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Recap: Deep Generative Models - GAN

o GAN: Generative Adversarial Network®

o Based on a game between a generator and a discriminator (Goodfellow et al, 2013)
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Recap: Deep Generative Models - GAN

o GAN: Generative Adversarial Network®

o Based on a game between a generator and a discriminator (Goodfellow et al, 2013)
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o GAN: Generative Adversarial Network®

o Based on a game between a generator and a discriminator (Goodfellow et al, 2013)
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Deep Learning and Uncertainty

o Estimating uncertainty is important

(a) Input Image (b) Ground Truth (c) Semantic Segmentation  (d) Aleatoric Uncertainty  (¢) Epistemic Uncertainty

What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? [Kendall & Gal, NIPS, 2017]

o Aleatoric uncertainty, capturing inherent noise in the data; Epistemic uncertainty, capturing models
lack of knowledge
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Latent Variable Models for Sequential Data

o Task: Given a sequence of observations, infer the latent state of each observation
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Latent Variable Models for Sequential Data

o Task: Given a sequence of observations, infer the latent state of each observation

o In this example, the latent state z, at step n is a discrete value
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Latent Variable Models for Sequential Data

o Task: Given a sequence of observations, infer the latent state of each observation

o In this example, the latent state z, at step n is a discrete value

o Another example: Given a sequence of observed noisy 2D coordinates x,, of an object, infer its
latent state z,, e.g., actual coordinates, velocity, acceleration, etc. at each step n=1,2,...
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Latent Variable Models for Sequential Data

o Task: Given a sequence of observations, infer the latent state of each observation

o In this example, the latent state z, at step n is a discrete value

o Another example: Given a sequence of observed noisy 2D coordinates x,, of an object, infer its
latent state z,, e.g., actual coordinates, velocity, acceleration, etc. at each step n=1,2,...

o In this example, the latent state z, at step n is a continuous vector
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Latent Variable Models for Sequential Data

o Consider the following latent variable model for a sequence of observations x1, x», x3, . ..

Xnlzn ~  p(xn|zn) (i.i.d. draws of x, given z,)
zplzpo1 ~ p(zh|zp-1) (first-order dependence b/w z,'s)
Zl ZZ
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z, z, z z z

o p(zn|zn—1) is called state-transition model, p(x,|z,) is called observation/emission model
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o p(zn|zn—1) is called state-transition model, p(x,|z,) is called observation/emission model

o Note: In some cases, the parameters defining these distributions may be known
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o Consider the following latent variable model for a sequence of observations x1, x», x3, . ..

Xnlzn ~  p(xn|zn) (i.i.d. draws of x, given z,)
zplzpo1 ~ p(zh|zp-1) (first-order dependence b/w z,'s)
Zl ZZ

o p(z,|z—1) is called state-transition model, p(x,|z,) is called observation/emission model

o Note: In some cases, the parameters defining these distributions may be known

o If latent states z, are discrete, we get a Hidden Markov Model (HMM)

o If latent states z, are continuous vectors, we get a State-Space Model (SSM)
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Latent Variable Models for Sequential Data

o Consider the following latent variable model for a sequence of observations x1, x», x3, . ..

Xnlzn ~  p(xn|zn) (i.i.d. draws of x, given z,)
zplzpo1 ~ p(zh|zp-1) (first-order dependence b/w z,'s)
Zl ZZ

o p(z,|z—1) is called state-transition model, p(x,|z,) is called observation/emission model

o Note: In some cases, the parameters defining these distributions may be known
o If latent states z, are discrete, we get a Hidden Markov Model (HMM)
o If latent states z, are continuous vectors, we get a State-Space Model (SSM)

o In both cases, observations x,, can be anything (discrete/real)
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State-Transition Model

z
( )1 ( ) 2 anl n n+l

o For discrete states case (HMM), p(z,|z,—1) will be a discrete distribution, e.g.,

p(zn|zp—1 = £) = multinoulli(7,)
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State-Transition Model

z
( )1 ( ) 2 anl n n+l

o For discrete states case (HMM), p(z,|z,—1) will be a discrete distribution, e.g.,
p(zn|zp—1 = £) = multinoulli(7,)

where 7y = [mp1,..., 7 k] is K X 1 a transition prob. vector, s.t. p(z, = k|zp—1 = {) = Tk
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State-Transition Model
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o For discrete states case (HMM), p(z,|z,—1) will be a discrete distribution, e.g.,
p(zn|zp—1 = £) = multinoulli(7,)

where 7y = [mp1,..., 7 k] is K X 1 a transition prob. vector, s.t. p(z, = k|zp—1 = {) = Tk

o For HMM, p(z,|z,—1) is fully defined by a K x K transition prob. matrix 1 = [my, 72, ..., 7k]
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State-Transition Model

z Z z z z
( )1 ( )2 n-1 n n+l

o For discrete states case (HMM), p(z,|z,—1) will be a discrete distribution, e.g.,
p(zn|zp—1 = £) = multinoulli(7,)

where 7y = [mp1,..., 7 k] is K X 1 a transition prob. vector, s.t. p(z, = k|zp—1 = {) = Tk
o For HMM, p(z,|z,—1) is fully defined by a K x K transition prob. matrix 1 = [my, 72, ..., 7k]

o For continuous states (SSM), p(z,|z,—1) will be a continuous distribution, e.g., Gaussian

P(Zn|2n—1) = N(Azn—la IK)
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State-Transition Model

z
( )1 ( ) 2 anl n n+l

o For discrete states case (HMM), p(z,|z,—1) will be a discrete distribution, e.g.,
p(zn|zp—1 = £) = multinoulli(7,)

where 7y = [mp1,..., 7 k] is K X 1 a transition prob. vector, s.t. p(z, = k|zp—1 = {) = Tk
o For HMM, p(z,|z,—1) is fully defined by a K x K transition prob. matrix 1 = [my, 72, ..., 7k]

o For continuous states (SSM), p(z,|z,—1) will be a continuous distribution, e.g., Gaussian

