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Recap: Deep Generative Models - GAN

GAN: Generative Adversarial Network†

Based on a game between a generator and a discriminator (Goodfellow et al, 2013)

Can be thought of as a two-player minimax game

min
G

max
D

V (D,G ) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G (z))]

With the generator G fixed, the optimal discriminator D∗G (x) = pdata(x)
pdata(x)+pg (x)

At the global minimum of the objective, pg = pdata
†Generative Adversarial Nets (Goodfellow et al, 2013), Figure: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016
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Deep Learning and Uncertainty

Estimating uncertainty is important

Aleatoric uncertainty, capturing inherent noise in the data; Epistemic uncertainty, capturing models
lack of knowledge
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Latent Variable Models for Sequential Data

Task: Given a sequence of observations, infer the latent state of each observation

An example: Recognizing a sequence of handwritten characters

In this example, the latent state zn at step n is a discrete value

Another example: Given a sequence of observed noisy 2D coordinates xn of an object, infer its
latent state zn, e.g., actual coordinates, velocity, acceleration, etc. at each step n = 1, 2, . . .

In this example, the latent state zn at step n is a continuous vector
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Latent Variable Models for Sequential Data

Consider the following latent variable model for a sequence of observations x1, x2, x3, . . .

xn|zn ∼ p(xn|zn) (i.i.d. draws of xn given zn)

zn|zn−1 ∼ p(zn|zn−1) (first-order dependence b/w zn’s)

p(zn|zn−1) is called state-transition model, p(xn|zn) is called observation/emission model

Note: In some cases, the parameters defining these distributions may be known

If latent states zn are discrete, we get a Hidden Markov Model (HMM)

If latent states zn are continuous vectors, we get a State-Space Model (SSM)

In both cases, observations xn can be anything (discrete/real)
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State-Transition Model

For discrete states case (HMM), p(zn|zn−1) will be a discrete distribution, e.g.,

p(zn|zn−1 = `) = multinoulli(π`)

where π` = [π`,1, . . . , π`,K ] is K × 1 a transition prob. vector, s.t. p(zn = k|zn−1 = `) = π`,k

For HMM, p(zn|zn−1) is fully defined by a K × K transition prob. matrix Π = [π1,π2, . . . ,πK ]

For continuous states (SSM), p(zn|zn−1) will be a continuous distribution, e.g., Gaussian

p(zn|zn−1) = N (Azn−1, IK )

Note: More powerful transition models usually employ nonlinear mappings between zn−1 and zn

For both HMM and SSM, there is also an initial state distribution p(z1), e.g.,

p(z1) = multinoulli(π0) (for HMM)

p(z1) = N (0, IK) (for SSM)
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Observation/Emission Model

The type of observation model distribution p(xn|zn) depends on the type of data

For discrete observations (e.g., words), p(xn|zn) is a discrete distribution (e.g., multinoulli)

For continuous observations (e.g., images, location of an object, etc.), p(xn|zn) is a continuous
distribution (e.g., Gaussian)

Note: More powerful observation models usually employ nonlinear mappings between zn and xn
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A Special Case

What if we have i.i.d. latent states, i.e.,. p(zn|zn−1) = p(zn) ?

HMM becomes a standard Mixture Model. Reason: p(zn|zn−1 = `) = p(zn) = multinoulli(π)

SSM becomes PPCA/factor analysis. Reason: p(zn|zn−1) = p(zn) = N (0, IK) or N (µ,Ψ)

Therefore, inference algorithms for HMM/SSM are often very similar to mixture models/PPCA

Only main difference is how the latent variables zn’s are inferred (because these are no longer i.i.d.)

