
Probabilistic Modeling meets Deep Learning

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

April 3, 2019

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 1

Neural Networks

A simple neural network with one intermediate (also called “hidden”) layer and a single output

Each intermediate layer computes a nonlinear transformation of its previous layer’s nodes

In traditional neural nets, h is a Linear transform (e.g., W(1)x in the above picture) followed by a
nonlinearlity (e.g., sigmoid, ReLU, tanh, etc)

Neural nets are awesome but brittle in many ways

Lots of parameters, difficult to train, need lots of data to train

Do not provide uncertainty estimates

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 2

Neural Networks

A simple neural network with one intermediate (also called “hidden”) layer and a single output

Each intermediate layer computes a nonlinear transformation of its previous layer’s nodes

In traditional neural nets, h is a Linear transform (e.g., W(1)x in the above picture) followed by a
nonlinearlity (e.g., sigmoid, ReLU, tanh, etc)

Neural nets are awesome but brittle in many ways

Lots of parameters, difficult to train, need lots of data to train

Do not provide uncertainty estimates

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 2

Neural Networks

A simple neural network with one intermediate (also called “hidden”) layer and a single output

Each intermediate layer computes a nonlinear transformation of its previous layer’s nodes

In traditional neural nets, h is a Linear transform (e.g., W(1)x in the above picture) followed by a
nonlinearlity (e.g., sigmoid, ReLU, tanh, etc)

Neural nets are awesome but brittle in many ways

Lots of parameters, difficult to train, need lots of data to train

Do not provide uncertainty estimates

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 2

Neural Networks

A simple neural network with one intermediate (also called “hidden”) layer and a single output

Each intermediate layer computes a nonlinear transformation of its previous layer’s nodes

In traditional neural nets, h is a Linear transform (e.g., W(1)x in the above picture) followed by a
nonlinearlity (e.g., sigmoid, ReLU, tanh, etc)

Neural nets are awesome but brittle in many ways

Lots of parameters, difficult to train, need lots of data to train

Do not provide uncertainty estimates

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 2

Neural Networks

A simple neural network with one intermediate (also called “hidden”) layer and a single output

Each intermediate layer computes a nonlinear transformation of its previous layer’s nodes

In traditional neural nets, h is a Linear transform (e.g., W(1)x in the above picture) followed by a
nonlinearlity (e.g., sigmoid, ReLU, tanh, etc)

Neural nets are awesome but brittle in many ways

Lots of parameters, difficult to train, need lots of data to train

Do not provide uncertainty estimates

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 2

What We Want..

Neural networks with additional benefits of probabilistic/Bayesian modeling

Basically, nonlinear models with estimates of uncertainty in the model/its predictions

Note: We already have seen something that accomplishes this - Gaussian Processes

Probabilistic/Bayesian neural nets are another alternative to this

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 3

What We Want..

Neural networks with additional benefits of probabilistic/Bayesian modeling

Basically, nonlinear models with estimates of uncertainty in the model/its predictions

Note: We already have seen something that accomplishes this - Gaussian Processes

Probabilistic/Bayesian neural nets are another alternative to this

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 3

What We Want..

Neural networks with additional benefits of probabilistic/Bayesian modeling

Basically, nonlinear models with estimates of uncertainty in the model/its predictions

Note: We already have seen something that accomplishes this - Gaussian Processes

Probabilistic/Bayesian neural nets are another alternative to this

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 3

Probabilistic/Bayesian Neural Networks

A probabilistic model for neural network for supervised learning

yn ∼ N (NN(xn;W), β−1) (for real-valued responses)

yn ∼ Bernoulli(σ(NN(xn;W))) (for binary responses)

yn ∼ ExpFam(NN(xn;W)) (for general types of responses modeled by exp-family)

where NN(xn;W) is a neural network with features xn as inputs and parameters W

This enables learning probabilistic nonlinear input-to-output mappings

We can perform point estimation or fully Bayesian inference for such probabilistic neural networks

Left: Standard NN or NN with point estimation, Right: Bayesian Neural Network

“Weight Uncertainty in Neural Networks” (Blundell et al, 2015)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 4

Probabilistic/Bayesian Neural Networks

A probabilistic model for neural network for supervised learning

yn ∼ N (NN(xn;W), β−1) (for real-valued responses)

yn ∼ Bernoulli(σ(NN(xn;W))) (for binary responses)

yn ∼ ExpFam(NN(xn;W)) (for general types of responses modeled by exp-family)

where NN(xn;W) is a neural network with features xn as inputs and parameters W

This enables learning probabilistic nonlinear input-to-output mappings

We can perform point estimation or fully Bayesian inference for such probabilistic neural networks

Left: Standard NN or NN with point estimation, Right: Bayesian Neural Network

“Weight Uncertainty in Neural Networks” (Blundell et al, 2015)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 4

Probabilistic/Bayesian Neural Networks

A probabilistic model for neural network for supervised learning

yn ∼ N (NN(xn;W), β−1) (for real-valued responses)

yn ∼ Bernoulli(σ(NN(xn;W))) (for binary responses)

yn ∼ ExpFam(NN(xn;W)) (for general types of responses modeled by exp-family)

where NN(xn;W) is a neural network with features xn as inputs and parameters W

This enables learning probabilistic nonlinear input-to-output mappings

We can perform point estimation or fully Bayesian inference for such probabilistic neural networks

Left: Standard NN or NN with point estimation, Right: Bayesian Neural Network
“Weight Uncertainty in Neural Networks” (Blundell et al, 2015)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 4

Learning Bayesian Neural Networks

Computing posterior over W or computing posterior predictive is intractable in general

A variety of methods exist to perform inference in such models, e.g.,

VI based methods (e.g., BBVI, reparametrization trick, Bayes-by-Backprop†, etc)

Classic MCMC or Hamiltonian Monte Carlo (HMC), etc.

