution (PPD) of new observation
- The PPD of a new observation x_* given previous observations

$$p(\mathbf{x}_*|\mathbf{X},m) = \int p(\mathbf{x}_*,\theta|\mathbf{X},m)d\theta = \int p(\mathbf{x}_*|\theta,\mathbf{X},m)p(\theta|\mathbf{X},m)d\theta$$
$$= \int p(\mathbf{x}_*|\theta,\mathbf{m})p(\theta|\mathbf{X},m)d\theta$$

ullet Note: In the above, we assume that the observations are i.i.d. given heta

- Posterior can be used to compute the posterior predictive distribution (PPD) of new observation
- ullet The PPD of a new observation $oldsymbol{x}_*$ given previous observations

$$p(\mathbf{x}_*|\mathbf{X},m) = \int p(\mathbf{x}_*,\theta|\mathbf{X},m)d\theta = \int p(\mathbf{x}_*|\theta,\mathbf{X},m)p(\theta|\mathbf{X},m)d\theta$$
$$= \int p(\mathbf{x}_*|\theta,\mathbf{m})p(\theta|\mathbf{X},m)d\theta$$

- ullet Note: In the above, we assume that the observations are i.i.d. given heta
- ullet Computing PPD requires doing a posterior-weighted averaging over all values of heta

- Posterior can be used to compute the posterior predictive distribution (PPD) of new observation
- The PPD of a new observation x_* given previous observations

$$p(\mathbf{x}_*|\mathbf{X}, m) = \int p(\mathbf{x}_*, \theta|\mathbf{X}, m) d\theta = \int p(\mathbf{x}_*|\theta, \mathbf{X}, m) p(\theta|\mathbf{X}, m) d\theta$$
$$= \int p(\mathbf{x}_*|\theta, m) p(\theta|\mathbf{X}, m) d\theta$$

- ullet Note: In the above, we assume that the observations are i.i.d. given heta
- ullet Computing PPD requires doing a posterior-weighted averaging over all values of heta
- If the integral in PPD is intractable, we can approximate the PPD by plug-in predictive

$$p(\mathbf{x}_*|\mathbf{X},m) \approx p(\mathbf{x}_*|\hat{\theta},m)$$

- Posterior can be used to compute the posterior predictive distribution (PPD) of new observation
- The PPD of a new observation x_* given previous observations

$$p(\mathbf{x}_*|\mathbf{X},m) = \int p(\mathbf{x}_*,\theta|\mathbf{X},m)d\theta = \int p(\mathbf{x}_*|\theta,\mathbf{X},m)p(\theta|\mathbf{X},m)d\theta$$
$$= \int p(\mathbf{x}_*|\theta,\mathbf{M})p(\theta|\mathbf{X},m)d\theta$$

- ullet Note: In the above, we assume that the observations are i.i.d. given heta
- ullet Computing PPD requires doing a posterior-weighted averaging over all values of heta
- If the integral in PPD is intractable, we can approximate the PPD by plug-in predictive

$$p(\mathbf{x}_*|\mathbf{X},m) \approx p(\mathbf{x}_*|\hat{\theta},m)$$

.. where $\hat{\theta}$ is a point estimate of θ (e.g., MLE/MAP)

- Posterior can be used to compute the posterior predictive distribution (PPD) of new observation
- The PPD of a new observation x_* given previous observations

$$p(\mathbf{x}_*|\mathbf{X},m) = \int p(\mathbf{x}_*,\theta|\mathbf{X},m)d\theta = \int p(\mathbf{x}_*|\theta,\mathbf{X},m)p(\theta|\mathbf{X},m)d\theta$$
$$= \int p(\mathbf{x}_*|\theta,\mathbf{M})p(\theta|\mathbf{X},m)d\theta$$

- ullet Note: In the above, we assume that the observations are i.i.d. given heta
- ullet Computing PPD requires doing a posterior-weighted averaging over all values of heta
- If the integral in PPD is intractable, we can approximate the PPD by plug-in predictive

$$p(\mathbf{x}_*|\mathbf{X},m) \approx p(\mathbf{x}_*|\hat{\theta},m)$$

- .. where $\hat{\theta}$ is a point estimate of θ (e.g., MLE/MAP)
- ullet The plug-in predictive is the same as PPD with $p(heta|\mathbf{X},m)$ approximated by a point mass at $\hat{ heta}$

$$p(\theta|\mathbf{X}, m) = \frac{p(\mathbf{X}, \theta|m)}{p(\mathbf{X}|m)}$$

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta}$$

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$

Recall the Bayes rule for computing the posterior

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$

The denominator in the Bayes rule is the marginal likelihood (a.k.a. "model evidence")

