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Outline for today

Directed Graphical Models (DGM)

Have already seen these before in almost every model we studied!

Checking conditional independence in DGM

Undirected Graphical Models (UGM)

Message Passing algorithms for inference in DGM/UGM
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Directed Graphical Models (DGM)

Have already seen and used these many times. Also known as Bayesian Networks or Bayes Nets

Basically, represent the joint distribution of a set of random variables using a directed acyclic graph

Vertices denotes r.v. and structure of the graph directly tells us the conditional dependencies

p(x1, x2, x3, x4, x5, x6, x7) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5)

Directed GMs represent the joint distribution as a product of “local” conditional distributions

In a DGM, the local conditional of a node xk only depends on its parent nodes pak

p(x) =
K∏

k=1

p(xk |pak)
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DGM and Conditional Independence

Would like to test whether two nodes a and b are independent in the presence of a third node c

Note: Shaded = node’s value known

Thus conditioning on c makes a and b conditionally independent

Figure courtesy: PRML (Bishop)
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DGM and Conditional Independence

Would like to test whether two nodes a and b are independent in the presence of a third node c

Note: Shaded = node’s value known

Opposite behavior as compared to the previous two cases! Conditioning makes a and b dependent.

D-Separation (Pearl, 1988): A more general method for checking conditional independence in DGM
(See Bishop, Chap 8)
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DGM and Markov Blanket

Markov Blanket of a node in DGM consists of

Its parents

Its children

Its co-parents (other parents of its children)

Basically, the minimum set of nodes that separate the node from rest of the graph
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Undirected Graphical Models (UGM)

The “causal” dependencies of DGM are sometimes unclear/unintuitive

Consider the “grid” of pixels in an image

The (in)dependence structure (Markov blanket) implied by a UGM is more natural here

UGMs are defined in terms of “cliques” (groups of connected nodes)
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Undirected Graphical Models (UGM) a.k.a. Markov Random Field

Represent joint distributions as product of non-negative potentials ψ() defined over cliques

p(x1, x2, x3, x4, x5) =
1

Z
ψ(x1, x2)ψ(x1, x3)ψ(x3, x4, x5)

where Z =
∑

x1,x2,x3,x4,x5
ψ(x1, x2)ψ(x1, x3)ψ(x3, x4, x5) is a normalizer

Can also write each potential using an energy function

ψc(xc) = e−E(xc |θc )

The joint distribution of a UGM can be then written as

p(x) =
1

Z

∏
c∈C

ψc(x c) =
1

Z

∏
c∈C

e−E(xc |θc ) =
1

Z
e−

∑
c∈C E(xc |θc )
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Undirected Graphical Models: An Example

Consider a 4 node UGM with 4 cliques. Each node takes one of 2 possible values
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UGM: Tests for Independence

Usually simpler to check than the DGM case (UGMs have no causal relationships)

A ⊥⊥ B|C if all paths from A to B pass through one or more nodes in C

Another way: See if removing all the nodes (with their edges) in C will “disconnect” A and C

Also, unlike DGM, Markov blanket of a UGM node only consists only of nodes it is connected to
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Converting DGM to UGM

A DGM can be converted to an equivalent UGM

Straightforward for chain-structured DGM

In general, the conditional distributions are mapped to cliques

Need to perform some other operations (e.g., “moralization”) to ensure that the conditional
independence structures are preserved (refer to Bishop Chap 8 for details)
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Inference in Graphical Models

We may wish to perform inference in a GM. Some nodes may be observed, some unobserved

Observed nodes are simply clamped to their values

Some typical inference tasks: Computing marginals or MAP assignments of nodes

Consider a chain structured GM with 5 nodes (each discrete valued with K possible values)

Likewise, for an N node chain graph, the problem will be
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An Efficient Way: Message-Passing

We can re-arrange the order of computations for efficiency

Inference (computing marginal here) reduces to passing messages (vectors) between nodes!

To compute p(x3), we multiply the incoming messages to this node and normalize
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Recursively Computing Messages

The forward and backward messages can be computed recursively

Start computing µα from first node, µβ from last node
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Message-Passing for Other Tree-Structured Graphs

The message-passing for chain-structured graphs can be generalized to other graphs

This is popularly known as the sum-product algorithm (recall that the algorithm was based on
computing a series of sums and products to compute each marginal)

The same algo works for both directed and undirected graphs (by converting both into a “factor
graph” representation, and doing message-passing on this factor graph)
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Factor Graphs

A unified representation for general DGM/UGM

Useful for designing message-passing algos for general DGM/UGM

A bipartite graph consisting of variable nodes and factor nodes

Basic idea: Original nodes become the variable nodes, conditionals/potentials becomes factor
nodes (which represent a computation over the variable nodes connected to the factor node)
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Factor Graphs

Both DGM and UGM can be converted into a factor graph representation
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Inference via Message-Passing on Factor Graph: High-Level Idea

Given the factor graph representation of a distribution p(x), can do inference via message passing

Example: Computing marginal p(x) =
∑

x\x p(x) of some node given the factor graph of p(x)

This is the sum-product algorithm for marginals with each message µfs→x recursively defined

For tree-structured graphs, converges in a finite many steps and gives the exact marginals

PRML Chapter 8 contains more details of such algorithms
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Some Comments

Sum-product computes marginals. Similar message-passing exist for computing MAP assignment

x̂ = arg max
x1,x2,...,xN

p(x)

Max-sum and max-product are message passing algos that do this

We described the sum-product assuming all nodes are unobserved.

In practice, some nodes are observed, and they are “clamped” to their known values

For tree-structured graphs, these message passing algos give exact answer

For loopy graphs, they still work (but not guaranteed to give exact answer)

Some variants of these algorithms are known as “belief propagation”
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Summary

Probabilistic graphical models (directed/undirected) allow specifying model structure compactly

Can often “read off” conditional independence structures by inspecting the graph

Both directed and undirected graphical models have different properties that they can
encode/express. Both important in their own contexts depending on the problem (though DGMs
are more commonly used)

Factor graphs provide a way to represent both models in a similar way and apply same algorithms
(message-passing such as sum-product) for doing inference

Exact inference possible for tree-structured models using message passing algos on factor graphs

We assumed that the graphical model structure is known. This itself may need to be learned (a lot
of work on graphical model structure learning)
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