E.g., if using EM, only E step needs to change. Given the expectations, the M step updates are derived
similarly to how it’s done in mixture models and PPCA (Bishop Chap 13 has EM for HMM and SSM)
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State Space Models (SSM)

Today we will mainly focus on SSM (when the latent variables are continuous vectors)

Most of the details of methods we will see apply to HMMs too (but st will be discrete)

In the most general form, the transition and observation models in an SSM can be expressed as

st |st−1 = gt(st−1) + εt (must be a cont. dist. over st)
x t |st = ht(st) + δt (can be any dist. over x t)

Here gt and ht are functions (can be linear/nonlinear)

Assuming zero-mean Gaussian noise εt ∼ N (0,Qt), δt ∼ N (0,Rt), we get a Gaussian SSM

st |st−1 ∼ N (st |gt(st−1),Qt)

x t |st ∼ N (x t |ht(st),Rt)

Note: If gt , ht ,Qt ,Rt are independent of t then the model is called stationary
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State Space Models (SSM)

A simple example of a state-space model

st |st−1 = st−1 + εt

x t |st = st + δt (assumes x t and st to be of same size)

Another simple but more general example (latent states and observations of diff. dimensions)

st |st−1 = Atst−1 + εt (At is K × K )

x t |st = Btst + δt (Bt is D × K )

The above can also be written as follows

st |st−1 ∼ N (st |Atst−1,Qt)

x t |st ∼ N (x t |Btst ,Rt)

This is a Linear Gaussian SSM; also called Linear Dynamical System (LDS)

Note: At , Bt ,Qt ,Rt may be known (fixed) or may be required to be learned
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Linear Gaussian SSM (LDS): An Example

Consider the linear Gaussian SSM: st |st−1 = Atst−1 + εt and x t |st = Btst + δt

Suppose x t ∈ R2 denotes the (noisy) observed 2D location of an object

Suppose st ∈ R6 denotes its “state” vector st = [pos1, vel1, accel1, pos2, vel2, accel2]

Assuming a pre-defined At , Bt , a possible linear Gaussian SSM to model this data will be
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Typical Inference Tasks in Gaussian SSM

One of the key tasks: Given sequence x1, x2, x3, . . ., infer the latent states s1, s2, s3, . . .

This is usually solves in one of the following two ways

Infer the distribution p(s t |x1, x2, . . . , x t) given the past observations: “Filtering Problem”

Infer the distribution p(s t |x1, x2, . . . , xT ) given all (past/future) observations: “Smoothing Problem”

Other tasks we may be interested in

Predicting future state(s) given observations seen thus far: p(s t+h|x1, . . . , x t) for h ≥ 1

Predict next observation(s) given observations seen thus far: p(x t+h|x1, . . . , x t) for h ≥ 1

Today, we’ll mainly focus on the filtering problem (solved using the Kalman Filtering algorithm)
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Kalman Filtering

Recall that st |st−1 ∼ N (st |Atst−1,Qt) and x t |st ∼ N (x t |Btst ,Rt)

Let’s assume a stationary SSM, i.e., At = A, Bt = B, Qt = Q, and Rt = R

Kalman Filtering gives an exact way to infer p(st |x1, x2, . . . , x t) in a linear Gaussian SSM

Note: The “exactness” assumes we are given A, B,Q,R are known (or have estimated these)

Using Bayes rule, our target will be

p(st |x1, x2, . . . , x t) ∝ p(x t |st)p(st |x1, x2, . . . , x t−1)

The “prior” above is: p(st |x1, x2, . . . , x t−1) =
∫
p(st |st−1)p(st−1|x1, x2, . . . , x t−1)dst−1
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Kalman Filtering

Thus the Kalman Filtering problem computes the following

p(st |x1, x2, . . . , x t) ∝ p(x t |st)︸ ︷︷ ︸
N (x t |Bst ,R)

∫
p(st |st−1)︸ ︷︷ ︸
N (st |Ast−1,Q)

p(st−1|x1, x2, . . . , x t−1)dst−1

Note that the LHS is the posterior on st , the RHS consists of a posterior on st−1

This suggests a simple “forward algorithm” to recursively compute p(st |x1, x2, . . . , x t)

For Kalman smoothing problem p(z t |x1, x2, . . . , xT ), a similar recursive “forward-backward” algorithm
exists (the backup slides contain an illustration for the same)

In this Linear Gaussian SSM, p(st−1|x1, x2, . . . , x t−1) would be a Gausian, say N (st−1|µ,Σ)

Reason: Starting with p(s0) = N (s0|0, IK ), the posterior over s t will be Gaussian at each step t

Also, using Gaussian’s properties, we know that∫
N (st |Ast−1,Q)N (st−1|µ,Σ)dst−1 = N (st |Aµ,Q + AΣA>)
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Kalman Filtering