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$

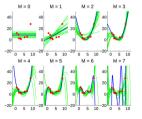
- The denominator in the Bayes rule is the marginal likelihood (a.k.a. "model evidence")
- Note that $p(\mathbf{X}|m) = \mathbb{E}_{p(\theta|m)}[p(\mathbf{X}|\theta,m)]$ is the average/expected likelihood under model m

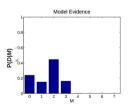
$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$

- The denominator in the Bayes rule is the marginal likelihood (a.k.a. "model evidence")
- Note that $p(\mathbf{X}|m) = \mathbb{E}_{p(\theta|m)}[p(\mathbf{X}|\theta,m)]$ is the average/expected likelihood under model m
- \bullet For a good model, we would expect this "averaged" quantity to be large (most θ 's will be good)

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$

- The denominator in the Bayes rule is the marginal likelihood (a.k.a. "model evidence")
- Note that $p(\mathbf{X}|m) = \mathbb{E}_{p(\theta|m)}[p(\mathbf{X}|\theta,m)]$ is the average/expected likelihood under model m
- \bullet For a good model, we would expect this "averaged" quantity to be large (most θ 's will be good)

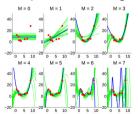


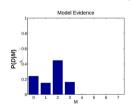


Recall the Bayes rule for computing the posterior

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Marginal likelihood}}$$

- The denominator in the Bayes rule is the marginal likelihood (a.k.a. "model evidence")
- Note that $p(\mathbf{X}|m) = \mathbb{E}_{p(\theta|m)}[p(\mathbf{X}|\theta,m)]$ is the average/expected likelihood under model m
- For a good model, we would expect this "averaged" quantity to be large (most θ 's will be good)





• Note that marginal likelihood is also like a "prior predictive distribution"

Model Selection and Model Averaging

• Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity

Model Selection and Model Averaging

- Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
- It can be used for doing model selection

Model Selection and Model Averaging

- Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
- It can be used for doing model selection
 - Choose model m that has largest posterior probability

$$\hat{m} = \arg \max_{m} p(m|\mathbf{X})$$

- Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
- It can be used for doing model selection
 - Choose model m that has largest posterior probability

$$\hat{m} = \arg \max_{m} p(m|\mathbf{X}) = \arg \max_{m} \frac{p(\mathbf{X}|m)p(m)}{p(\mathbf{X})}$$

- Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
- It can be used for doing model selection
 - Choose model m that has largest posterior probability

$$\hat{m} = \arg \max_{m} p(m|\mathbf{X}) = \arg \max_{m} \frac{p(\mathbf{X}|m)p(m)}{p(\mathbf{X})} = \arg \max_{m} p(\mathbf{X}|m)p(m)$$

- Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
- It can be used for doing model selection
 - Choose model m that has largest posterior probability

$$\hat{m} = \arg \max_{m} p(m|\mathbf{X}) = \arg \max_{m} \frac{p(\mathbf{X}|m)p(m)}{p(\mathbf{X})} = \arg \max_{m} p(\mathbf{X}|m)p(m)$$

ullet If all models are equally likely a priori then $\hat{m} = \arg\max_{m} p(\mathbf{X}|m)$

- Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
- It can be used for doing model selection
 - Choose model m that has largest posterior probability

$$\hat{m} = \arg \max_{m} p(m|\mathbf{X}) = \arg \max_{m} \frac{p(\mathbf{X}|m)p(m)}{p(\mathbf{X})} = \arg \max_{m} p(\mathbf{X}|m)p(m)$$

- If all models are equally likely a priori then $\hat{m} = \arg \max_{m} p(\mathbf{X}|m)$
- If m is a hyperparam, then $\arg\max_{m} p(\mathbf{X}|m)$ is MLE-II based hyperparameter estimation

- Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
- It can be used for doing model selection
 - Choose model m that has largest posterior probability

$$\hat{m} = \arg \max_{m} p(m|\mathbf{X}) = \arg \max_{m} \frac{p(\mathbf{X}|m)p(m)}{p(\mathbf{X})} = \arg \max_{m} p(\mathbf{X}|m)p(m)$$

- If all models are equally likely a priori then $\hat{m} = \arg\max_{m} p(\mathbf{X}|m)$
- If m is a hyperparam, then $\arg\max_{m} p(\mathbf{X}|m)$ is MLE-II based hyperparameter estimation
- Marginal likelihood can be used to compute p(m|X) and then perform Bayesian Model Averaging

$$p(\mathbf{x}_*|\mathbf{X}) = \sum_{m=1}^{M} p(\mathbf{x}_*|\mathbf{X}, m)p(m|\mathbf{X})$$

- Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
- It can be used for doing model selection
 - Choose model m that has largest posterior probability

$$\hat{m} = \arg \max_{m} p(m|\mathbf{X}) = \arg \max_{m} \frac{p(\mathbf{X}|m)p(m)}{p(\mathbf{X})} = \arg \max_{m} p(\mathbf{X}|m)p(m)$$

- If all models are equally likely a priori then $\hat{m} = \arg \max_{m} p(\mathbf{X}|m)$
- If m is a hyperparam, then $\arg\max_{m} p(\mathbf{X}|m)$ is MLE-II based hyperparameter estimation
- ullet Marginal likelihood can be used to compute $p(m|\mathbf{X})$ and then perform Bayesian Model Averaging

$$p(\mathbf{x}_*|\mathbf{X}) = \sum_{m=1}^{M} p(\mathbf{x}_*|\mathbf{X}, m)p(m|\mathbf{X})$$

• BMA does a "double" averaging to make prediction since $p(x_*|X,m) = \int p(x_*|\theta,m)p(\theta|X,m)d\theta$

A Simple Parameter Estimation Problem

(for a single-parameter model) (hyperparameter if any will be assumed to be fixed/known)

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The n^{th} outcome $oldsymbol{x}_n$ is a binary random variable $\in \{0,1\}$

- ullet Consider a sequence of N coin tosses (call head = 0, tail = 1)
- The n^{th} outcome x_n is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- The n^{th} outcome x_n is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- The n^{th} outcome \boldsymbol{x}_n is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood: $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log (1 \theta)$

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The n^{th} outcome $oldsymbol{x}_n$ is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood: $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log (1 \theta)$
- ullet Taking derivative of the log-likelihood w.r.t. heta, and setting it to zero gives

$$\hat{\theta}_{MLE} = \frac{\sum_{n=1}^{N} x_n}{N}$$

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- ullet The n^{th} outcome $oldsymbol{x}_n$ is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood: $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log (1 \theta)$
- ullet Taking derivative of the log-likelihood w.r.t. heta, and setting it to zero gives

$$\hat{\theta}_{MLE} = \frac{\sum_{n=1}^{N} \mathbf{x}_n}{N}$$

• $\hat{\theta}_{MLE}$ in this example is simply the fraction of heads!

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- The n^{th} outcome x_n is a binary random variable $\in \{0,1\}$
- ullet Assume heta to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood: $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log (1 \theta)$
- ullet Taking derivative of the log-likelihood w.r.t. heta, and setting it to zero gives

$$\hat{\theta}_{MLE} = \frac{\sum_{n=1}^{N} \mathbf{x}_n}{N}$$

- $\hat{\theta}_{MLE}$ in this example is simply the fraction of heads!
- MLE doesn't have a way to express our prior belief about θ . Can be problematic especially when the number of observations is very small (e.g., suppose very few or zero heads when N is small).