P(Zn|2n—1) = N(Azn—la IK)

o Note: More powerful transition models usually employ nonlinear mappings between z,_; and z,
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State-Transition Model

z Z z z z
( )1 ( )2 n-1 n n+l

o For discrete states case (HMM), p(z,|z,—1) will be a discrete distribution, e.g.,

p(zn|zp—1 = £) = multinoulli(7,)

where 7y = [mp1,..., 7 k] is K X 1 a transition prob. vector, s.t. p(z, = k|zp—1 = {) = Tk
o For HMM, p(z,|z,—1) is fully defined by a K x K transition prob. matrix 1 = [my, 72, ..., 7k]
o For continuous states (SSM), p(z,|z,—1) will be a continuous distribution, e.g., Gaussian
p(znlza-1) = N(Az,_1,1k)
o Note: More powerful transition models usually employ nonlinear mappings between z,_; and z,
o For both HMM and SSM, there is also an initial state distribution p(z;)
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State-Transition Model

z Z z z z
( )1 ( )2 n-1 n n+l

o For discrete states case (HMM), p(z,|z,—1) will be a discrete distribution, e.g.,
p(zn|zp—1 = £) = multinoulli(7,)

where 7y = [mp1,..., 7 k] is K X 1 a transition prob. vector, s.t. p(z, = k|zp—1 = {) = Tk

©

For HMM, p(z,|z,—1) is fully defined by a K x K transition prob. matrix [1 = [my, 72, ..., 7]

©

For continuous states (SSM), p(z,|z,—1) will be a continuous distribution, e.g., Gaussian

P(Zn|2n—1) = N(Azn—la IK)

Note: More powerful transition models usually employ nonlinear mappings between z,_; and z,

©

©

For both HMM and SSM, there is also an initial state distribution p(z1), e.g.,

p(z1) = multinoulli(7g) (for HMM)
p(z1) = N(0,lk) (for SSM)
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Observation/Emission Model

o The type of observation model distribution p(x,|z,) depends on the type of data
z
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Observation/Emission Model

o The type of observation model distribution p(x,|z,) depends on the type of data
z

o For discrete observations (e.g., words), p(x,|z,) is a discrete distribution (e.g., multinoulli)
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Observation/Emission Model

o The type of observation model distribution p(x,|z,) depends on the type of data
z

o For discrete observations (e.g., words), p(x,|z,) is a discrete distribution (e.g., multinoulli)
distribution (e.g., Gaussian)

o For continuous observations (e.g., images, location of an object, etc.), p(x,|z,) is a continuous
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Observation/Emission Model

o The type of observation model distribution p(x,|z,) depends on the type of data

z z z

o For discrete observations (e.g., words), p(x,|z,) is a discrete distribution (e.g., multinoulli)

o For continuous observations (e.g., images, location of an object, etc.), p(x,|z,) is a continuous
distribution (e.g., Gaussian)

o Note: More powerful observation models usually employ nonlinear mappings between z,, and x,

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Latent Variable Models for Sequential Data



o What if we have i.i.d. latent states, i.e.,. p(z,|z,—1) = p(z,) ?

z z z z z
1 2 n-1 n n+1
I X1 I X2 i Xn-1 I Xn I Xn+1




o What if we have i.i.d. latent states, i.e.,. p(z,|z,—1) = p(z,) ?

z z z z z
1 2 = s o= nl " i
I X1 I X2 i Xn-1 I Xn I Xn+1
o HMM becomes




o What if we have i.i.d. latent states, i.e.,. p(z,|z,—1) = p(z,) ?

Zl ZZ . Zrl-l Zn Zm—l
fx}- ixz in-l ixn i(n*’l
o HMM becomes a standard Mixture Model




A Special Case

o What if we have i.i.d.

latent states, i.e.,. p(zp|zp—1)

p(z,) ?

(T TIE

o HMM becomes a standard Mixture Model. Reason: p(z,|z,—1 = £) = p(z,) = multinoulli(7)
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A Special Case

o What if we have i.i.d.

latent states, i.e., p(z,,|z,, 1)

p(z,) ?

o SSM becomes

o HMM becomes a standard Mixture Model. Reason: p(z,|z,—1 = £) = p(z,) = multinoulli(7)
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A Special Case

o What if we have i.i.d.

latent states, i.e.,. p(zp|zp—1) = p(z,) ?

I'I
i i f i ixn+1
o HMM becomes a standard Mixture Model. Reason: p(z,|z,—1 = £) = p(z,) = multinoulli(7)

o SSM becomes PPCA /factor analysis
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A Special Case

o What if we have i.i.d. latent states, i.e.,

p(zn|zn 1 —PZn ?

Y e

o HMM becomes a standard Mixture Model. Reason: p(z,|z,—1 = £) = p(z,) = multinoulli(7)

o SSM becomes PPCA /factor analysis. Reason: p(z,|z,—1) = p(z,) = N(0, k) or N'(u,

v)
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A Special Case
o What if we have i.i.d. latent states, i.e.,. p(z,|z,—1) = p(z,) ?

i6 b6

o HMM becomes a standard Mixture Model. Reason: p(z,|z,—1 = £) = p(z,) = multinoulli(7)
o SSM becomes PPCA /factor analysis. Reason: p(z,|z,—1) = p(z,) = N(0,Ik) or N (i, V)

o Therefore, inference algorithms for HMM /SSM are often very similar to mixture models/PPCA
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A Special Case

o What if we have i.i.d. latent states, i.e.,. p(z,|z,—1) = p(z,) ?

i6 b6

o HMM becomes a standard Mixture Model. Reason: p(z,|z,—1 = £) = p(z,) = multinoulli(7)
o SSM becomes PPCA /factor analysis. Reason: p(z,|z,—1) = p(z,) = N(0,Ik) or N (i, V)
o Therefore, inference algorithms for HMM /SSM are often very similar to mixture models/PPCA

o Only main difference is how the latent variables z,'s are inferred (because these are no longer i.i.d.)
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A Special Case

o What if we have i.i.d. latent states, i.e.,. p(z,|z,—1) = p(z,) ?

i6 b6

o HMM becomes a standard Mixture Model. Reason: p(z,|z,—1 = £) = p(z,) = multinoulli(7)
o SSM becomes PPCA /factor analysis. Reason: p(z,|z,—1) = p(z,) = N(0,Ik) or N (i, V)
o Therefore, inference algorithms for HMM /SSM are often very similar to mixture models/PPCA

o Only main difference is how the latent variables z,'s are inferred (because these are no longer i.i.d.)

