Latent Variable Models for Sequential Data

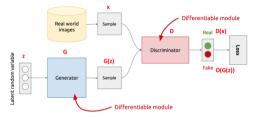
Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

April 8, 2019

Recap: Deep Generative Models - GAN

- GAN: Generative Adversarial Network[†]
- Based on a game between a generator and a discriminator (Goodfellow et al, 2013)



• Can be thought of as a two-player minimax game

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z}))]$$

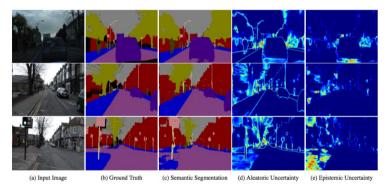
• With the generator G fixed, the optimal discriminator $D_G^*(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_{g}(\mathbf{x})}$

• At the global minimum of the objective, $p_g = p_{data}$

[†]Generative Adversarial Nets (Goodfellow et al, 2013), Figure: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Deep Learning and Uncertainty

• Estimating uncertainty is important



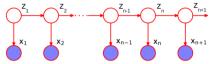
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? [Kendall & Gal, NIPS, 2017]

• Aleatoric uncertainty, capturing inherent noise in the data; Epistemic uncertainty, capturing models lack of knowledge

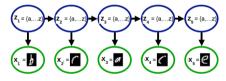
Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

Latent Variable Models for Sequential Data

• Task: Given a sequence of observations, infer the latent state of each observation



• An example: Recognizing a sequence of handwritten characters



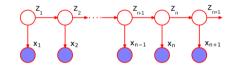
- In this example, the latent state z_n at step n is a discrete value
- Another example: Given a sequence of observed noisy 2D coordinates x_n of an object, infer its latent state z_n , e.g., actual coordinates, velocity, acceleration, etc. at each step n = 1, 2, ...
 - In this example, the latent state z_n at step n is a continuous vector

Latent Variable Models for Sequential Data

• Consider the following latent variable model for a sequence of observations x_1, x_2, x_3, \ldots

$$\mathbf{x}_n | \mathbf{z}_n \sim p(\mathbf{x}_n | \mathbf{z}_n)$$
 (i.i.d. draws of \mathbf{x}_n given \mathbf{z}_n)

 $z_n | z_{n-1} \sim p(z_n | z_{n-1})$ (first-order dependence b/w z_n 's)



• $p(\mathbf{z}_n | \mathbf{z}_{n-1})$ is called <u>state-transition model</u>, $p(\mathbf{x}_n | \mathbf{z}_n)$ is called observation/emission model

• Note: In some cases, the parameters defining these distributions may be known

- If latent states z_n are discrete, we get a Hidden Markov Model (HMM)
- If latent states z_n are continuous vectors, we get a State-Space Model (SSM)
- In both cases, observations x_n can be anything (discrete/real)

State-Transition Model

• For discrete states case (HMM), $p(z_n|z_{n-1})$ will be a discrete distribution, e.g.,

 $p(\boldsymbol{z}_n|\boldsymbol{z}_{n-1}=\ell)=\mathsf{multinoulli}(\boldsymbol{\pi}_\ell)$

where $\pi_{\ell} = [\pi_{\ell,1}, \dots, \pi_{\ell,K}]$ is $K \times 1$ a transition prob. vector, s.t. $p(\mathbf{z}_n = k | \mathbf{z}_{n-1} = \ell) = \pi_{\ell,k}$ • For HMM, $p(\mathbf{z}_n | \mathbf{z}_{n-1})$ is fully defined by a $K \times K$ transition prob. matrix $\Pi = [\pi_1, \pi_2, \dots, \pi_K]$ • For continuous states (SSM), $p(\mathbf{z}_n | \mathbf{z}_{n-1})$ will be a continuous distribution, e.g., Gaussian

$$p(\boldsymbol{z}_n|\boldsymbol{z}_{n-1}) = \mathcal{N}(\boldsymbol{A}\boldsymbol{z}_{n-1}, \boldsymbol{I}_K)$$