• MAP estimation can incorporate a prior $p(\theta)$ on θ

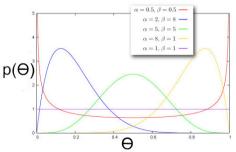
- MAP estimation can incorporate a prior $p(\theta)$ on θ
- ullet Since $heta \in (0,1)$, one possibility can be to assume a Beta prior

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

- MAP estimation can incorporate a prior $p(\theta)$ on θ
- ullet Since $heta \in (0,1)$, one possibility can be to assume a Beta prior

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

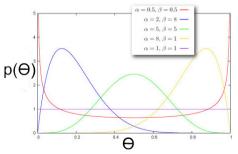
ullet α, eta are called hyperparameters of the prior (these can have intuitive meaning; we'll see shortly)



- MAP estimation can incorporate a prior $p(\theta)$ on θ
- ullet Since $heta\in(0,1)$, one possibility can be to assume a Beta prior

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

ullet α, eta are called hyperparameters of the prior (these can have intuitive meaning; we'll see shortly)



• Note that each likelihood term is still a Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$

• The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- Ignoring the constants w.r.t. θ , the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- Ignoring the constants w.r.t. θ , the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

ullet Taking derivative w.r.t. heta and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- Ignoring the constants w.r.t. θ , the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

ullet Taking derivative w.r.t. heta and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

• Note: For $\alpha=1, \beta=1$, i.e., $p(\theta)=\mathsf{Beta}(1,1)$ (equivalent to a uniform prior), $\hat{\theta}_{MAP}=\hat{\theta}_{MLE}$

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- Ignoring the constants w.r.t. θ , the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

ullet Taking derivative w.r.t. heta and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

- Note: For $\alpha=1, \beta=1$, i.e., $p(\theta)=\mathsf{Beta}(1,1)$ (equivalent to a uniform prior), $\hat{\theta}_{MAP}=\hat{\theta}_{MLE}$
- What hyperparameters represent intuitively? Hyperparameters of the prior (in this case α , β) can often be thought of as "pseudo-observations".

- The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$
- ullet Ignoring the constants w.r.t. heta, the log posterior probability:

$$\sum_{n=1}^{N} \{\boldsymbol{x}_n \log \theta + (1-\boldsymbol{x}_n) \log (1-\theta)\} + (\alpha-1) \log \theta + (\beta-1) \log (1-\theta)$$

ullet Taking derivative w.r.t. heta and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

- Note: For $\alpha=1, \beta=1$, i.e., $p(\theta)=\mathsf{Beta}(1,1)$ (equivalent to a uniform prior), $\hat{\theta}_{MAP}=\hat{\theta}_{MLE}$
- What hyperparameters represent intuitively? Hyperparameters of the prior (in this case α , β) can often be thought of as "pseudo-observations".
 - ullet $\alpha-1$, eta-1 are the expected numbers of heads and tails, respectively, before seeing any data

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- Let's again choose the prior $p(\theta)$ as Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha 1}(1 \theta)^{\beta 1}$

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- Let's again choose the prior $p(\theta)$ as Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha 1}(1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$p(\theta|\mathbf{X}) \propto \prod_{n=1}^{N} p(\mathbf{x}_n|\theta) p(\theta)$$

$$\propto \theta^{\alpha + \sum_{n=1}^{N} \mathbf{x}_n - 1} (1 - \theta)^{\beta + N - \sum_{n=1}^{N} \mathbf{x}_n - 1}$$

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- Let's again choose the prior $p(\theta)$ as Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha 1}(1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned}
ho(heta|\mathbf{X}) & \propto & \prod_{n=1}^N
ho(\mathbf{x}_n| heta)oldsymbol{
ho}(heta) \ & \propto & heta^{lpha+\sum_{n=1}^N \mathbf{x}_n-1} (1- heta)^{eta+N-\sum_{n=1}^N \mathbf{x}_n-1} \end{aligned}$$

ullet From simple inspection, note that the posterior $m{p}(heta|\mathbf{X})=\mathsf{Beta}(lpha+\sum_{n=1}^{N}m{x}_n,eta+m{N}-\sum_{n=1}^{N}m{x}_n)$

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- Let's again choose the prior $p(\theta)$ as Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha 1}(1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned}
ho(heta|\mathbf{X}) & \propto & \prod_{n=1}^N
ho(\mathbf{x}_n| heta)oldsymbol{
ho}(heta) \ & \propto & heta^{lpha+\sum_{n=1}^N \mathbf{x}_n-1} (1- heta)^{eta+N-\sum_{n=1}^N \mathbf{x}_n-1} \end{aligned}$$