SGD-inspired methods (e.g., SGLD, online HMC, SWAG‡)

Scalable versions of classic approximations, e.g., Laplace with diag/block-diag approx. of Hessian∗

†“Weight Uncertainty in Neural Networks” (Blundell et al, 2015), ‡“A Simple Baseline for Bayesian Uncertainty in Deep Learning” (Maddox et al, 2019), ∗“A Scalable Laplace
Approximation for Neural Networks” (Ritter et al, 2018)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 5

Learning Bayesian Neural Networks

Computing posterior over W or computing posterior predictive is intractable in general

A variety of methods exist to perform inference in such models

, e.g.,

VI based methods (e.g., BBVI, reparametrization trick, Bayes-by-Backprop†, etc)

Classic MCMC or Hamiltonian Monte Carlo (HMC), etc.

SGD-inspired methods (e.g., SGLD, online HMC, SWAG‡)

Scalable versions of classic approximations, e.g., Laplace with diag/block-diag approx. of Hessian∗

†“Weight Uncertainty in Neural Networks” (Blundell et al, 2015), ‡“A Simple Baseline for Bayesian Uncertainty in Deep Learning” (Maddox et al, 2019), ∗“A Scalable Laplace
Approximation for Neural Networks” (Ritter et al, 2018)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 5

Learning Bayesian Neural Networks

Computing posterior over W or computing posterior predictive is intractable in general

A variety of methods exist to perform inference in such models, e.g.,

VI based methods (e.g., BBVI, reparametrization trick, Bayes-by-Backprop†, etc)

Classic MCMC or Hamiltonian Monte Carlo (HMC), etc.

SGD-inspired methods (e.g., SGLD, online HMC, SWAG‡)

Scalable versions of classic approximations, e.g., Laplace with diag/block-diag approx. of Hessian∗

†“Weight Uncertainty in Neural Networks” (Blundell et al, 2015), ‡“A Simple Baseline for Bayesian Uncertainty in Deep Learning” (Maddox et al, 2019), ∗“A Scalable Laplace
Approximation for Neural Networks” (Ritter et al, 2018)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 5

Learning Bayesian Neural Networks

Computing posterior over W or computing posterior predictive is intractable in general

A variety of methods exist to perform inference in such models, e.g.,

VI based methods (e.g., BBVI, reparametrization trick, Bayes-by-Backprop†, etc)

Classic MCMC or Hamiltonian Monte Carlo (HMC), etc.

SGD-inspired methods (e.g., SGLD, online HMC, SWAG‡)

Scalable versions of classic approximations, e.g., Laplace with diag/block-diag approx. of Hessian∗

†“Weight Uncertainty in Neural Networks” (Blundell et al, 2015), ‡“A Simple Baseline for Bayesian Uncertainty in Deep Learning” (Maddox et al, 2019), ∗“A Scalable Laplace
Approximation for Neural Networks” (Ritter et al, 2018)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 5

Learning Bayesian Neural Networks

Computing posterior over W or computing posterior predictive is intractable in general

A variety of methods exist to perform inference in such models, e.g.,

VI based methods (e.g., BBVI, reparametrization trick, Bayes-by-Backprop†, etc)

Classic MCMC or Hamiltonian Monte Carlo (HMC), etc.

SGD-inspired methods (e.g., SGLD, online HMC, SWAG‡)

Scalable versions of classic approximations, e.g., Laplace with diag/block-diag approx. of Hessian∗

†“Weight Uncertainty in Neural Networks” (Blundell et al, 2015), ‡“A Simple Baseline for Bayesian Uncertainty in Deep Learning” (Maddox et al, 2019), ∗“A Scalable Laplace
Approximation for Neural Networks” (Ritter et al, 2018)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 5

Learning Bayesian Neural Networks

Computing posterior over W or computing posterior predictive is intractable in general

A variety of methods exist to perform inference in such models, e.g.,

VI based methods (e.g., BBVI, reparametrization trick, Bayes-by-Backprop†, etc)

Classic MCMC or Hamiltonian Monte Carlo (HMC), etc.

SGD-inspired methods (e.g., SGLD, online HMC, SWAG‡)

Scalable versions of classic approximations, e.g., Laplace with diag/block-diag approx. of Hessian∗

†“Weight Uncertainty in Neural Networks” (Blundell et al, 2015), ‡“A Simple Baseline for Bayesian Uncertainty in Deep Learning” (Maddox et al, 2019), ∗“A Scalable Laplace
Approximation for Neural Networks” (Ritter et al, 2018)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 5

Regularization in Deep Neural Nets: A Bayesian View

Dropout is a popular way to regularize deep neural nets

Basic idea: Perturb each NN weight or activations using multiplicative noise, e.g.,

Gaussian dropout: ŵij = wijεij where εij ∼ N (1, α)

Bernoulli dropout: ŵij = wijεij where εij ∼ Bernoulli(α)

Assuming Gaussian dropout, we can estimate W using stoch. grad., e.g.