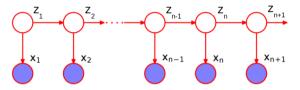
Note: More powerful transition models usually employ nonlinear mappings between z_{n-1} and z_n
For both HMM and SSM, there is also an initial state distribution p(z₁), e.g.,

$$p(\mathbf{z}_1) = \text{multinoulli}(\pi_0) \quad (\text{for HMM})$$

$$p(\mathbf{z}_1) = \mathcal{N}(\mathbf{0}, \mathbf{I}_{\mathbf{K}}) \quad (\text{for SSM})$$

Observation/Emission Model

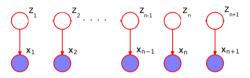
• The type of observation model distribution $p(\mathbf{x}_n | \mathbf{z}_n)$ depends on the type of data



- For discrete observations (e.g., words), $p(\mathbf{x}_n | \mathbf{z}_n)$ is a discrete distribution (e.g., multinoulli)
- For continuous observations (e.g., images, location of an object, etc.), $p(\mathbf{x}_n | \mathbf{z}_n)$ is a continuous distribution (e.g., Gaussian)
- Note: More powerful observation models usually employ nonlinear mappings between z_n and x_n

A Special Case

• What if we have i.i.d. latent states, i.e., $p(z_n|z_{n-1}) = p(z_n)$?

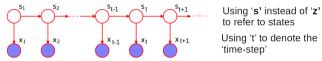


• HMM becomes a standard Mixture Model. Reason: $p(z_n|z_{n-1} = \ell) = p(z_n) =$ multinoulli (π)

- SSM becomes PPCA/factor analysis. Reason: $p(\boldsymbol{z}_n | \boldsymbol{z}_{n-1}) = p(\boldsymbol{z}_n) = \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_{\mathsf{K}})$ or $\mathcal{N}(\boldsymbol{\mu}, \Psi)$
- Therefore, inference algorithms for HMM/SSM are often very similar to mixture models/PPCA
 - Only main difference is how the latent variables z_n 's are inferred (because these are no longer i.i.d.)
 - E.g., if using EM, only E step needs to change. Given the expectations, the M step updates are derived similarly to how it's done in mixture models and PPCA (Bishop Chap 13 has EM for HMM and SSM)

State Space Models (SSM)

• Today we will mainly focus on SSM (when the latent variables are continuous vectors)



• Most of the details of methods we will see apply to HMMs too (but s_t will be discrete)

• In the most general form, the transition and observation models in an SSM can be expressed as

$$egin{array}{rll} m{s}_t | m{s}_{t-1} &=& m{g}_t(m{s}_{t-1}) + \epsilon_t & (ext{must be a cont. dist. over }m{s}_t \ m{x}_t | m{s}_t &=& h_t(m{s}_t) + \delta_t & (ext{can be any dist. over }m{x}_t) \end{array}$$

• Here g_t and h_t are functions (can be linear/nonlinear)

• Assuming zero-mean Gaussian noise $\epsilon_t \sim \mathcal{N}(0, \mathbf{Q}_t)$, $\delta_t \sim \mathcal{N}(0, \mathbf{R}_t)$, we get a Gaussian SSM

$$egin{array}{rcl} m{s}_t | m{s}_{t-1} & \sim & \mathcal{N}(m{s}_t | m{g}_t(m{s}_{t-1}), m{Q}_t) \ m{x}_t | m{s}_t & \sim & \mathcal{N}(m{x}_t | h_t(m{s}_t), m{R}_t) \end{array}$$

• Note: If $g_t, h_t, \mathbf{Q}_t, \mathbf{R}_t$ are independent of t then the model is called stationary

State Space Models (SSM)

• A simple example of a state-space model

$$egin{array}{rcl} m{s}_t | m{s}_{t-1} &=& m{s}_{t-1} + \epsilon_t \ m{x}_t | m{s}_t &=& m{s}_t + \delta_t \end{array}$$
 (assumes $m{x}_t$ and $m{s}_t$ to be of same size)