- From simple inspection, note that the posterior $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N \sum_{n=1}^{N} \mathbf{x}_n)$
- Here, finding the posterior boiled down to simply "multipy, add stuff, and identify the distribution"

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- Let's again choose the prior $p(\theta)$ as Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha 1}(1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned}
ho(heta|\mathbf{X}) & \propto & \prod_{n=1}^N
ho(\mathbf{x}_n| heta)oldsymbol{
ho}(heta) \ & \propto & heta^{lpha+\sum_{n=1}^N \mathbf{x}_n-1} (1- heta)^{eta+N-\sum_{n=1}^N \mathbf{x}_n-1} \end{aligned}$$

- From simple inspection, note that the posterior $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N \sum_{n=1}^{N} \mathbf{x}_n)$
- Here, finding the posterior boiled down to simply "multipy, add stuff, and identify the distribution"
- Note: Can verify (exercise) that the normalization constant $=\frac{\Gamma(\alpha+\sum_{n=1}^{N}\mathbf{x}_n)\Gamma(\beta+N-\sum_{n=1}^{N}\mathbf{x}_n)}{\Gamma(\alpha+\beta+N)}$
 - ullet To verify, make use of the fact that $\int p(heta|\mathbf{X})d heta=1$

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- Let's again choose the prior $p(\theta)$ as Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha 1}(1 \theta)^{\beta 1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned}
ho(heta|\mathbf{X}) & \propto & \prod_{n=1}^N
ho(\mathbf{x}_n| heta)oldsymbol{
ho}(heta) \ & \propto & heta^{lpha+\sum_{n=1}^N \mathbf{x}_n-1} (1- heta)^{eta+N-\sum_{n=1}^N \mathbf{x}_n-1} \end{aligned}$$

- From simple inspection, note that the posterior $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N \sum_{n=1}^{N} \mathbf{x}_n)$
- Here, finding the posterior boiled down to simply "multipy, add stuff, and identify the distribution"
- Note: Can verify (exercise) that the normalization constant $=\frac{\Gamma(\alpha+\sum_{n=1}^Nx_n)\Gamma(\beta+N-\sum_{n=1}^Nx_n)}{\Gamma(\alpha+\beta+N)}$
 - ullet To verify, make use of the fact that $\int p(heta|\mathbf{X})d heta=1$
- Here, the posterior has the same form as the prior (both Beta): property of conjugate priors.

Conjugate Priors

- Many pairs of distributions are conjugate to each other. E.g.,
 - Bernoulli (likelihood) + Beta (prior) \Rightarrow Beta posterior
 - ullet Binomial (likelihood) + Beta (prior) \Rightarrow Beta posterior
 - ullet Multinomial (likelihood) + Dirichlet (prior) \Rightarrow Dirichlet posterior
 - ullet Poisson (likelihood) + Gamma (prior) \Rightarrow Gamma posterior
 - Gaussian (likelihood) + Gaussian (prior) ⇒ Gaussian posterior
 - and many other such pairs ..

Conjugate Priors

- Many pairs of distributions are conjugate to each other. E.g.,
 - Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior
 - Binomial (likelihood) + Beta (prior) \Rightarrow Beta posterior
 - Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior
 - ullet Poisson (likelihood) + Gamma (prior) \Rightarrow Gamma posterior
 - ullet Gaussian (likelihood) + Gaussian (prior) \Rightarrow Gaussian posterior
 - and many other such pairs ..
- Easy to identify if two distributions are conjugate to each other: their functional forms are similar
 - E.g., recall the forms of Bernoulli and Beta

Bernoulli
$$\propto \theta^{x} (1 - \theta)^{1-x}$$
, Beta $\propto \theta^{\alpha-1} (1 - \theta)^{\beta-1}$

Conjugate Priors

- Many pairs of distributions are conjugate to each other. E.g.,
 - \bullet Bernoulli (likelihood) + Beta (prior) \Rightarrow Beta posterior
 - ullet Binomial (likelihood) + Beta (prior) \Rightarrow Beta posterior
 - ullet Multinomial (likelihood) + Dirichlet (prior) \Rightarrow Dirichlet posterior
 - Poisson (likelihood) + Gamma (prior) \Rightarrow Gamma posterior
 - ullet Gaussian (likelihood) + Gaussian (prior) \Rightarrow Gaussian posterior
 - and many other such pairs ..
- Easy to identify if two distributions are conjugate to each other: their functional forms are similar
 - E.g., recall the forms of Bernoulli and Beta

$$\mathsf{Bernoulli} \propto \theta^{\mathsf{x}} (1-\theta)^{1-\mathsf{x}}, \quad \mathsf{Beta} \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