o E.g., if using EM, only E step needs to change. Given the expectations, the M step updates are derived
similarly to how it's done in mixture models and PPCA
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A Special Case

(+]

What if we have i.i.d. latent states, i.e.,. p(zn|z,—1) = p(z,) ?

i6 b6

o HMM becomes a standard Mixture Model. Reason: p(z,|z,—1 = £) = p(z,) = multinoulli(7)

©

SSM becomes PPCA /factor analysis. Reason: p(z,|z,—1) = p(z,) = N (0, k) or N(p, V)

©

Therefore, inference algorithms for HMM/SSM are often very similar to mixture models/PPCA

o Only main difference is how the latent variables z,'s are inferred (because these are no longer i.i.d.)

o E.g., if using EM, only E step needs to change. Given the expectations, the M step updates are derived
similarly to how it's done in mixture models and PPCA (Bishop Chap 13 has EM for HMM and SSM)
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State Space Models (SSM)

o Today we will mainly focus on SSM (when the latent variables are continuous vectors)

3 N NS N Using ‘s’ instead of ‘2’

to refer to states

Using ‘t’ to denote the
‘time-step’

o Most of the details of methods we will see apply to HMMs too (but s; will be discrete)
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o Today we will mainly focus on SSM (when the latent variables are continuous vectors)

3 N NS N Using ‘s’ instead of ‘2’

to refer to states

Using ‘t’ to denote the
‘time-step’

o Most of the details of methods we will see apply to HMMs too (but s; will be discrete)

o In the most general form, the transition and observation models in an SSM can be expressed as
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State Space Models (SSM)

o Today we will mainly focus on SSM (when the latent variables are continuous vectors)

3 Ni o S+l Using ‘s’ instead of ‘2’

to refer to states

Using ‘t’ to denote the
‘time-step’

o Most of the details of methods we will see apply to HMMs too (but s; will be discrete)
o In the most general form, the transition and observation models in an SSM can be expressed as

Selsi—1 = gi(si—1) + e (must be a cont. dist. over s;)
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o Today we will mainly focus on SSM (when the latent variables are continuous vectors)

3 Ni o S+l Using ‘s’ instead of ‘2’

to refer to states

Using ‘t’ to denote the
‘time-step’

o Most of the details of methods we will see apply to HMMs too (but s; will be discrete)
o In the most general form, the transition and observation models in an SSM can be expressed as

Selsi—1 = gi(si—1) + e (must be a cont. dist. over s;)
X¢|se = he(st) + 0 (can be any dist. over x;)
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State Space Models (SSM)

o Today we will mainly focus on SSM (when the latent variables are continuous vectors)

3 Ni o S+l Using ‘s’ instead of ‘2’

to refer to states

Using ‘t’ to denote the
‘time-step’

o Most of the details of methods we will see apply to HMMs too (but s; will be discrete)
o In the most general form, the transition and observation models in an SSM can be expressed as

Selsi—1 = gi(si—1) + e (must be a cont. dist. over s;)
X¢|se = he(st) + 0 (can be any dist. over x;)

o Here g; and h; are functions (can be linear/nonlinear)
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State Space Models (SSM)

t-1 St

o Today we will mainly focus on SSM (when the latent variables are continuous vectors)

$#1  Using ‘s’ instead of ‘2’
to refer to states

Using ‘t’ to denote the
‘time-step’

o Most of the details of methods we will see apply to HMMs too (but s; will be discrete)

o In the most general form, the transition and observation models in an SSM can be expressed as

Se|Se—1 gi(se—1) + € (must be a cont. dist. over s;)

he(st) + 0t (can be any dist. over x;)
o Here g; and h; are functions (can be linear/nonlinear)

X¢|St

o Assuming zero-mean Gaussian noise ¢; ~ N (0, Q;), d;: ~ N(0,R;), we get a Gaussian SSM
~ N(St‘gt(st—l), Qt)
Xt|st ~ N(Xt|ht(st),Rt)

5t|5t—1

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK)

Latent Variable Models for Sequential Data



State Space Models (SSM)

t-1 St

o Today we will mainly focus on SSM (when the latent variables are continuous vectors)

$#1  Using ‘s’ instead of ‘2’
to refer to states

Using ‘t’ to denote the
‘time-step’

o Most of the details of methods we will see apply to HMMs too (but s; will be discrete)

o In the most general form, the transition and observation models in an SSM can be expressed as

Se|Se—1 gi(se—1) + € (must be a cont. dist. over s;)

he(st) + 0t (can be any dist. over x;)
o Here g; and h; are functions (can be linear/nonlinear)

X¢|St

o Assuming zero-mean Gaussian noise ¢; ~ N (0, Q;), d;: ~ N(0,R;), we get a Gaussian SSM
~ N(St‘gt(st—l), Qt)

Xt|st ~ N(Xt|ht(st), Rt)
o Note: If g;, ht, Q¢, R; are independent of t then the model is called stationary

5t|5t—1

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK)
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State Space Models (SSM)

o A simple example of a state-space model

St‘st—l = St_1+ €
Xt|5t == st+5t

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK)
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State Space Models (SSM)

o A simple example of a state-space model

St‘st—l = St_1+ €
X¢lst = si+0; (assumes x; and s; to be of same size)

o Another simple but more general example (latent states and observations of diff. dimensions)

St‘st,1 = Atstf]_ + €t (At is K x K)

Xt|St Btst +5t (Bt is D x K)
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State Space Models (SSM)

o A simple example of a state-space model

St‘st—l = St_1+ €
X¢lst = si+0; (assumes x; and s; to be of same size)

o Another simple but more general example (latent states and observations of diff. dimensions)

St‘st,1 = Atstf]_ + €t (At is K x K)
Xt|St = Btst +5t (Bt is D x K)

o The above can also be written as follows

Se|si—1 ~ N(s¢|Aesi—1,Qy)
x¢|se ~ N(x¢|B:st, Ry)
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State Space Models (SSM)

o A simple example of a state-space model

st‘st—l = St_1+ €
X¢lst = si+0; (assumes x; and s; to be of same size)

o Another simple but more general example (latent states and observations of diff. dimensions)