∇W log p(y |X, Ŵ) = ∇W log p(y |X,Wε)

ε ∼ N (1, αI)

The above stoch. grad. is the same as the stoch. grad of (verify using reparam trick)

∇W

∫
N (Ŵ|W, αW2) log p(y |X, Ŵ)dŴ = ∇WE[log p(y |X, Ŵ)]

where N (Ŵ|W, αW2) =
∏

ij N (ŵij |wij , αw
2
ij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 6

Regularization in Deep Neural Nets: A Bayesian View

Dropout is a popular way to regularize deep neural nets

Basic idea: Perturb each NN weight or activations using multiplicative noise, e.g.,

Gaussian dropout: ŵij = wijεij where εij ∼ N (1, α)

Bernoulli dropout: ŵij = wijεij where εij ∼ Bernoulli(α)

Assuming Gaussian dropout, we can estimate W using stoch. grad., e.g.

∇W log p(y |X, Ŵ) = ∇W log p(y |X,Wε)

ε ∼ N (1, αI)

The above stoch. grad. is the same as the stoch. grad of (verify using reparam trick)

∇W

∫
N (Ŵ|W, αW2) log p(y |X, Ŵ)dŴ = ∇WE[log p(y |X, Ŵ)]

where N (Ŵ|W, αW2) =
∏

ij N (ŵij |wij , αw
2
ij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 6

Regularization in Deep Neural Nets: A Bayesian View

Dropout is a popular way to regularize deep neural nets

Basic idea: Perturb each NN weight or activations using multiplicative noise, e.g.,

Gaussian dropout: ŵij = wijεij where εij ∼ N (1, α)

Bernoulli dropout: ŵij = wijεij where εij ∼ Bernoulli(α)

Assuming Gaussian dropout, we can estimate W using stoch. grad., e.g.

∇W log p(y |X, Ŵ) = ∇W log p(y |X,Wε)

ε ∼ N (1, αI)

The above stoch. grad. is the same as the stoch. grad of (verify using reparam trick)

∇W

∫
N (Ŵ|W, αW2) log p(y |X, Ŵ)dŴ = ∇WE[log p(y |X, Ŵ)]

where N (Ŵ|W, αW2) =
∏

ij N (ŵij |wij , αw
2
ij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 6

Regularization in Deep Neural Nets: A Bayesian View

Dropout is a popular way to regularize deep neural nets

Basic idea: Perturb each NN weight or activations using multiplicative noise, e.g.,

Gaussian dropout: ŵij = wijεij where εij ∼ N (1, α)

Bernoulli dropout: ŵij = wijεij where εij ∼ Bernoulli(α)

Assuming Gaussian dropout, we can estimate W using stoch. grad., e.g.

∇W log p(y |X, Ŵ) = ∇W log p(y |X,Wε)

ε ∼ N (1, αI)

The above stoch. grad. is the same as the stoch. grad of (verify using reparam trick)

∇W

∫
N (Ŵ|W, αW2) log p(y |X, Ŵ)dŴ = ∇WE[log p(y |X, Ŵ)]

where N (Ŵ|W, αW2) =
∏

ij N (ŵij |wij , αw
2
ij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 6

Regularization in Deep Neural Nets: A Bayesian View

So dropout is equivalent to optimizing the following w.r.t. W∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ

where q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αw
2
ij)

The above is basically ELBO with variational approx q(Ŵ|W, α) but without the KL term∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ − KL(q(Ŵ|W, α)||p(Ŵ))

Gaussian dropout will be exactly equivalent to VI based on ELBO maximization if

The prior p(Ŵ) is such that KL depends only on α

α is some fixed constant

Priors such as log-uniform prior p(Ŵ) =
∏

ij p(ŵij), p(ŵij) ∝ 1
|ŵij | have such a property

Sparse variational dropout: If we use q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αijwij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 7

Regularization in Deep Neural Nets: A Bayesian View

So dropout is equivalent to optimizing the following w.r.t. W∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ

where q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αw
2
ij)

The above is basically ELBO with variational approx q(Ŵ|W, α) but without the KL term∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ − KL(q(Ŵ|W, α)||p(Ŵ))

Gaussian dropout will be exactly equivalent to VI based on ELBO maximization if

The prior p(Ŵ) is such that KL depends only on α

α is some fixed constant

Priors such as log-uniform prior p(Ŵ) =
∏

ij p(ŵij), p(ŵij) ∝ 1
|ŵij | have such a property

Sparse variational dropout: If we use q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αijwij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 7

Regularization in Deep Neural Nets: A Bayesian View

So dropout is equivalent to optimizing the following w.r.t. W∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ

where q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αw
2
ij)

The above is basically ELBO with variational approx q(Ŵ|W, α) but without the KL term∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ − KL(q(Ŵ|W, α)||p(Ŵ))

Gaussian dropout will be exactly equivalent to VI based on ELBO maximization if

The prior p(Ŵ) is such that KL depends only on α

α is some fixed constant

Priors such as log-uniform prior p(Ŵ) =
∏

ij p(ŵij), p(ŵij) ∝ 1
|ŵij | have such a property

Sparse variational dropout: If we use q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αijwij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 7

Regularization in Deep Neural Nets: A Bayesian View

So dropout is equivalent to optimizing the following w.r.t. W∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ

where q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αw
2
ij)

The above is basically ELBO with variational approx q(Ŵ|W, α) but without the KL term∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ − KL(q(Ŵ|W, α)||p(Ŵ))