More on conjugate priors when we look at exponental family distributions

Making Predictions

 \bullet Let's say we want to compute the probability that the next outcome $\textbf{\textit{x}}_{\textit{N}+1} \in \{0,1\}$ will be a head

Making Predictions

- ullet Let's say we want to compute the probability that the next outcome $oldsymbol{x}_{N+1} \in \{0,1\}$ will be a head
- The plug-in predictive distribution using a point estimate $\hat{\theta}$ (e.g., using MLE/MAP)

$$p(\pmb{x}_{N+1}=1|\pmb{X}) pprox p(\pmb{x}_{N+1}=1|\hat{\theta}) = \hat{\theta}$$
 or equivalently $p(\pmb{x}_{N+1}|\pmb{X}) pprox \mathsf{Bernoulli}(\pmb{x}_{N+1}\mid\hat{\theta})$

Making Predictions

- ullet Let's say we want to compute the probability that the next outcome $oldsymbol{x}_{N+1} \in \{0,1\}$ will be a head
- ullet The plug-in predictive distribution using a point estimate $\hat{ heta}$ (e.g., using MLE/MAP)

$$p(\pmb{x}_{N+1}=1|\pmb{\mathsf{X}}) pprox p(\pmb{x}_{N+1}=1|\hat{ heta}) = \hat{ heta}$$
 or equivalently $p(\pmb{x}_{N+1}|\pmb{\mathsf{X}}) pprox \mathsf{Bernoulli}(\pmb{x}_{N+1}\mid\hat{ heta})$

• The posterior predictive distribution (averaging over all θ weighted by their posterior probabilities):

$$p(\mathbf{x}_{N+1}=1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1}=1|\theta) p(\theta|\mathbf{X}) d\theta$$

- ullet Let's say we want to compute the probability that the next outcome $oldsymbol{x}_{N+1} \in \{0,1\}$ will be a head
- The plug-in predictive distribution using a point estimate $\hat{\theta}$ (e.g., using MLE/MAP)

$$p(\pmb{x}_{N+1} = 1 | \pmb{\mathsf{X}}) \approx p(\pmb{x}_{N+1} = 1 | \hat{\theta}) = \hat{\theta} \qquad \underline{\text{or equivalently}} \qquad p(\pmb{x}_{N+1} | \pmb{\mathsf{X}}) \approx \mathsf{Bernoulli}(\pmb{x}_{N+1} \mid \hat{\theta})$$

• The posterior predictive distribution (averaging over all θ weighted by their posterior probabilities):

$$p(\mathbf{x}_{N+1} = 1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta)p(\theta|\mathbf{X})d\theta$$

= $\int_0^1 \theta \times \text{Beta}(\theta|\alpha + \mathbf{N}_1, \beta + \mathbf{N}_0)d\theta$

- ullet Let's say we want to compute the probability that the next outcome $oldsymbol{x}_{N+1} \in \{0,1\}$ will be a head
- The plug-in predictive distribution using a point estimate $\hat{\theta}$ (e.g., using MLE/MAP)

$$p(\pmb{x}_{N+1}=1|\pmb{X}) pprox p(\pmb{x}_{N+1}=1|\hat{\theta}) = \hat{\theta}$$
 or equivalently $p(\pmb{x}_{N+1}|\pmb{X}) pprox \mathsf{Bernoulli}(\pmb{x}_{N+1}\mid\hat{\theta})$

• The posterior predictive distribution (averaging over all θ weighted by their posterior probabilities):

$$\begin{aligned} p(\mathbf{x}_{N+1} = 1|\mathbf{X}) &= \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta) p(\theta|\mathbf{X}) d\theta \\ &= \int_0^1 \theta \times \text{Beta}(\theta|\alpha + \mathbf{N}_1, \beta + \mathbf{N}_0) d\theta \\ &= \mathbb{E}[\theta|\mathbf{X}] \end{aligned}$$