St‘st,1 = Atstf]_ + €t (At is K x K)
Xt|St = Btst +5t (Bt is D x K)

o The above can also be written as follows

Se|si—1 ~ N(s¢|Aesi—1,Qy)
x¢|se ~ N(x¢|B:st, Ry)

o This is a Linear Gaussian SSM; also called Linear Dynamical System (LDS)
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State Space Models (SSM)

o A simple example of a state-space model

st‘st—l = St_1+ €
X¢lst = si+0; (assumes x; and s; to be of same size)

o Another simple but more general example (latent states and observations of diff. dimensions)

St‘st,1 = Atstf]_ + €t (At is K x K)
Xt|St = Btst +5t (Bt is D x K)

The above can also be written as follows

(4]

Se|si—1 ~ N(s¢|Aesi—1,Qy)
x¢|se ~ N(x¢|B:st, Ry)

o This is a Linear Gaussian SSM; also called Linear Dynamical System (LDS)

o Note: A;, B;, Q:, R; may be known (fixed) or may be required to be learned
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Linear Gaussian SSM (LDS): An Example

o Consider the linear Gaussian SSM: s;|s;_1 = A;s;—1 + €; and x;|s; = B;s; + 0
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Linear Gaussian SSM (LDS): An Example

o Consider the linear Gaussian SSM: s;|s;_1 = A;s;—1 + €; and x;|s; = B;s; + 0

o Suppose x; € R? denotes the (noisy) observed 2D location of an object
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Linear Gaussian SSM (LDS): An Example

o Consider the linear Gaussian SSM: s;|s;_1 = A;s;—1 + €; and x;|s; = B;s; + 0
o Suppose x; € R? denotes the (noisy) observed 2D location of an object

o Suppose s; € R® denotes its “state” vector s; = [posi, vely, accely, pos, veh, accel]
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Linear Gaussian SSM (LDS): An Example

©

Consider the linear Gaussian SSM: s;|s;_1 = A;s;_1 + €; and x;|s; = B;s; + 0;
o Suppose x; € R? denotes the (noisy) observed 2D location of an object

o Suppose s; € R® denotes its “state” vector s; = [posi, vely, accely, pos, veh, accel]

o Assuming a pre-defined A;, B;, a possible linear Gaussian SSM to model this data will be
A
L U
1A HA 0 0 0
0 1 At 0 0 0
0 0 e 0 0 0
S =00 o 1 a an [P T €t
0 0 0 0 At
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Linear Gaussian SSM (LDS): An Example

©

Consider the linear Gaussian SSM: s;|s;_1 = A;s;_1 + €; and x;|s; = B;s; + 0;
o Suppose x; € R? denotes the (noisy) observed 2D location of an object

o Suppose s; € R® denotes its “state” vector s; = [posi, vely, accely, pos, veh, accel]

o Assuming a pre-defined A;, B;, a possible linear Gaussian SSM to model this data will be
A
L U
1A HA 0 0 0
0 1 At 0 0 0
0 0 e 0 0 0
Si=iloo o 1 a an [P T €t
0o 0 0 0 1 At
0 0 0 0 0 e
B
................ Y [
_if1 00000
X = 4
t 0001 00]|S o1
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Typical Inference Tasks in Gaussian SSM

o One of the key tasks: Given sequence x1, X2, X3, ..., infer the latent states s1, s>, S3, . ..

S1 S2 St-1 St St+1
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Typical Inference Tasks in Gaussian SSM

o One of the key tasks: Given sequence x1, X2, X3, ..., infer the latent states s1, s>, S3, . ..

S1 2 St1 St Str1

o This is usually solves in one of the following two ways
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Typical Inference Tasks in Gaussian SSM

o One of the key tasks: Given sequence x1, X2, X3, ..., infer the latent states s1, s>, S3, . ..

S1 2 St1 St Str1

o This is usually solves in one of the following two ways

o Infer the distribution p(s¢|x1, x2, ..., Xx:) given the past observations: “Filtering Problem”
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Typical Inference Tasks in Gaussian SSM

o One of the key tasks: Given sequence x1, X2, X3, ..., infer the latent states s1, s>, S3, . ..

S1 2 St1 St Str1

o This is usually solves in one of the following two ways

o Infer the distribution p(s¢|x1, x2, ..., Xx:) given the past observations: “Filtering Problem”

o Infer the distribution p(s¢|x1,x2,...,x7) given all (past/future) observations: “Smoothing Problem”
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Typical Inference Tasks in Gaussian SSM

o One of the key tasks: Given sequence x1, X2, X3, ..., infer the latent states s1, s>, S3, . ..

S1 2 St1 St Str1

o This is usually solves in one of the following two ways

o Infer the distribution p(s¢|x1, x2, ..., Xx:) given the past observations: “Filtering Problem”

o Infer the distribution p(s¢|x1,x2,...,x7) given all (past/future) observations: “Smoothing Problem”

o Other tasks we may be interested in
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Typical Inference Tasks in Gaussian SSM

o One of the key tasks: Given sequence x1, X2, X3, ..., infer the latent states s1, s>, S3, . ..

S1 2 St1 St Str1

o This is usually solves in one of the following two ways

o Infer the distribution p(s¢|x1, x2, ..., Xx:) given the past observations: “Filtering Problem”

o Infer the distribution p(s¢|x1,x2,...,x7) given all (past/future) observations: “Smoothing Problem”

o Other tasks we may be interested in

o Predicting future state(s) given observations seen thus far: p(seqn|x1,...,x¢) for h>1
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Typical Inference Tasks in Gaussian SSM

o One of the key tasks: Given sequence x1, X2, X3, ..., infer the latent states s1, s>, S3, . ..

S1 2 St1 St Str1

o This is usually solves in one of the following two ways

o Infer the distribution p(s¢|x1, x2, ..., Xx:) given the past observations: “Filtering Problem”

o Infer the distribution p(s¢|x1,x2,...,x7) given all (past/future) observations: “Smoothing Problem”
o Other tasks we may be interested in

o Predicting future state(s) given observations seen thus far: p(seqn|x1,...,x¢) for h>1

o Predict next observation(s) given observations seen thus far: p(X4a|X1,...,x:) for h>1
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Typical Inference Tasks in Gaussian SSM

o One of the key tasks: Given sequence x1, X2, X3, ..., infer the latent states s1, s>, S3, . ..