Gaussian dropout will be exactly equivalent to VI based on ELBO maximization if

The prior p(Ŵ) is such that KL depends only on α

α is some fixed constant

Priors such as log-uniform prior p(Ŵ) =
∏

ij p(ŵij), p(ŵij) ∝ 1
|ŵij | have such a property

Sparse variational dropout: If we use q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αijwij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 7

Regularization in Deep Neural Nets: A Bayesian View

So dropout is equivalent to optimizing the following w.r.t. W∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ

where q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αw
2
ij)

The above is basically ELBO with variational approx q(Ŵ|W, α) but without the KL term∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ − KL(q(Ŵ|W, α)||p(Ŵ))

Gaussian dropout will be exactly equivalent to VI based on ELBO maximization if

The prior p(Ŵ) is such that KL depends only on α

α is some fixed constant

Priors such as log-uniform prior p(Ŵ) =
∏

ij p(ŵij), p(ŵij) ∝ 1
|ŵij | have such a property

Sparse variational dropout: If we use q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αijwij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 7

Regularization in Deep Neural Nets: A Bayesian View

So dropout is equivalent to optimizing the following w.r.t. W∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ

where q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αw
2
ij)

The above is basically ELBO with variational approx q(Ŵ|W, α) but without the KL term∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ − KL(q(Ŵ|W, α)||p(Ŵ))

Gaussian dropout will be exactly equivalent to VI based on ELBO maximization if

The prior p(Ŵ) is such that KL depends only on α

α is some fixed constant

Priors such as log-uniform prior p(Ŵ) =
∏

ij p(ŵij), p(ŵij) ∝ 1
|ŵij | have such a property

Sparse variational dropout: If we use q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αijwij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 7

Regularization in Deep Neural Nets: A Bayesian View

So dropout is equivalent to optimizing the following w.r.t. W∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ

where q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αw
2
ij)

The above is basically ELBO with variational approx q(Ŵ|W, α) but without the KL term∫
q(Ŵ|W, α) log p(y |X, Ŵ)dŴ − KL(q(Ŵ|W, α)||p(Ŵ))

Gaussian dropout will be exactly equivalent to VI based on ELBO maximization if

The prior p(Ŵ) is such that KL depends only on α

α is some fixed constant

Priors such as log-uniform prior p(Ŵ) =
∏

ij p(ŵij), p(ŵij) ∝ 1
|ŵij | have such a property

Sparse variational dropout: If we use q(Ŵ|W, α) =
∏

ij N (ŵij |wij , αijwij)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 7

Constructing Generative Models using Neural Nets

Probabilistic view enables neural net based latent variable models (“deep generative models”)

Useful for unsupervised learning. Nonlinear latent variable to data mapping f modeled by NN

Example: A probabilistic neural network for latent variable modeling (e.g., PPCA)

xn ∼ N (NN(zn;W), σ2ID) (for real-valued features)

xn ∼ ExpFam(NN(zn;W)) (for general types of features modeled by exp-family)

where NN(zn;W) is a neural network with latent variables zn as inputs and and parameters W

The NN enables learning a nonlinear latent variable to data mapping f

If zn has a Gaussian prior, such models are called “Deep Latent Gaussian Models” (DLGM)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 8

Constructing Generative Models using Neural Nets

Probabilistic view enables neural net based latent variable models (“deep generative models”)

Useful for unsupervised learning. Nonlinear latent variable to data mapping f modeled by NN

Example: A probabilistic neural network for latent variable modeling (e.g., PPCA)

xn ∼ N (NN(zn;W), σ2ID) (for real-valued features)

xn ∼ ExpFam(NN(zn;W)) (for general types of features modeled by exp-family)

where NN(zn;W) is a neural network with latent variables zn as inputs and and parameters W

The NN enables learning a nonlinear latent variable to data mapping f

If zn has a Gaussian prior, such models are called “Deep Latent Gaussian Models” (DLGM)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 8

Constructing Generative Models using Neural Nets

Probabilistic view enables neural net based latent variable models (“deep generative models”)

Useful for unsupervised learning. Nonlinear latent variable to data mapping f modeled by NN

Example: A probabilistic neural network for latent variable modeling (e.g., PPCA)

xn ∼ N (NN(zn;W), σ2ID) (for real-valued features)

xn ∼ ExpFam(NN(zn;W)) (for general types of features modeled by exp-family)

where NN(zn;W) is a neural network with latent variables zn as inputs and and parameters W

The NN enables learning a nonlinear latent variable to data mapping f

If zn has a Gaussian prior, such models are called “Deep Latent Gaussian Models” (DLGM)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 8

Constructing Generative Models using Neural Nets

Probabilistic view enables neural net based latent variable models (“deep generative models”)

Useful for unsupervised learning. Nonlinear latent variable to data mapping f modeled by NN

Example: A probabilistic neural network for latent variable modeling (e.g., PPCA)

xn ∼ N (NN(zn;W), σ2ID) (for real-valued features)

xn ∼ ExpFam(NN(zn;W)) (for general types of features modeled by exp-family)

where NN(zn;W) is a neural network with latent variables zn as inputs and and parameters W

The NN enables learning a nonlinear latent variable to data mapping f

If zn has a Gaussian prior, such models are called “Deep Latent Gaussian Models” (DLGM)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 8

Constructing Generative Models using Neural Nets

Probabilistic view enables neural net based latent variable models (“deep generative models”)

Useful for unsupervised learning. Nonlinear latent variable to data mapping f modeled by NN

Example: A probabilistic neural network for latent variable modeling (e.g., PPCA)

xn ∼ N (NN(zn;W), σ2ID) (for real-valued features)

xn ∼ ExpFam(NN(zn;W)) (for general types of features modeled by exp-family)

where NN(zn;W) is a neural network with latent variables zn as inputs and and parameters W

The NN enables learning a nonlinear latent variable to data mapping f

If zn has a Gaussian prior, such models are called “Deep Latent Gaussian Models” (DLGM)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 8

Inference for Deep Latent Gaussian Models

Assume θ to be the global parameters of the model (params defining p(z), p(x |z), etc.)