- ullet Let's say we want to compute the probability that the next outcome $oldsymbol{x}_{N+1} \in \{0,1\}$ will be a head
- The plug-in predictive distribution using a point estimate $\hat{\theta}$ (e.g., using MLE/MAP)

$$p(\textbf{\textit{x}}_{N+1} = 1 | \textbf{\textit{X}}) \approx p(\textbf{\textit{x}}_{N+1} = 1 | \hat{\theta}) = \hat{\theta} \qquad \underline{\text{or equivalently}} \qquad p(\textbf{\textit{x}}_{N+1} | \textbf{\textit{X}}) \approx \mathsf{Bernoulli}(\textbf{\textit{x}}_{N+1} \mid \hat{\theta})$$

• The posterior predictive distribution (averaging over all θ weighted by their posterior probabilities):

$$p(\mathbf{x}_{N+1} = 1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta)p(\theta|\mathbf{X})d\theta$$

$$= \int_0^1 \theta \times \text{Beta}(\theta|\alpha + \mathbf{N}_1, \beta + \mathbf{N}_0)d\theta$$

$$= \mathbb{E}[\theta|\mathbf{X}]$$

$$= \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}}$$

- \bullet Let's say we want to compute the probability that the next outcome $\textbf{\textit{x}}_{\textit{N}+1} \in \{0,1\}$ will be a head
- ullet The plug-in predictive distribution using a point estimate $\hat{ heta}$ (e.g., using MLE/MAP)

$$p(\pmb{x}_{N+1}=1|\pmb{X}) pprox p(\pmb{x}_{N+1}=1|\hat{\theta}) = \hat{\theta}$$
 or equivalently $p(\pmb{x}_{N+1}|\pmb{X}) pprox \mathsf{Bernoulli}(\pmb{x}_{N+1}\mid\hat{\theta})$

• The posterior predictive distribution (averaging over all θ weighted by their posterior probabilities):

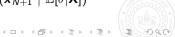
$$p(\mathbf{x}_{N+1} = 1|\mathbf{X}) = \int_0^1 P(\mathbf{x}_{N+1} = 1|\theta)p(\theta|\mathbf{X})d\theta$$

$$= \int_0^1 \theta \times \text{Beta}(\theta|\alpha + \mathbf{N}_1, \beta + \mathbf{N}_0)d\theta$$

$$= \mathbb{E}[\theta|\mathbf{X}]$$

$$= \frac{\alpha + \mathbf{N}_1}{\alpha + \beta + \mathbf{N}}$$

Therefore the posterior predictive distribution: $p(x_{N+1}|\mathbf{X}) = \mathsf{Bernoulli}(x_{N+1} \mid \mathbb{E}[\theta|\mathbf{X}])$



$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

ullet Consider N i.i.d. observations $old X = \{x_1, \dots, x_N\}$ drawn from a one-dim Gaussian $\mathcal{N}(x|\mu, \sigma^2)$

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

• Assume the mean $\mu \in \mathbb{R}$ of the Gaussian is unknown and assume variance σ^2 to be known/fixed

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

- Assume the mean $\mu \in \mathbb{R}$ of the Gaussian is unknown and assume variance σ^2 to be known/fixed
- ullet We wish to estimate the unknown μ given the data ${f X}$

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

- Assume the mean $\mu \in \mathbb{R}$ of the Gaussian is unknown and assume variance σ^2 to be known/fixed
- We wish to estimate the unknown μ given the data ${\bf X}$
- Let's do fully Bayesian inference for μ (not MLE/MAP)

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

- Assume the mean $\mu \in \mathbb{R}$ of the Gaussian is unknown and assume variance σ^2 to be known/fixed
- ullet We wish to estimate the unknown μ given the data ${f X}$
- ullet Let's do fully Bayesian inference for μ (not MLE/MAP)
- ullet We first need a prior distribution for the unknown param. μ

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

- ullet Assume the mean $\mu \in \mathbb{R}$ of the Gaussian is unknown and assume variance σ^2 to be known/fixed
- \bullet We wish to estimate the unknown μ given the data ${\bf X}$
- ullet Let's do fully Bayesian inference for μ (not MLE/MAP)
- ullet We first need a prior distribution for the unknown param. μ
- Let's choose a Gaussian prior on μ , i.e., $p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$ with μ_0, σ_0^2 as fixed