51 S2 St-1 St St+1

o This is usually solves in one of the following two ways

o Infer the distribution p(s¢|x1, x2, ..., Xx:) given the past observations: “Filtering Problem”

o Infer the distribution p(s¢|x1,x2,...,x7) given all (past/future) observations: “Smoothing Problem”

o Other tasks we may be interested in

o Predicting future state(s) given observations seen thus far: p(seqn|x1,...,x¢) for h>1

o Predict next observation(s) given observations seen thus far: p(X4a|X1,...,x:) for h>1

o Today, we'll mainly focus on the filtering problem (solved using the Kalman Filtering algorithm)
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o Recall that St|5t_]_ ~ N(stlAtSt—la Qt) and thst ~ N(Xt|Btst, Rt)
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Kalman Filtering

S1

o Recall that St|st71 ~ ./\/(St|AtSt,1, Qt) and Xt|5t ~ N(Xt|Bt5t7 Rt)

o Let's assume a stationary SSM, i.e., A; =A,B; =B, Q;: =Q, and R; =R

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK)
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Kalman Filtering

S s>

o Recall that St|st71 ~ N(stlAtStfl, Qt) and Xt|5t ~ N(Xt|Bt5t7 Rt)

o Let's assume a stationary SSM, i.e., A; =A,B; =B, Q;: =Q, and R; =R

o Kalman Filtering gives an exact way to infer p(s¢|x1, x2,. ..

,Xt) in a linear Gaussian SSM
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Kalman Filtering

S1 S2

o Recall that St|st71 ~ N(stlAtStfl, Qt) and Xt|5t ~ N(Xt|Bt5t7 Rt)
o Let's assume a stationary SSM, i.e., A; =A,B; =B, Q;: =Q, and R; =R
o Kalman Filtering gives an exact way to infer p(s¢|x1,x2,...,x;) in a linear Gaussian SSM

o Note: The “exactness” assumes we are given A, B, Q, R are known (or have estimated these)
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Kalman Filtering

S Sz

©

Recall that St|st71 ~ N(stlAtStfl, Qt) and Xt|5t ~ ./\[(Xf|Bt5t7 Rt)
o Let's assume a stationary SSM, i.e., A; =A,B; =B, Q;: =Q, and R; =R

o Kalman Filtering gives an exact way to infer p(s¢|x1,x2,...,x;) in a linear Gaussian SSM
o Note: The “exactness” assumes we are given A, B, Q, R are known (or have estimated these)
o Using Bayes rule, our target will be

p(se|x1, X2, ..., x¢t) < p(x¢|se)p(se|x1, X2, ..., Xr—1)
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Kalman Filtering

S Sz

©

Recall that St|st71 ~ N(stlAtStfl, Qt) and Xt|5t ~ ./\[(Xf|Bt5t7 Rt)
o Let's assume a stationary SSM, i.e., A; =A,B; =B, Q;: =Q, and R; =R

(+]

Kalman Filtering gives an exact way to infer p(s¢|x1, X2, ..., x;) in a linear Gaussian SSM

o Note: The “exactness” assumes we are given A, B, Q, R are known (or have estimated these)

o Using Bayes rule, our target will be
P(5t|X17X2» e »Xt) o8 P(Xt|5t)P(5t|X1~, X2, ..., X¢_1)
o The “prior” above is: p(s¢|x1,X2,...,X¢—1) = fp(s,_s|st_1)p(st_1|x1,X27 ey Xe—1)dSi—
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Kalman Filtering
o Thus the Kalman Filtering problem computes the following

p(selx1,x2, ..., x¢) < p(x¢|st) / p(stlst—1) p(si—1]x1, x2,
—— —_———
N(x¢|Bst,R)  N(s¢|As:—1,Q)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Latent Variable Models for Sequential Data
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Kalman Filtering
o Thus the Kalman Filtering problem computes the following

P(St‘XhXQ;---,Xt) o8 P(Xt‘st) / P(5t|5t—1) p(st—1|x1, X2, ..., X¢_1)dst_1
—— —_———
N(x¢|Bst,R)  N(s¢|As:—1,Q)

o Note that the LHS is the posterior on s;, the RHS consists of a posterior on s;_1
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Kalman Filtering
o Thus the Kalman Filtering problem computes the following

p(selx1, x2,...,x¢) o< p(xt|st) / p(st|st—1) p(Se—1]x1,x2,. ., x; 1)ds; 1
—— —_———
N (x¢|Bs;,R) N (s¢|As:—1,Q)
o Note that the LHS is the posterior on s;, the RHS consists of a posterior on s;_1

o This suggests a simple “forward algorithm” to recursively compute p(s¢|x1, X2, ..., X¢)
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Kalman Filtering
o Thus the Kalman Filtering problem computes the following

p(selx1, x2,...,x¢) o< p(xt|st) / p(st|st—1) p(Se—1]x1,x2,. ., x; 1)ds; 1
—— —_———
N (x¢|Bs;,R) N (s¢|As:—1,Q)
o Note that the LHS is the posterior on s;, the RHS consists of a posterior on s;_1
o This suggests a simple “forward algorithm” to recursively compute p(s¢|x1, X2, ..., X¢)

o For Kalman smoothing problem p(z:|x1, x2,...,x7), a similar recursive “forward-backward” algorithm
exists (the backup slides contain an illustration for the same)
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Kalman Filtering
o Thus the Kalman Filtering problem computes the following

p(selx1, x2,...,x¢) o< p(xt|st) / p(st|st—1) p(Se—1]x1,x2,. ., x; 1)ds; 1
—— —_———
N (x¢|Bs;,R) N (s¢|As:—1,Q)
o Note that the LHS is the posterior on s;, the RHS consists of a posterior on s;_1
o This suggests a simple “forward algorithm” to recursively compute p(s¢|x1, X2, ..., X¢)

o For Kalman smoothing problem p(z:|x1, x2,...,x7), a similar recursive “forward-backward” algorithm
exists (the backup slides contain an illustration for the same)

o In this Linear Gaussian SSM, p(s;_1|x1,X2,...,X;_1) would be a Gausian, say N(s;_1|p, X)
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Kalman Filtering

o Thus the Kalman Filtering problem computes the following

——
N (x¢|Bs;,R) N (s¢|As:—1,Q)

o Note that the LHS is the posterior on s;, the RHS consists of a posterior on s;_1

o This suggests a simple “forward algorithm” to recursively compute p(s¢|x1, X2, ..., X¢)

o For Kalman smoothing problem p(z:|x1, x2,...,x7), a similar recursive “forward-backward” algorithm
exists (the backup slides contain an illustration for the same)

o In this Linear Gaussian SSM, p(s;_1|x1,X2,...,X;_1) would be a Gausian, say N(s;_1|p, X)

o Reason: Starting with p(so) = N (s0|0, Ix), the posterior over s; will be Gaussian at each step t
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Kalman Filtering

o Thus the Kalman Filtering problem computes the following

——
N (x¢|Bs;,R) N (s¢|As:—1,Q)