The usual approach for inference in such models (as in most Bayesian models) is iterative, e.g.,

Initialize θ. Then iterate until converence

For n = 1, . . . ,N

Infer p(zn|xn) using MCMC. If doing VB, update variational parameters φn of q(zn|φn)

Infer θ (its full posterior using MCMC or VB, or a point estimate)

This iterative approach can be slow for large N

Also, inferring z for new data point(s) x would require using the same iterative procedure

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 9

Inference for Deep Latent Gaussian Models

Assume θ to be the global parameters of the model (params defining p(z), p(x |z), etc.)

The usual approach for inference in such models (as in most Bayesian models) is iterative

, e.g.,

Initialize θ. Then iterate until converence

For n = 1, . . . ,N

Infer p(zn|xn) using MCMC. If doing VB, update variational parameters φn of q(zn|φn)

Infer θ (its full posterior using MCMC or VB, or a point estimate)

This iterative approach can be slow for large N

Also, inferring z for new data point(s) x would require using the same iterative procedure

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 9

Inference for Deep Latent Gaussian Models

Assume θ to be the global parameters of the model (params defining p(z), p(x |z), etc.)

The usual approach for inference in such models (as in most Bayesian models) is iterative, e.g.,

Initialize θ. Then iterate until converence

For n = 1, . . . ,N

Infer p(zn|xn) using MCMC. If doing VB, update variational parameters φn of q(zn|φn)

Infer θ (its full posterior using MCMC or VB, or a point estimate)

This iterative approach can be slow for large N

Also, inferring z for new data point(s) x would require using the same iterative procedure

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 9

Inference for Deep Latent Gaussian Models

Assume θ to be the global parameters of the model (params defining p(z), p(x |z), etc.)

The usual approach for inference in such models (as in most Bayesian models) is iterative, e.g.,

Initialize θ. Then iterate until converence

For n = 1, . . . ,N

Infer p(zn|xn) using MCMC. If doing VB, update variational parameters φn of q(zn|φn)

Infer θ (its full posterior using MCMC or VB, or a point estimate)

This iterative approach can be slow for large N

Also, inferring z for new data point(s) x would require using the same iterative procedure

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 9

Inference for Deep Latent Gaussian Models

Assume θ to be the global parameters of the model (params defining p(z), p(x |z), etc.)

The usual approach for inference in such models (as in most Bayesian models) is iterative, e.g.,

Initialize θ. Then iterate until converence

For n = 1, . . . ,N

Infer p(zn|xn) using MCMC. If doing VB, update variational parameters φn of q(zn|φn)

Infer θ (its full posterior using MCMC or VB, or a point estimate)

This iterative approach can be slow for large N

Also, inferring z for new data point(s) x would require using the same iterative procedure

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 9

Inference for Deep Latent Gaussian Models

Assume θ to be the global parameters of the model (params defining p(z), p(x |z), etc.)

The usual approach for inference in such models (as in most Bayesian models) is iterative, e.g.,

Initialize θ. Then iterate until converence

For n = 1, . . . ,N

Infer p(zn|xn) using MCMC. If doing VB, update variational parameters φn of q(zn|φn)

Infer θ (its full posterior using MCMC or VB, or a point estimate)

This iterative approach can be slow for large N

Also, inferring z for new data point(s) x would require using the same iterative procedure

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 9

Inference for Deep Latent Gaussian Models

Assume θ to be the global parameters of the model (params defining p(z), p(x |z), etc.)

The usual approach for inference in such models (as in most Bayesian models) is iterative, e.g.,

Initialize θ. Then iterate until converence

For n = 1, . . . ,N

Infer p(zn|xn) using MCMC. If doing VB, update variational parameters φn of q(zn|φn)

Infer θ (its full posterior using MCMC or VB, or a point estimate)

This iterative approach can be slow for large N

Also, inferring z for new data point(s) x would require using the same iterative procedure

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 9

Variational Auto-encoder (VAE)

Esseentially a DLGM, i.e., the z to x mapping p(x |z) is defined by a neural net. Proposed almost
simultaneously by Kingma & Welling (2013), and Rezende et al (2014)

VAE uses VB for inference but has a fast, non-iterative way of computing zn for a data point xn

Key idea: For each point xn, instead of learning a separate q(zn|φn) with local params φn, assume

q(zn|φn) = q(zn|NN(xn;φ))

so, basically, each φn is computed by a neural net with global parameters φ and input xn

Once φ is learned, we can get q(z∗|x∗) = q(z∗|φ∗) for any x∗ by just using φ∗ = NN(x∗;φ)

p(x |z) is known as decoder and q(z |x) is known as encoder

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 10

Variational Auto-encoder (VAE)

Esseentially a DLGM, i.e., the z to x mapping p(x |z) is defined by a neural net. Proposed almost
simultaneously by Kingma & Welling (2013), and Rezende et al (2014)