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

- Assume the mean $\mu \in \mathbb{R}$ of the Gaussian is unknown and assume variance σ^2 to be known/fixed
- ullet We wish to estimate the unknown μ given the data ${f X}$
- ullet Let's do fully Bayesian inference for μ (not MLE/MAP)
- ullet We first need a prior distribution for the unknown param. μ
- Let's choose a Gaussian prior on μ , i.e., $p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$ with μ_0, σ_0^2 as fixed
- Therefore this is also a single-parameter model (only μ is the unknown)

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• (Verify) The above posterior turns out to be another Gaussian $p(\mu|\mathbf{X}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$ where

$$\begin{array}{lll} \frac{1}{\sigma_N^2} & = & \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• (Verify) The above posterior turns out to be another Gaussian $p(\mu|\mathbf{X}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$ where

$$\begin{array}{lll} \frac{1}{\sigma_N^2} & = & \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

• Making prediction: The posterior predictive distribution for a new observation x_* will be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu$$

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• (Verify) The above posterior turns out to be another Gaussian $p(\mu|\mathbf{X}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$ where

$$\begin{array}{lcl} \frac{1}{\sigma_N^2} & = & \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

• Making prediction: The posterior predictive distribution for a new observation x_* will be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu = \int \mathcal{N}(x_*|\mu,\sigma^2)\mathcal{N}(\mu|\mu_N,\sigma_N^2)d\mu$$

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• (Verify) The above posterior turns out to be another Gaussian $p(\mu|\mathbf{X}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$ where

$$\begin{array}{lcl} \frac{1}{\sigma_N^2} & = & \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

• Making prediction: The posterior predictive distribution for a new observation x_* will be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu = \int \mathcal{N}(x_*|\mu,\sigma^2)\mathcal{N}(\mu|\mu_N,\sigma_N^2)d\mu = \mathcal{N}(x_*|\mu_N,\sigma_N^2+\sigma^2)$$

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• (Verify) The above posterior turns out to be another Gaussian $p(\mu|\mathbf{X}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$ where

$$\begin{array}{lll} \frac{1}{\sigma_N^2} & = & \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

• Making prediction: The posterior predictive distribution for a new observation x_* will be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu = \int \mathcal{N}(x_*|\mu,\sigma^2)\mathcal{N}(\mu|\mu_N,\sigma_N^2)d\mu = \mathcal{N}(x_*|\mu_N,\sigma_N^2+\sigma^2)$$

ullet Note that, in contrast, the plug-in predictive posterior, given a point estimate $\hat{\mu}$ would be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu$$

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• (Verify) The above posterior turns out to be another Gaussian $p(\mu|\mathbf{X}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$ where

$$\begin{array}{lll} \frac{1}{\sigma_N^2} & = & \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

• Making prediction: The posterior predictive distribution for a new observation x_* will be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu = \int \mathcal{N}(x_*|\mu,\sigma^2)\mathcal{N}(\mu|\mu_N,\sigma_N^2)d\mu = \mathcal{N}(x_*|\mu_N,\sigma_N^2+\sigma^2)$$

ullet Note that, in contrast, the plug-in predictive posterior, given a point estimate $\hat{\mu}$ would be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu \approx p(x_*|\hat{\mu})$$

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• (Verify) The above posterior turns out to be another Gaussian $p(\mu|\mathbf{X}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$ where

$$\begin{array}{lll} \frac{1}{\sigma_N^2} & = & \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

ullet Making prediction: The posterior predictive distribution for a new observation x_* will be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu = \int \mathcal{N}(x_*|\mu,\sigma^2)\mathcal{N}(\mu|\mu_N,\sigma_N^2)d\mu = \mathcal{N}(x_*|\mu_N,\sigma_N^2+\sigma^2)$$

ullet Note that, in contrast, the plug-in predictive posterior, given a point estimate $\hat{\mu}$ would be

$$ho(x_*|\mathbf{X}) = \int
ho(x_*|\mu)
ho(\mu|\mathbf{X})d\mu pprox
ho(x_*|\hat{\mu}) = \mathcal{N}(x_*|\hat{\mu},\sigma^2)$$