• Another simple but more general example (latent states and observations of diff. dimensions)

$$\begin{aligned} \mathbf{s}_t | \mathbf{s}_{t-1} &= \mathbf{A}_t \mathbf{s}_{t-1} + \epsilon_t & (\mathbf{A}_t \text{ is } K \times K) \\ \mathbf{x}_t | \mathbf{s}_t &= \mathbf{B}_t \mathbf{s}_t + \delta_t & (\mathbf{B}_t \text{ is } D \times K) \end{aligned}$$

• The above can also be written as follows

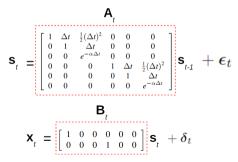
$$egin{array}{rcl} m{s}_t | m{s}_{t-1} & \sim & \mathcal{N}(m{s}_t | m{A}_t m{s}_{t-1}, m{Q}_t) \ m{x}_t | m{s}_t & \sim & \mathcal{N}(m{x}_t | m{B}_t m{s}_t, m{R}_t) \end{array}$$

• This is a Linear Gaussian SSM; also called Linear Dynamical System (LDS)

• Note: A_t , B_t , Q_t , R_t may be known (fixed) or may be required to be learned

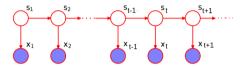
Linear Gaussian SSM (LDS): An Example

- Consider the linear Gaussian SSM: $s_t | s_{t-1} = A_t s_{t-1} + \epsilon_t$ and $x_t | s_t = B_t s_t + \delta_t$
- ${}_{\circ}\,$ Suppose ${m x}_t \in \mathbb{R}^2$ denotes the (noisy) observed 2D location of an object
- Suppose $s_t \in \mathbb{R}^6$ denotes its "state" vector $s_t = [pos_1, vel_1, accel_1, pos_2, vel_2, accel_2]$
- Assuming a pre-defined \mathbf{A}_t , \mathbf{B}_t , a possible linear Gaussian SSM to model this data will be



Typical Inference Tasks in Gaussian SSM

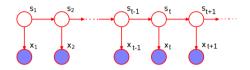
• One of the key tasks: Given sequence x_1, x_2, x_3, \ldots , infer the latent states s_1, s_2, s_3, \ldots



- This is usually solves in one of the following two ways
 - Infer the distribution $p(s_t|x_1, x_2, ..., x_t)$ given the past observations: "Filtering Problem"
 - Infer the distribution $p(s_t|x_1, x_2, ..., x_T)$ given all (past/future) observations: "Smoothing Problem"
- Other tasks we may be interested in
 - Predicting future state(s) given observations seen thus far: $p(s_{t+h}|x_1,...,x_t)$ for $h \ge 1$
 - Predict next observation(s) given observations seen thus far: $p(x_{t+h}|x_1,\ldots,x_t)$ for $h\geq 1$

• Today, we'll mainly focus on the filtering problem (solved using the Kalman Filtering algorithm)

Kalman Filtering



- Recall that $s_t | s_{t-1} \sim \mathcal{N}(s_t | \mathsf{A}_t s_{t-1}, \mathsf{Q}_t)$ and $x_t | s_t \sim \mathcal{N}(x_t | \mathsf{B}_t s_t, \mathsf{R}_t)$
- Let's assume a stationary SSM, i.e., $\mathbf{A}_t = \mathbf{A}$, $\mathbf{B}_t = \mathbf{B}$, $\mathbf{Q}_t = \mathbf{Q}$, and $\mathbf{R}_t = \mathbf{R}$
- Kalman Filtering gives an exact way to infer p(s_t|x₁, x₂,..., x_t) in a linear Gaussian SSM
 Note: The "exactness" assumes we are given A, B, Q, R are known (or have estimated these)
- Using Bayes rule, our target will be

$$p(\boldsymbol{s}_t|\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_t) \propto p(\boldsymbol{x}_t|\boldsymbol{s}_t)p(\boldsymbol{s}_t|\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_{t-1})$$

• The "prior" above is: $p(s_t | x_1, x_2, ..., x_{t-1}) = \int p(s_t | s_{t-1}) p(s_{t-1} | x_1, x_2, ..., x_{t-1}) ds_{t-1}$