VAE uses VB for inference but has a fast, non-iterative way of computing zn for a data point xn

Key idea: For each point xn, instead of learning a separate q(zn|φn) with local params φn, assume

q(zn|φn) = q(zn|NN(xn;φ))

so, basically, each φn is computed by a neural net with global parameters φ and input xn

Once φ is learned, we can get q(z∗|x∗) = q(z∗|φ∗) for any x∗ by just using φ∗ = NN(x∗;φ)

p(x |z) is known as decoder and q(z |x) is known as encoder

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 10

Variational Auto-encoder (VAE)

Esseentially a DLGM, i.e., the z to x mapping p(x |z) is defined by a neural net. Proposed almost
simultaneously by Kingma & Welling (2013), and Rezende et al (2014)

VAE uses VB for inference but has a fast, non-iterative way of computing zn for a data point xn

Key idea: For each point xn, instead of learning a separate q(zn|φn) with local params φn, assume

q(zn|φn) = q(zn|NN(xn;φ))

so, basically, each φn is computed by a neural net with global parameters φ and input xn

Once φ is learned, we can get q(z∗|x∗) = q(z∗|φ∗) for any x∗ by just using φ∗ = NN(x∗;φ)

p(x |z) is known as decoder and q(z |x) is known as encoder

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 10

Variational Auto-encoder (VAE)

Esseentially a DLGM, i.e., the z to x mapping p(x |z) is defined by a neural net. Proposed almost
simultaneously by Kingma & Welling (2013), and Rezende et al (2014)

VAE uses VB for inference but has a fast, non-iterative way of computing zn for a data point xn

Key idea: For each point xn, instead of learning a separate q(zn|φn) with local params φn, assume

q(zn|φn) = q(zn|NN(xn;φ))

so, basically, each φn is computed by a neural net with global parameters φ and input xn

Once φ is learned, we can get q(z∗|x∗) = q(z∗|φ∗) for any x∗ by just using φ∗ = NN(x∗;φ)

p(x |z) is known as decoder and q(z |x) is known as encoder

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 10

Variational Auto-encoder (VAE)

Esseentially a DLGM, i.e., the z to x mapping p(x |z) is defined by a neural net. Proposed almost
simultaneously by Kingma & Welling (2013), and Rezende et al (2014)

VAE uses VB for inference but has a fast, non-iterative way of computing zn for a data point xn

Key idea: For each point xn, instead of learning a separate q(zn|φn) with local params φn, assume

q(zn|φn) = q(zn|NN(xn;φ))

so, basically, each φn is computed by a neural net with global parameters φ and input xn

Once φ is learned, we can get q(z∗|x∗) = q(z∗|φ∗) for any x∗ by just using φ∗ = NN(x∗;φ)

p(x |z) is known as decoder and q(z |x) is known as encoder

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 10

Variational Auto-encoder (VAE)

Esseentially a DLGM, i.e., the z to x mapping p(x |z) is defined by a neural net. Proposed almost
simultaneously by Kingma & Welling (2013), and Rezende et al (2014)

VAE uses VB for inference but has a fast, non-iterative way of computing zn for a data point xn

Key idea: For each point xn, instead of learning a separate q(zn|φn) with local params φn, assume

q(zn|φn) = q(zn|NN(xn;φ))

so, basically, each φn is computed by a neural net with global parameters φ and input xn

Once φ is learned, we can get q(z∗|x∗) = q(z∗|φ∗) for any x∗ by just using φ∗ = NN(x∗;φ)

p(x |z) is known as decoder and q(z |x) is known as encoder

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 10

Standard Auto-encoder vs Variational Auto-encoder

A standard auto-encoder learns to (nonlinearly) compress and uncompress an input

Model is trained to minimize the reconstruction error (difference b/w x and x̂)

However, it can’t “generate” a “realistic” input from a random z (the model isn’t trained for that)

VAE allows this by assuming a distribution (e.g., Gaussian) over z and learning to generate x from
random z ’s drawn from that distribution (so the model is trained to do this!)

Note: Simple generative models like PPCA or factor analysis also have this ability to generate data
from random z but the linear map from z to x limits the type of data that can be generated well

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 11

Standard Auto-encoder vs Variational Auto-encoder

A standard auto-encoder learns to (nonlinearly) compress and uncompress an input

Model is trained to minimize the reconstruction error (difference b/w x and x̂)

However, it can’t “generate” a “realistic” input from a random z (the model isn’t trained for that)

VAE allows this by assuming a distribution (e.g., Gaussian) over z and learning to generate x from
random z ’s drawn from that distribution (so the model is trained to do this!)

Note: Simple generative models like PPCA or factor analysis also have this ability to generate data
from random z but the linear map from z to x limits the type of data that can be generated well

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 11

Standard Auto-encoder vs Variational Auto-encoder

A standard auto-encoder learns to (nonlinearly) compress and uncompress an input

Model is trained to minimize the reconstruction error (difference b/w x and x̂)

However, it can’t “generate” a “realistic” input from a random z (the model isn’t trained for that)

VAE allows this by assuming a distribution (e.g., Gaussian) over z and learning to generate x from
random z ’s drawn from that distribution (so the model is trained to do this!)

