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Outline for today

An overview of three problems

Bayesian Active Learning

Bayesian Optimization

Multi-armed Bandits and Contextual Bandits

All of these can be framed as sequential decision-making problems

Leveraging uncertainty is the key in all these problems!
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Bayesian Active Learning
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(Bayesian) Active Learning

Supervised Learning needs labeled data which is expensive to obtain

The typical “passive” approach: Get plenty of labeled data {(xn, yn)}Nn=1 and learn f : x → y

The “active” approach: The learner asks for most useful training examples and learns iteratively

1 Start with an initial model f0 learned using an initial training set D0

2 For iteration t = 1, . . . ,T

1 Use current model ft−1 to identify the “hardest” input(s) xn and get their true label(s) yn

2 Augment training data Dt = Dt−1 ∪ (xn, yn) and retrain to get the new model ft

3 Stop if exhausted the budget for getting labeled data, else continue with next iteration

How to identify the hardest inputs?

Estimate of uncertainty in f helps in that (and Bayesian methods provide that naturally)
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(Bayesian) Active Learning

Some popular (Bayesian) ways to identify the most useful (hardest) inputs x

Inputs x whose posterior predictive distribution has the largest uncertainty/entropy

H(y |x ,Dt−1) = −
K∑

k=1

p(y = k|x ,Dt−1) log p(y = k|x ,Dt−1)

Inputs x including which the current model ft−1’s expected uncertainty reduces maximally†

H[ft−1|Dt−1]− Ey∼p(y|x,Dt−1)H[ft−1|Dt−1, x , y ]

The criteria (such as the above ones) for choosing x are typically known as “acquisition function”

Bayesian Active Learning‡ shown to be very successful for many deep learning models that require
lots of labeled data when learned “passively”

†Bayesian Active Learning for Classification and Preference Learning (Houlsby et al,2011), †Deep Bayesian Active Learning with Image Data (Gal et al, 2017)
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Bayesian Optimization
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Bayesian Optimization: The Basic Formulation

Consider finding the optima x∗ (say minima) of a function f (x)

Caveat: We don’t know the form of the function; can’t get its gradient,Hessian, etc

Suppose we can only query the function’s values at certain points (i.e., only black-box access)

Several applications, such as drug design, hyperparameter optimization, etc.
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Bayesian Optimization

We would like to locate the minima using the queries we made

We would like to do so while making as few queries as possible

Reason: Each query may be costly

The cost may be time, money, or both
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Bayesian Optimization

Suppose we are allowed to make the queries sequentially

Queries so far can help us guess what the function looks like (by solving a regression problem)

Above: dotted = true f (x), solid green = current estimate of f (x), shaded = uncertainty in f (x)

BO use past queries and the function’s estimate+uncertainty to decide where to query next

Somewhat similar to Active Learning but BO also uses past queries to decide where to query next
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Bayesian Optimization

So basically, Bayesian Optimization requires two ingredients

A regression model to learn the function given the current set of query-value pairs {xn, f (xn)}Nn=1

An acquisition function A(x) that tells us the utility of any future point x

Note: Function evaluations given to us may be noisy, i.e., f (x) + ε

Important: The regression model must also have estimate of function’s uncertainty, e.g.,

Gaussian Process, Bayesian Neural Network, or any nonlinear regression model with uncertainty
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Some Acquisition Functions: Probability of Improvement (PI)

Given the set of previous query points X and corresponding function values f , suppose

f ′ = min f

Suppose f denotes the function’s value at some new point x

We have an improvement if f ≤ f ′ (recall we are doing minimization)

The posterior predictive for x is p(f |x) = N (f |µ(x), σ2(x))

We can therefore define the probability of improvement based acquisition function

API (x) = p(f ≤ f ′) =

∫ f ′

−∞
N (f |µ(x), σ2(x))df = Φ

(
f ′ − µ(x)

σ(x)

)
Point with the highest probability of improvement is selected as the next query point

Note that BO involves optimizating the acquisition function to find the next query point x (this
optimization to be cheaper than the original problem)
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Some Acquisition Functions: Expected Improvement (EI)

PI doesn’t take into account the amount of improvement

Expected Improvement (EI) takes this into account and is defined as

AEI (x) = E[f ′ − f ] =

∫ f ′

−∞
(f ′ − f )N (f |µ(x), σ2(x))df

= (f ′ − µ(x))Φ

(
f ′ − µ(x)

σ(x)

)
+ σ(x)N

(
f ′ − µ(x)

σ(x)
; 0, 1

)
Point with the highest expected improvement is selected as the next query point

Trade-off b/w exploitation and exploration

Prefer points with low predictive mean (exploitation) and large predictive variance (exploration)
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Some Acquisition Functions: Lower Confidence Bound (LCB)

Another acquisition function that takes into account exploitation vs exploration

Used when the regression model is a Gaussian Process (GP)

Assuming the posterior predictive for a new point x to be N (µ(x), σ2(x)), the LCB is

ALCB(x) = µ(x)− κσ(x)

κ is a parameter to trade-off b/w mean and variance

Point with the smallest LCB is selected as the next query point

Strong theoretical results; under certain conditions, the iterative application of this acquisition
function will converge to the true global optima of f (Srinivas et al. 2010)

Note: When solving maximization problems, the analogous quantity is the “Upper Confidence
Bound” (UCB), and point with largest UCB is chosen