©

Note that the LHS is the posterior on s;, the RHS consists of a posterior on s;_1

©

This suggests a simple “forward algorithm” to recursively compute p(s¢|x1, X2, ..., Xt)

o For Kalman smoothing problem p(z:|x1, x2,...,x7), a similar recursive “forward-backward” algorithm
exists (the backup slides contain an illustration for the same)

o In this Linear Gaussian SSM, p(s;_1|x1,X2,...,X;_1) would be a Gausian, say N(s;_1|p, X)

o Reason: Starting with p(so) = N (s0|0, Ix), the posterior over s; will be Gaussian at each step t

©

Also, using Gaussian's properties, we know that
/N(sf|Asf—lv QN (se-1|p, E)dse1 = N(s:|Ap,Q + AZAT)
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o We can now compute the desired posterior
p(St|X1,X2, .

LX)

o«  N(x:|Bs;,R) x N(s;|Apn,Q +AZAT)

«O0>» «Fr «=» <« 3 Q>



Kalman Filtering

o We can now compute the desired posterior
p(se|x1, X2, ..., x:) o< N(x¢|Bst,R) x N(s¢|Au,Q + AXAT)
o This again is a Gaussian (Gaussian likelihood and Gaussian prior), given by

p(selx1, x2,. .., x¢) = N(s¢|p', ')
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Kalman Filtering

o We can now compute the desired posterior
p(se|x1, X2, ..., x:) o< N(x¢|Bst,R) x N(s¢|Au,Q + AXAT)
o This again is a Gaussian (Gaussian likelihood and Gaussian prior), given by
p(selx1, x2,. .., x¢) = N(s¢|p', ')
where the Gaussian posterior's covariance matrix and mean vector are given by

¥ = [(Q+AXAT)1+B'R!B]!
v = Y[B'R!x,+(Q+AXZAT)'Ay]
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Kalman Filtering

o We can now compute the desired posterior

p(se|x1, X2, ..., x:) o< N(x¢|Bst,R) x N(s¢|Au,Q + AXAT)

o This again is a Gaussian (Gaussian likelihood and Gaussian prior), given by
p(st|xlax27 e 7xt) = N(st|ul7 z/)
where the Gaussian posterior's covariance matrix and mean vector are given by

¥ = [(Q+AXAT)1+B'R!B]!
v = Y[B'R!x,+(Q+AXZAT)'Ay]

o Thus we get closed form expressions for the parameters (X', u') of p(s¢|x1, x2, . ..

the parameters (X, ) of p(se—1|x1,X2,. .., X¢—1)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Latent Variable Models for Sequential Data
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Kalman Filtering: Predicting Future Observations

o We saw how to compute p(s;|x1, X2, ..., x;) which was a Gaussian N (s¢|p’, ')
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Kalman Filtering: Predicting Future Observations

o We saw how to compute p(s;|x1, X2, ..., x;) which was a Gaussian N (s¢|p’, ')

o Often we are also interested in predicting the future observations

p(Xey1|X1,. .., x¢)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Latent Variable Models for Sequential Data



Kalman Filtering: Predicting Future Observations

o We saw how to compute p(s;|x1, X2, ..., x;) which was a Gaussian N (s¢|p’, ')

o Often we are also interested in predicting the future observations

P(Xt+1‘xl7 cee 7Xt) = /P(Xt+1|5t+1)P($t+1‘X1~ ceey Xr)d5t+1
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Kalman Filtering: Predicting Future Observations

o We saw how to compute p(s;|x1, X2, ..., x;) which was a Gaussian N (s¢|p’, ')

o Often we are also interested in predicting the future observations

P(Xt+1‘xl7 cee 7Xt) = /P(Xt+1|5t+1)P($t+1‘X1~ ceey Xr)d5t+1

/P(Xt+1\5t+1)
N—_———

N(XH»I‘BsH»laR)
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Kalman Filtering: Predicting Future Observations

o We saw how to compute p(s;|x1, X2, ..., x;) which was a Gaussian N (s¢|p’, ')

o Often we are also interested in predicting the future observations

p(Xei1]x1, ..., x:) = /P(Xt+1|5t+1)P(5t+1‘Xla coXe)dSeq

/ p(Xti1lSes1) p(st+1lst)
—_— ) S
N(XH»I‘BSHJaR) -‘\/’(St+1|A5r-Q)
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Kalman Filtering: Predicting Future Observations

o We saw how to compute p(s;|x1, X2, ..., x;) which was a Gaussian N (s¢|p’, ')

o Often we are also interested in predicting the future observations

plrcaabes,ooox) = [ plxeaalsc)plscailxi. . x)dscn
= /P(Xt+1‘5t+1) p(sev1|se) p(se|x1,x2,...,x¢) ds;ds,iq
—_— ) ~——
N(x¢11|Bset1,R) N(st4+1]|Ase,Q) N(s¢|p',Z")
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Kalman Filtering: Predicting Future Observations

o We saw how to compute p(s;|x1, X2, ..., x;) which was a Gaussian N (s¢|p’, ')

o Often we are also interested in predicting the future observations

plrcaabes,ooox) = [ plxeaalsc)plscailxi. . x)dscn
= /P(Xt+1‘5t+1) p(sev1|se) p(se|x1,x2,...,x¢) ds;ds,iq
—_— ) ~——
N(x¢11|Bset1,R) N(st4+1]|Ase,Q) N(s¢|p',Z")

o This requires two integrals but the final result is again a Gaussian (expression not shown here)
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Kalman Filtering: Some Notes

o Note that we assumed the LDS parameters A;, B:, Q;, R; are known
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Kalman Filtering: Some Notes