Kalman Filtering

• Thus the Kalman Filtering problem computes the following

$$p(\boldsymbol{s}_t|\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_t) \propto \underbrace{p(\boldsymbol{x}_t|\boldsymbol{s}_t)}_{\mathcal{N}(\boldsymbol{x}_t|\boldsymbol{B}\boldsymbol{s}_t,\boldsymbol{R})} \int \underbrace{p(\boldsymbol{s}_t|\boldsymbol{s}_{t-1})}_{\mathcal{N}(\boldsymbol{s}_t|\boldsymbol{A}\boldsymbol{s}_{t-1},\boldsymbol{Q})} p(\boldsymbol{s}_{t-1}|\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_{t-1}) d\boldsymbol{s}_{t-1}$$

• Note that the LHS is the posterior on s_t , the RHS consists of a posterior on s_{t-1}

- This suggests a simple "forward algorithm" to recursively compute $p(s_t|x_1, x_2, ..., x_t)$
 - For Kalman smoothing problem $p(z_t|x_1, x_2, ..., x_T)$, a similar recursive "forward-backward" algorithm exists (the backup slides contain an illustration for the same)
- In this Linear Gaussian SSM, $p(s_{t-1}|x_1, x_2, \dots, x_{t-1})$ would be a Gausian, say $\mathcal{N}(s_{t-1}|\mu, \mathbf{\Sigma})$

• Reason: Starting with $p(s_0) = \mathcal{N}(s_0 | \mathbf{0}, \mathbf{I}_K)$, the posterior over s_t will be Gaussian at each step t

Also, using Gaussian's properties, we know that

$$\int \mathcal{N}(\boldsymbol{s}_t | \mathbf{A} \boldsymbol{s}_{t-1}, \mathbf{Q}) \mathcal{N}(\boldsymbol{s}_{t-1} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\boldsymbol{s}_{t-1} = \mathcal{N}(\boldsymbol{s}_t | \mathbf{A} \boldsymbol{\mu}, \mathbf{Q} + \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^\top)$$

Kalman Filtering

• We can now compute the desired posterior

$$p(s_t|x_1, x_2, \dots, x_t) \quad \propto \quad \mathcal{N}(x_t|\mathsf{B}s_t, \mathsf{R}) imes \mathcal{N}(s_t|\mathsf{A}\mu, \mathsf{Q} + \mathsf{A}\Sigma\mathsf{A}^{ op})$$

• This again is a Gaussian (Gaussian likelihood and Gaussian prior), given by

$$p(oldsymbol{s}_t|oldsymbol{x}_1,oldsymbol{x}_2,\ldots,oldsymbol{x}_t) = \mathcal{N}(oldsymbol{s}_t|oldsymbol{\mu}',oldsymbol{\Sigma}')$$

where the Gaussian posterior's covariance matrix and mean vector are given by

$$\begin{split} \boldsymbol{\Sigma}' &= [(\mathbf{Q} + \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})^{-1} + \mathbf{B}^{\top}\mathbf{R}^{-1}\mathbf{B}]^{-1} \\ \boldsymbol{\mu}' &= \boldsymbol{\Sigma}'[\mathbf{B}^{\top}\mathbf{R}^{-1}\boldsymbol{x}_t + (\mathbf{Q} + \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})^{-1}\mathbf{A}\boldsymbol{\mu}] \end{split}$$

Thus we get closed form expressions for the parameters (Σ', μ') of p(s_t|x₁, x₂,..., x_t) in terms of the parameters (Σ, μ) of p(s_{t-1}|x₁, x₂,..., x_{t-1})

Kalman Filtering: Predicting Future Observations

- We saw how to compute $p(s_t|x_1, x_2, \dots, x_t)$ which was a Gaussian $\mathcal{N}(s_t|\mu', \mathbf{\Sigma}')$
- Often we are also interested in predicting the future observations

$$p(\mathbf{x}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t) = \int p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1}) p(\mathbf{s}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t) d\mathbf{s}_{t+1}$$