Note: Simple generative models like PPCA or factor analysis also have this ability to generate data
from random z but the linear map from z to x limits the type of data that can be generated well

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 11

Standard Auto-encoder vs Variational Auto-encoder

A standard auto-encoder learns to (nonlinearly) compress and uncompress an input

Model is trained to minimize the reconstruction error (difference b/w x and x̂)

However, it can’t “generate” a “realistic” input from a random z (the model isn’t trained for that)

VAE allows this by assuming a distribution (e.g., Gaussian) over z and learning to generate x from
random z ’s drawn from that distribution (so the model is trained to do this!)

Note: Simple generative models like PPCA or factor analysis also have this ability to generate data
from random z but the linear map from z to x limits the type of data that can be generated well

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 11

VAE: The Encoder

Role of encoder: Take x as input and generate an encoding z

Unlike standard autoencoders, for each x , VAE gives us a distribution q(z |x) over its encoding

Assume q(z |x) to be Gaussian whose mean/var are computed by a NN with global params φ

µz = NN(x ;φ) σ2
z = NN(x ;φ)

Since µz , σz are outputs of neural networks, the x to z mapping is nonlinear

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 12

VAE: The Encoder

Role of encoder: Take x as input and generate an encoding z

Unlike standard autoencoders, for each x , VAE gives us a distribution q(z |x) over its encoding

Assume q(z |x) to be Gaussian whose mean/var are computed by a NN with global params φ

µz = NN(x ;φ) σ2
z = NN(x ;φ)

Since µz , σz are outputs of neural networks, the x to z mapping is nonlinear

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 12

VAE: The Encoder

Role of encoder: Take x as input and generate an encoding z

Unlike standard autoencoders, for each x , VAE gives us a distribution q(z |x) over its encoding

Assume q(z |x) to be Gaussian whose mean/var are computed by a NN with global params φ

µz = NN(x ;φ) σ2
z = NN(x ;φ)

Since µz , σz are outputs of neural networks, the x to z mapping is nonlinear

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 12

VAE: The Encoder

Role of encoder: Take x as input and generate an encoding z

Unlike standard autoencoders, for each x , VAE gives us a distribution q(z |x) over its encoding

Assume q(z |x) to be Gaussian whose mean/var are computed by a NN with global params φ

µz = NN(x ;φ) σ2
z = NN(x ;φ)

Since µz , σz are outputs of neural networks, the x to z mapping is nonlinear

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 12

VAE: The Decoder

Role of decoder: Generate x given z . Defined by the likelihood model pθ(x |z)

Unlike PPCA, the z to x mapping is nonlinear (modeled by a neural network)

Assume p(x |z) to be Gaussian whose mean/var are computed by a NN with global params θ

µx = NN(z ; θ) σ2
x = NN(z ; θ)

Thus in the VAE, both x to z (encoder) and z to x (decoder) mappings are nonlinear

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 13

VAE: The Decoder

Role of decoder: Generate x given z . Defined by the likelihood model pθ(x |z)

Unlike PPCA, the z to x mapping is nonlinear (modeled by a neural network)

Assume p(x |z) to be Gaussian whose mean/var are computed by a NN with global params θ

µx = NN(z ; θ) σ2
x = NN(z ; θ)

Thus in the VAE, both x to z (encoder) and z to x (decoder) mappings are nonlinear

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 13

VAE: The Decoder

Role of decoder: Generate x given z . Defined by the likelihood model pθ(x |z)

Unlike PPCA, the z to x mapping is nonlinear (modeled by a neural network)

Assume p(x |z) to be Gaussian whose mean/var are computed by a NN with global params θ

µx = NN(z ; θ) σ2
x = NN(z ; θ)

Thus in the VAE, both x to z (encoder) and z to x (decoder) mappings are nonlinear

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 13

VAE: The Decoder

Role of decoder: Generate x given z . Defined by the likelihood model pθ(x |z)

Unlike PPCA, the z to x mapping is nonlinear (modeled by a neural network)

Assume p(x |z) to be Gaussian whose mean/var are computed by a NN with global params θ

µx = NN(z ; θ) σ2
x = NN(z ; θ)

Thus in the VAE, both x to z (encoder) and z to x (decoder) mappings are nonlinear

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 13

Inference for VAE

VAE uses variational inference (hence the name!) to learn the model parameters θ and φ

Typically a prior p(z) = N (0, IK) is assumed on z . The ELBO for a single xn will be

ELBO = Eqφ [log p(xn, zn|θ)− log q(zn|xn)] (note: qφ and q(zn|xn) mean the same)

Variational inference uses the reparametrization trick† for computing ELBO derivatives

†“Auto-encoding Variational Bayes” (Kingma and Welling, 2013)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 14

Inference for VAE

VAE uses variational inference (hence the name!) to learn the model parameters θ and φ

Typically a prior p(z) = N (0, IK) is assumed on z . The ELBO for a single xn will be

ELBO = Eqφ [log p(xn, zn|θ)− log q(zn|xn)] (note: qφ and q(zn|xn) mean the same)

Variational inference uses the reparametrization trick† for computing ELBO derivatives

†“Auto-encoding Variational Bayes” (Kingma and Welling, 2013)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 14

Inference for VAE

VAE uses variational inference (hence the name!) to learn the model parameters θ and φ

Typically a prior p(z) = N (0, IK) is assumed on z . The ELBO for a single xn will be

ELBO = Eqφ [log p(xn, zn|θ)− log q(zn|xn)] (note: qφ and q(zn|xn) mean the same)

Variational inference uses the reparametrization trick† for computing ELBO derivatives

†“Auto-encoding Variational Bayes” (Kingma and Welling, 2013)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 14