AUCB(x) = µ(x) + κσ(x)
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Bayesian Optimization: Some Challenges/Open Problems

Learning the regression model for the function

GPs can be expensive as N grows

Bayesian neural networks can be an more efficient alternative to GPs (Snoek et al, 2015)

Hyperparams of the regression model itself (e.g., GP cov. function, Bayesian NN hyperparam)

High-dimensional Bayesian Optimization (optimizing functions of many variables)

Number of function evaluations required would be quite large in high dimensions

Lot of recent work on this (e.g., based on dimensionality reduction)

Multitask Bayesian Optimization (optimizing several related functions)

Can leverage ideas from multitask learning
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Bayesian Optimization: Further Resources

Some survey papers:

A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning (Brochu et al., 2010)

Taking the Human Out of the Loop: A Review of Bayesian Optimization (Shahriari et al., 2015)

Some open source software libraries

Another one: SIGOPT (https://sigopt.com/research)
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Multi-armed Bandits
and Contextual Bandits
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Multi-armed Bandits (MAB)

Suppose we have K options/actions (a.k.a. “arms”) to choose from

Each arm a ∈ {1, . . . ,K} has a binary reward ra with (unknown) reward probability p(ra = 1) = µa

Player’s goal is to play “optimally” based on player’s current estimates of µ1, . . . , µK

    True reward probabilty of
    each machine is unknown

Assume the best arm/action at time t is a∗t = argmaxa∈{1,...,K} µa (but unknown to the player)

A measure of how well the player has played is the cumulative regret

R(T ) =
T∑
t=1

(µa∗t − µat )

The problem setting called “Bandit” since we only get to know the reward for the chosen arm
(don’t get to know the rewards we would have got upon choosing other arms)
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Multi-armed Bandits: Exploration vs Exploitation

What should be our strategy to choose the next arm?

    True reward probabilty of
    each machine is unknown

Suppose we have used the past action-reward history {at , rt}Tt=1 and estimated µ̂1, . . . , µ̂K

Exploitation: Choose the optimal arm, aT+1 = argmaxa∈{1,...,K} µ̂a (greedy policy)

Exploitation + Explotation: Also explore other sub-optimal arms with some probability, e.g.,
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Contextual Bandits

Similar to MAB but here, at time t, we have a set of context vectors Dt ⊂ RD

What the context vectors are depends on the application, e.g.,

For a web-advertisement problem, context vectors can be based on user-website interactions

In matrix fact. based learning of reco-sys, context vectors can be user/item latent factors†

At time t, a context x t ∈ Dt (e.g., website) is chosen and system receives a reward

rt = f (x t) + εt (f is unknown to the user)

The reward could be “ad clicked or not”, “time-spent”, “amount of purchases”, etc

The best context at time t: x∗t = argmaxx∈Dt
f (x) (unknown to the user)

Just like the MAB case, performance is measured in terms of regret. For linear model

R(T ) =
T∑
t=1

(θ>x∗t − θ>x t) (assuming f is linear model)

where x∗t is the best context at time t and x t is the chosen context

†Bandits and Recommender Systems (Mary et al, 2016), Efficient Thompson Sampling for Online Matrix-Factorization Recommendation (Kawale et al, 2015),
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Contextual Bandits (Contd.)

The goal is to learn the underlying reward function f to minimize the regret

Assuming a linear model, i.e., rt = θ>x t + εt , estimating θ is like solving linear regression

If rt is not real-valued (e.g., binary), we can use a GLM to estimate θ

Nonlinear reward functions can also be handled using GP or deep neural nets

rt = f (x t) + εt

For selecting the next context, can use exploitation or exploitation+exploration as in MAB

Greedy, ε-Greedy, UCB, Thompson Sampling†, etc

For exploration, we need an estimate of the uncertainty in f (e.g., using f ’s posterior, or some other
uncertainty estimate)

†Thompson Sampling for Contextual Bandits with Linear Payoffs (Agrawal and Goyal, 2013), Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for
Thompson Sampling (Riquelme et al, 2018)
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Thompson Sampling for Contextual Bandits

Assume a linear model, i.e., rt = θ>x t + εt with εt ∼ N (0, β−1)

Assuming Gaussian prior p(θ) = N (0, I), the posterior over θ (assuming hyperparams known)

p(θ|{x t , rt}Tt=1) = N (µT ,ΣT )

where µT and ΣT are the mean and covariance of the Gaussian posterior

Thompsom Sampling chooses the next context xT+1 as follows

θ̃ ∼ N (µT ,ΣT ) (sample a θ randomly)

xT+1 = argmax
x∈DT+1

θ̃>x (select the context that gives the largest reward given the sampled θ̃)

Posterior is updated by including the new observation (xT+1, rT+1) where reward rT+1 = θ̃>xT+1

TS can also be applied for contextal bandits with nonlinear reward functions†

†Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling (Riquelme et al, 2018)
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Conclusion

Bayesian methods can be very useful for sequential decision-making under uncertainty

Bayesian Active Learning can be very useful when labeled data is costly

Bayesian Optimization is widely used nowadays in “automated” ML (e.g., hyperparameter tuning) and
various other expensive “discovery” problems

Bandit algos are used in recommendation systems, web-advertising, reinforcement learning, etc (with
or without contexts)

(Table credit: Alekh Agarwal)
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