=
$$\int \underbrace{p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})}_{\mathcal{N}(\mathbf{x}_{t+1}|\mathbf{B}_{s_{t+1}},\mathbf{R})} \int \underbrace{p(\mathbf{s}_{t+1}|\mathbf{s}_t)}_{\mathcal{N}(\mathbf{s}_{t+1}|\mathbf{A}_{s_t},\mathbf{Q})} \underbrace{p(\mathbf{s}_t|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_t)}_{\mathcal{N}(\mathbf{s}_t|\boldsymbol{\mu}',\boldsymbol{\Sigma}')} d\mathbf{s}_t d\mathbf{s}_{t+1}$$

• This requires two integrals but the final result is again a Gaussian (expression not shown here)

• Note that we assumed the LDS parameters \mathbf{A}_t , \mathbf{B}_t , \mathbf{Q}_t , \mathbf{R}_t are known

$$egin{array}{rcl} m{s}_t | m{s}_{t-1} & \sim & \mathcal{N}(m{s}_t | m{\mathsf{A}}_t m{s}_{t-1}, m{\mathsf{Q}}_t) \ m{x}_t | m{s}_t & \sim & \mathcal{N}(m{x}_t | m{\mathsf{B}}_t m{s}_t, m{\mathsf{R}}_t) \end{array}$$

Usually these aren't known (unless we have some domain knowledge about the underlying system)We can use iterative methods to estimate these parameters

- Basically, we can alternate between inferring the states and inferring the parameters
- This can be done using approximate inference methods such as EM, MCMC, or VB

Other Extensions of SSM/LDS

Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear

$$egin{array}{rcl} m{s}_t | m{s}_{t-1} &=& g(m{s}_{t-1}) + \epsilon_t \ m{x}_t | m{s}_t &=& h(m{s}_t) + \delta_t \end{array}$$

• The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)

• Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM

- For each observation x_t , first draw a cluster id $c_t \in \{1, \ldots, M\}$ from a multinoulli
- Suppose $c_t = m$. Now generate the observation x_t using the the *m*-th LDS/SSM

• It's a hybrid LDS – the "state" consists of two latent variables c_t, z_t (discrete and continuous)

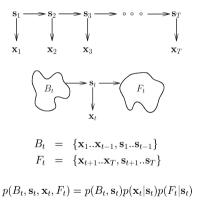
Summary

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably
- These basic models have been extended to more sophisticated models, e.g.,
 - Non-Gaussian LDS
 - Deep LDS
- Inference for HMM is also based on similar principles (e.g., forward and forward-backward algorithm), except that the latent variables are discrete
- The general principle (time-evolving latent variables) can be applied in a wide range of probabilistic models to enable them handle dynamic/time-evolving data
 - E.g., in LDA, we can make the topic assignments of adjacent words follow a Markov relationship (results in an HMM-LDA type model)

Backup Slides: Kalman Smoothing

Kalman Smoothing in SSMs

Goal: Infer $p(s_t | x_1, x_2, ..., x_T)$ given all the observations (both past and future) Note that each state variable s_t separates the graph into three independent parts



Kalman Smoothing in SSMs

Goal: marginal probability p(s_t|x₁,...,x_T) of each state (i.e., smoothing)
Let's look at the joint probability first:

$$p(\mathbf{s}_{t}, \mathbf{x}_{1}..\mathbf{x}_{T}) = \int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} \int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(B_{t}, \mathbf{s}_{t}, \mathbf{x}_{t}, F_{t})$$

$$= \left(\int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} p(B_{t}, \mathbf{s}_{t}) \right) p(\mathbf{x}_{t} | \mathbf{s}_{t}) \left(\int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(F_{t} | \mathbf{s}_{t}) \right)$$

$$= p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t} | \mathbf{s}_{t}) p(F_{t}^{x} | \mathbf{s}_{t})$$