We can now compute the desired posterior

p(st |x1, x2, . . . , x t) ∝ N (x t |Bst ,R)×N (st |Aµ,Q + AΣA>)

This again is a Gaussian (Gaussian likelihood and Gaussian prior), given by

p(st |x1, x2, . . . , x t) = N (st |µ′,Σ′)

where the Gaussian posterior’s covariance matrix and mean vector are given by

Σ′ = [(Q + AΣA>)−1 + B>R−1B]−1

µ′ = Σ′[B>R−1x t + (Q + AΣA>)−1Aµ]

Thus we get closed form expressions for the parameters (Σ′,µ′) of p(st |x1, x2, . . . , x t) in terms of
the parameters (Σ,µ) of p(st−1|x1, x2, . . . , x t−1)
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Kalman Filtering: Predicting Future Observations

We saw how to compute p(st |x1, x2, . . . , x t) which was a Gaussian N (st |µ′,Σ′)

Often we are also interested in predicting the future observations

p(x t+1|x1, . . . , x t) =

∫
p(x t+1|st+1)p(st+1|x1, . . . , x t)dst+1

=

∫
p(x t+1|st+1)︸ ︷︷ ︸
N (x t+1|Bst+1,R)

∫
p(st+1|st)︸ ︷︷ ︸
N (st+1|Ast ,Q)

p(st |x1, x2, . . . , x t)︸ ︷︷ ︸
N (st |µ′,Σ′)

dstdst+1

This requires two integrals but the final result is again a Gaussian (expression not shown here)
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Kalman Filtering: Some Notes

Note that we assumed the LDS parameters At , Bt ,Qt ,Rt are known

st |st−1 ∼ N (st |Atst−1,Qt)

x t |st ∼ N (x t |Btst ,Rt)

Usually these aren’t known (unless we have some domain knowledge about the underlying system)

We can use iterative methods to estimate these parameters

Basically, we can alternate between inferring the states and inferring the parameters

This can be done using approximate inference methods such as EM, MCMC, or VB
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Other Extensions of SSM/LDS

Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear

st |st−1 = g(st−1) + εt

x t |st = h(st) + δt

The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another
way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)

Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM

For each observation x t , first draw a cluster id ct ∈ {1, . . . ,M} from a multinoulli

Suppose ct = m. Now generate the observation x t using the the m-th LDS/SSM

s t |s t−1, ct = m ∼ N (s t |A(m)s t−1,Q(m))

x t |s t , ct = m ∼ N (x t |B(m)s t ,R(m))

It’s a hybrid LDS – the “state” consists of two latent variables ct , z t (discrete and continuous)
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Summary

SSM/LDS allows modeling non i.i.d. sequential data

Gaussian assumption on transition/observation models helps inference considerably

These basic models have been extended to more sophisticated models, e.g.,

Non-Gaussian LDS

Deep LDS

Inference for HMM is also based on similar principles (e.g., forward and forward-backward
algorithm), except that the latent variables are discrete

The general principle (time-evolving latent variables) can be applied in a wide range of probabilistic
models to enable them handle dynamic/time-evolving data

E.g., in LDA, we can make the topic assignments of adjacent words follow a Markov relationship
(results in an HMM-LDA type model)
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Backup Slides: Kalman Smoothing
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Kalman Smoothing in SSMs

Goal: Infer p(st |x1, x2, . . . , xT ) given all the observations (both past and future)

Note that each state variable st separates the graph into three independent parts
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Kalman Smoothing in SSMs

Goal: marginal probability p(st |x1, . . . , xT ) of each state (i.e., smoothing)

Let’s look at the joint probability first:

From the joint, we can compute p(x1, . . . , xT ) =
∑

st p(st , x1, . . . , xT ), and p(st |x1, . . . , xT )
using Bayes rule
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Estimation via Forward-Backward Recursion

Denote Bt = Bt−1 ∪ {st−1, x t−1} and Ft−1 = {st , x t} ∪ Ft
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Estimation via Forward-Backward Recursion

Denote Bt = Bt−1 ∪ {st−1, x t−1} and Ft−1 = {st , x t} ∪ Ft

Can compute α and β recursively

Forward recursion for α

Backward recursion for β

Initialize as α1(s1) = p(s1)p(x1|s1) and βT (sT ) = 1
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