o Note that we assumed the LDS parameters A;, B:, Q;, R; are known

5t|st_]_ ~ N(St|Atst—1a Qt)
x¢lse ~ N(x¢|B:st, Ry)
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Kalman Filtering: Some Notes

o Note that we assumed the LDS parameters A;, B:, Q;, R; are known

5t|st_]_ ~ N(St|Atst—1a Qt)
x¢lse ~ N(x¢|B:st, Ry)

o Usually these aren't known (unless we have some domain knowledge about the underlying system)
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Kalman Filtering: Some Notes

o Note that we assumed the LDS parameters A;, B:, Q;, R; are known

5t|st_]_ ~ N(St|Atst—1a Qt)
x¢lse ~ N(x¢|B:st, Ry)

o Usually these aren't known (unless we have some domain knowledge about the underlying system)

o We can use iterative methods to estimate these parameters
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Kalman Filtering: Some Notes

o Note that we assumed the LDS parameters A;, B:, Q;, R; are known

5t|st_]_ ~ N(St|Atst—1a Qt)
x¢lse ~ N(x¢|B:st, Ry)

o Usually these aren't known (unless we have some domain knowledge about the underlying system)
o We can use iterative methods to estimate these parameters

o Basically, we can alternate between inferring the states and inferring the parameters
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Kalman Filtering: Some Notes

o Note that we assumed the LDS parameters A;, B:, Q;, R; are known

5t|st_]_ ~ N(St|Atst—1a Qt)
x¢lse ~ N(x¢|B:st, Ry)

o Usually these aren't known (unless we have some domain knowledge about the underlying system)

o We can use iterative methods to estimate these parameters

o Basically, we can alternate between inferring the states and inferring the parameters

o This can be done using approximate inference methods such as EM, MCMC, or VB
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Other Extensions of SSM/LDS

o Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear

Selse—1 = g(se—1) + €
Xt‘st = h(st) —+ 51—
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Other Extensions of SSM/LDS

o Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear

Selse—1 = g(se—1) + €
Xt‘st = h(st) —+ 51—

o The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another
way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Latent Variable Models for Sequential Data



Other Extensions of SSM/LDS

o Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear

Selse—1 = g(se—1) + €
Xt‘st = h(st) —+ 51—

o The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another
way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)

o Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM
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o Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear
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Xt‘st = h(st) —+ 51—

o The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another
way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)

o Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM

o For each observation x;, first draw a cluster id ¢; € {1,..., M} from a multinoulli
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Other Extensions of SSM/LDS

o Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear

Selse—1 = g(se—1) + €
Xt‘st = h(st) —+ 51—

o The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another
way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)
o Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM
o For each observation x;, first draw a cluster id ¢; € {1,..., M} from a multinoulli

o Suppose ¢: = m. Now generate the observation x; using the the m-th LDS/SSM

St|se—1,ce=m  ~ N(S:\A("’)spl,Q("’))
Xt|5t,Ct = m N(thB(m)St7R(m))
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Other Extensions of SSM/LDS

o Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear
Selse—1 = g(se—1) + €

Xt‘st = h(st)+5t

o The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another
way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)

o Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM

o For each observation x;, first draw a cluster id ¢; € {1,..., M} from a multinoulli

o Suppose ¢: = m. Now generate the observation x; using the the m-th LDS/SSM

St|se—1,ce=m  ~ N(S:\A("’)spl,Q("’))
Xt|5t,Ct = m N(thB(m)St7R(m))

o It's a hybrid LDS — the “state” consists of two latent variables c;, z; (discrete and continuous)
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o SSM/LDS allows modeling non i.i.d. sequential data
o Gaussian assumption on transition/observation models helps inference considerably



Summary
o SSM/LDS allows modeling non i.i.d. sequential data

o Gaussian assumption on transition/observation models helps inference considerably

o These basic models have been extended to more sophisticated models
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Summary

o SSM/LDS allows modeling non i.i.d. sequential data
o Gaussian assumption on transition/observation models helps inference considerably
o These basic models have been extended to more sophisticated models, e.g.,
o Non-Gaussian LDS
o Deep LDS
o Inference for HMM is also based on similar principles (e.g., forward and forward-backward

algorithm), except that the latent variables are discrete
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Summary

©

SSM/LDS allows modeling non i.i.d. sequential data

o Gaussian assumption on transition/observation models helps inference considerably
o These basic models have been extended to more sophisticated models, e.g.,

o Non-Gaussian LDS

o Deep LDS

o Inference for HMM is also based on similar principles (e.g., forward and forward-backward
algorithm), except that the latent variables are discrete

o The general principle (time-evolving latent variables) can be applied in a wide range of probabilistic
models to enable them handle dynamic/time-evolving data
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Summary

©

SSM/LDS allows modeling non i.i.d. sequential data

o Gaussian assumption on transition/observation models helps inference considerably
o These basic models have been extended to more sophisticated models, e.g.,

o Non-Gaussian LDS

o Deep LDS

o Inference for HMM is also based on similar principles (e.g., forward and forward-backward
algorithm), except that the latent variables are discrete

o The general principle (time-evolving latent variables) can be applied in a wide range of probabilistic
models to enable them handle dynamic/time-evolving data

o E.g., in LDA, we can make the topic assignments of adjacent words follow a Markov relationship
(results in an HMM-LDA type model)
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Backup Slides: Kalman Smoothing
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Kalman Smoothing in SSMs

Goal: Infer p(s¢|x1, x2,...,x7) given all the observations (both past and future)
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Kalman Smoothing in SSMs

Goal: Infer p(s¢|x1, x2,...,x7) given all the observations (both past and future)

Note that each state variable s; separates the graph into three independent parts

S]—=8y—=S3——= 00 o —=S7

b l

Xy X2 X3 X7
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Kalman Smoothing in SSMs

Goal: Infer p(s¢|x1, x2,...,x7) given all the observations (both past and future)

Note that each state variable s; separates the graph into three independent parts

S]—=8y—=S3——= 00 o —=S7

b l

Xy X2 X3 X7
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Kalman Smoothing in SSMs

Goal: Infer p(s¢|x1, x2,...,x7) given all the observations (both past and future)

Note that each state variable s; separates the graph into three independent parts