$$B_{t}^{x} = \{\mathbf{x}_{1}..\mathbf{x}_{t-1}\}$$

$$F_{t}^{x} = \{\mathbf{x}_{t+1}..\mathbf{x}_{T}\}$$

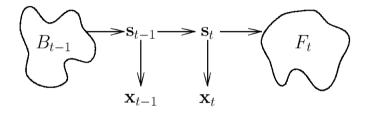
$$\alpha_{t}(\mathbf{s}_{t}) = p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t} | \mathbf{s}_{t}) = p(B_{t}^{x}, \mathbf{x}_{t}, \mathbf{s}_{t})$$

$$\beta_{t}(\mathbf{s}_{t}) = p(F_{t}^{x} | \mathbf{s}_{t})$$

$$p(\mathbf{s}_{t}, \mathbf{x}_{1}..\mathbf{x}_{T}) = \alpha_{t}(\mathbf{s}_{t}) \beta_{t}(\mathbf{s}_{t})$$

• From the joint, we can compute $p(\mathbf{x}_1, \dots, \mathbf{x}_T) = \sum_{\mathbf{s}_t} p(\mathbf{s}_t, \mathbf{x}_1, \dots, \mathbf{x}_T)$, and $p(\mathbf{s}_t | \mathbf{x}_1, \dots, \mathbf{x}_T)$ using Bayes rule

Estimation via Forward-Backward Recursion



Denote $B_t = B_{t-1} \cup \{ \boldsymbol{s}_{t-1}, \boldsymbol{x}_{t-1} \}$ and $F_{t-1} = \{ \boldsymbol{s}_t, \boldsymbol{x}_t \} \cup F_t$

Estimation via Forward-Backward Recursion

Denote $B_t = B_{t-1} \cup \{ \boldsymbol{s}_{t-1}, \boldsymbol{x}_{t-1} \}$ and $F_{t-1} = \{ \boldsymbol{s}_t, \boldsymbol{x}_t \} \cup F_t$

Can compute α and β recursively

$$\begin{aligned} \alpha_t(\mathbf{s}_t) &= p(\mathbf{x}_t | \mathbf{s}_t) p(B_t^x, \mathbf{s}_t) &= p(\mathbf{x}_t | \mathbf{s}_t) \int_{\mathbf{z}} p(B_{t-1}^x, \mathbf{s}_{t-1} = \mathbf{z}, \mathbf{x}_{t-1}, \mathbf{s}_t) \\ &= p(\mathbf{x}_t | \mathbf{s}_t) \int_{\mathbf{z}} p(B_{t-1}^x, \mathbf{s}_{t-1} = \mathbf{z}) p(\mathbf{x}_{t-1} | \mathbf{s}_{t-1} = \mathbf{z}) p(\mathbf{s}_t | \mathbf{s}_{t-1} = \mathbf{z}) \\ &= p(\mathbf{x}_t | \mathbf{s}_t) \int_{\mathbf{z}} p(\mathbf{s}_t | \mathbf{s}_{t-1} = \mathbf{z}) \alpha_{t-1}(\mathbf{z}) \end{aligned}$$

Forward recursion for $\boldsymbol{\alpha}$

$$\beta_{t-1}(\mathbf{s}_{t-1}) = p(F_{t-1}^x | \mathbf{s}_{t-1}) = \int_{\mathbf{z}} p(\mathbf{s}_t = \mathbf{z}, \mathbf{x}_t, F_t^x | \mathbf{s}_{t-1})$$
$$= \int_{\mathbf{z}} p(\mathbf{s}_t = \mathbf{z} | \mathbf{s}_{t-1}) p(\mathbf{x}_t | \mathbf{s}_t = \mathbf{z}) p(F_t^x | \mathbf{s}_t = \mathbf{z})$$
$$= \int_{\mathbf{z}} p(\mathbf{s}_t = \mathbf{z} | \mathbf{s}_{t-1}) p(\mathbf{x}_t | \mathbf{s}_t = \mathbf{z}) \beta_t(\mathbf{z})$$

Backward recursion for β

Initialize as $\alpha_1(\boldsymbol{s}_1) = p(\boldsymbol{s}_1)p(\boldsymbol{x}_1|\boldsymbol{s}_1)$ and $\beta_T(\boldsymbol{s}_T) = 1$