S]—=8y—=S3——= 00 o —=S7

b l

Xy X2 X3 X7
? | _>®
X
B, = {xl-vxt—lyslv-st—l}
F = {XL+1~~XT, Sz+1~ST}
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Kalman Smoothing in SSMs

Goal: Infer p(s¢|x1, x2,...,x7) given all the observations (both past and future)

Note that each state variable s; separates the graph into three independent parts

S]—=8y—=S3——= 00 o —=S7

b l

Xy X2 X3 X7
? | _>®
X
B, = {xl-vxt—lyslv-st—l}
F = {XL+1~~XT, Sz+1~ST}

I)(BL7 Sty Xy, Fl) = p(BU Sl)p(xl‘sl)p(Fl‘sl)
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Kalman Smoothing in SSMs

o Goal: marginal probability p(s¢|x1,...,x7) of each state (i.e., smoothing)

o Let's look at the joint probability first:

p(si, X1.X7) = / / p(By, st, %, Fr)
81..8¢—1 VS¢41..87

_ </,-.,,,SHP(B“SJ> p(xils) (/W,.Wp(msl))

= p(B7,s)p(xe[s)p(FY[se)
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Kalman Smoothing in SSMs

o Goal: marginal probability p(s¢|x1,...,x7) of each state (i.e., smoothing)
o Let's look at the joint probability first:

p(sy, X1 XT) / / p(By, 81, %4, FL)
81..8t—1 JS¢41. *T

_ </,-.,,,SHP(B“SJ> p(xils) (/W,.Wp(msl))

= p(B7,s)p(xe[s)p(FY[se)

Bf = {xi.x1}
= {xp1-xr}
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Kalman Smoothing in SSMs

o Goal: marginal probability p(s¢|x1,...,x7) of each state (i.e., smoothing)
o Let's look at the joint probability first:

p(sy, X1 XT) / / p(By, 81, %4, Ft)
81..8t—1 JS¢41. *T
= (/ P(Br,-,st)> p(x;[s1) (/ p(Ft‘St))
81..8¢—1 St41..87
= p(B},s)p(xi|s)p(Fy[se)

Bf = {xi.x1}
F = {x.%r}

ar(se) = p(By,se)p(xelse) = p(B), x4, 8¢)
p(F/ )

»
=
w
N
Il
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Kalman Smoothing in SSMs

o Goal: marginal probability p(s¢|x1,...,x7) of each state (i.e., smoothing)

o Let's look at the joint probability first:

p(si, X1.X7) = / / p(By, st, %, Fr)
81..8¢—1 VS¢41..87

= ([ Eeso)oxisy ([ otris)

= p(B7,s)p(xe[s)p(FY[se)
Bf = {xi.x1}
Ff = {x/1.%xr}

a(s)) = p(Bf,s)p(xilsi) = p(Bi,x1,81)
Bils)) = p(Fls)

p(se, x1..x7) = ay(s¢) Be(s¢)
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Kalman Smoothing in SSMs

o Goal: marginal probability p(s¢|x1,...,x7) of each state (i.e., smoothing)

o Let's look at the joint probability first:

p(si, X1.X7) = / / p(By, st, %, Fr)
81..8¢—1 VS¢41..87

= ([ Eeso)oxisy ([ otris)

= p(B7,s)p(xe[s)p(FY[se)
Bf = {xi.x1}
Ff = {x/1.%xr}

a(s)) = p(Bf,s)p(xilsi) = p(Bi,x1,81)
Bils)) = p(Fls)

p(se, x1..x7) = ay(s¢) Be(s¢)

o From the joint, we can compute p(x1,...,Xx7) = > p(St,X1,...,xT), and p(s¢|x1, ..

using Bayes rule
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Estimation via Forward-Backward Recursion

St—1
B

Xt—1 Xy

Denote Bt - Bt—l ] {St_17xt_]_} and Ft—l - {St,xt} ] Fl’

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Latent Variable Models for Sequential Data

23



Estimation via Forward-Backward Recursion

Denote By = By—1 U{st_1,xt—1} and Fr_1 = {s¢,x:} U F;
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Estimation via Forward-Backward Recursion

Denote By = By—1 U{st_1,xt—1} and Fr_1 = {s¢,x:} U F;

Can compute « and (3 recursively
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Estimation via Forward-Backward Recursion

Denote By = By—1 U{st_1,xt—1} and Fr_1 = {s¢,x:} U F;

Can compute « and (3 recursively

ar(s) = p(xi[s)p(By,s) = P(Xr\st)/P(B}iuStfl =2,%X4_1,5¢)
z

Il

plxils)) [ p(BL i1 = Dplxiilsis = 2plsisii = 2)
])(x,,\s,)/p(sl,\s,,,| =z)oy—1(2)

Forward recursion for «
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Estimation via Forward-Backward Recursion

Denote By = By—1 U{st_1,xt—1} and Fr_1 = {s¢,x:} U F;

Can compute « and (3 recursively

ar(s) = p(xi[s)p(By,s) = P(Xr\st)/P(B}iuStfl =2,%X4_1,5¢)
z

Il

Forward recursion for «

Bia(si1) = p(F[si1)

Backward recursion for 3
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p(x,,\s,,)/z.p(sl,\s,,,, =2z)y_1(2)

/p(st =z,x;, F'[s;_1)
/p(st = z[si1)p(xy|sy = z)p(F]s, = z)

[ 9= 2lsi Op(xilse = 2)(2)
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Estimation via Forward-Backward Recursion

Denote By = By—1 U{st_1,xt—1} and Fr_1 = {s¢,x:} U F;

Can compute « and (3 recursively

ar(s) = p(xi[s)p(By,s) = P(Xr\st)/P(B}iuStfl =2,%X4_1,5¢)
z

Il

plxils)) [ p(BL i1 = Dplxiilsis = 2plsisii = 2)

p(x,,\s,,)/z.p(sl,\s,,,, =2z)y_1(2)

Forward recursion for «

Bia(si1) = p(F[si1)

/p(st =z,x;, F'[s;_1)
/p(st = z[si1)p(xy|sy = z)p(F]s, = z)

[ 9= 2lsi Op(xilse = 2)(2)

Backward recursion for 3

Initialize as a1(s1) = p(s1)p(x1|s1) and Br(s7) =1
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