Some Other Architectures: Deep Exponential Families

Standard VAE has only one layer of latent z and a neural net to transform z into x

Many other deep architectures have multiple layers of latent variables

Deep Exponential Family (DEF) is one such recently proposed popular model

in DEF, latent variables in every layer, as well as observations, are from exp. family distributions

Overall model not conjugate but BBVI (Ranganath et al, 2013) or MCMC methods can be used

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 15

Some Other Architectures: Deep Exponential Families

Standard VAE has only one layer of latent z and a neural net to transform z into x

Many other deep architectures have multiple layers of latent variables

Deep Exponential Family (DEF) is one such recently proposed popular model

in DEF, latent variables in every layer, as well as observations, are from exp. family distributions

Overall model not conjugate but BBVI (Ranganath et al, 2013) or MCMC methods can be used

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 15

Some Other Architectures: Deep Exponential Families

Standard VAE has only one layer of latent z and a neural net to transform z into x

Many other deep architectures have multiple layers of latent variables

Deep Exponential Family (DEF) is one such recently proposed popular model

in DEF, latent variables in every layer, as well as observations, are from exp. family distributions

Overall model not conjugate but BBVI (Ranganath et al, 2013) or MCMC methods can be used

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 15

Some Other Architectures: Deep Exponential Families

Standard VAE has only one layer of latent z and a neural net to transform z into x

Many other deep architectures have multiple layers of latent variables

Deep Exponential Family (DEF) is one such recently proposed popular model

in DEF, latent variables in every layer, as well as observations, are from exp. family distributions

Overall model not conjugate but BBVI (Ranganath et al, 2013) or MCMC methods can be used

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 15

Some Other Architectures: Deep Exponential Families

Standard VAE has only one layer of latent z and a neural net to transform z into x

Many other deep architectures have multiple layers of latent variables

Deep Exponential Family (DEF) is one such recently proposed popular model

in DEF, latent variables in every layer, as well as observations, are from exp. family distributions

Overall model not conjugate but BBVI (Ranganath et al, 2013) or MCMC methods can be used

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 15

Learning the right size of a deep neural network

How to decide the number of layers and width of each layer?

Nonparametric Bayesian methods can help here

A cascaded Indian Buffet Prior can model the relationships between nodes in adjacent layers

The bottom-most layer is the data layer (fixed/known size)

Width of each intermediate layer and active connections can be inferred by the IBP prior

Another option is to use sparsity inducing priors on the connection weights

“Learning the Structure of Deep Sparse Graphical Models” (Adams et al, 2009), “Model Selection in Bayesian Neural Networks via Horseshoe Priors”, Ghosh and Doshi-Velez (2017)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 16

Learning the right size of a deep neural network

How to decide the number of layers and width of each layer?

Nonparametric Bayesian methods can help here

A cascaded Indian Buffet Prior can model the relationships between nodes in adjacent layers

The bottom-most layer is the data layer (fixed/known size)

Width of each intermediate layer and active connections can be inferred by the IBP prior

Another option is to use sparsity inducing priors on the connection weights

“Learning the Structure of Deep Sparse Graphical Models” (Adams et al, 2009), “Model Selection in Bayesian Neural Networks via Horseshoe Priors”, Ghosh and Doshi-Velez (2017)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 16

Learning the right size of a deep neural network

How to decide the number of layers and width of each layer?

Nonparametric Bayesian methods can help here

A cascaded Indian Buffet Prior can model the relationships between nodes in adjacent layers

The bottom-most layer is the data layer (fixed/known size)

Width of each intermediate layer and active connections can be inferred by the IBP prior

Another option is to use sparsity inducing priors on the connection weights

“Learning the Structure of Deep Sparse Graphical Models” (Adams et al, 2009), “Model Selection in Bayesian Neural Networks via Horseshoe Priors”, Ghosh and Doshi-Velez (2017)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 16

Learning the right size of a deep neural network

How to decide the number of layers and width of each layer?

Nonparametric Bayesian methods can help here

A cascaded Indian Buffet Prior can model the relationships between nodes in adjacent layers

The bottom-most layer is the data layer (fixed/known size)

Width of each intermediate layer and active connections can be inferred by the IBP prior

Another option is to use sparsity inducing priors on the connection weights

“Learning the Structure of Deep Sparse Graphical Models” (Adams et al, 2009), “Model Selection in Bayesian Neural Networks via Horseshoe Priors”, Ghosh and Doshi-Velez (2017)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 16

Generative Adversarial Networks (GAN)

Based on a game between a generator and a discriminator (Goodfellow et al, 2013)†

Can be thought of as a two-player minimax game

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G (z))]

With the generator G fixed, the optimal discriminator D∗G (x) = pdata(x)
pdata(x)+pg (x)

At the global minimum of the objective, pg = pdata

†Generative Adversarial Nets (Goodfellow et al, 2013), Figure: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 17

Generative Adversarial Networks (GAN)

Based on a game between a generator and a discriminator (Goodfellow et al, 2013)†

Can be thought of as a two-player minimax game

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G (z))]

With the generator G fixed, the optimal discriminator D∗G (x) = pdata(x)
pdata(x)+pg (x)

At the global minimum of the objective, pg = pdata

†Generative Adversarial Nets (Goodfellow et al, 2013), Figure: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 17

Generative Adversarial Networks (GAN)

Based on a game between a generator and a discriminator (Goodfellow et al, 2013)†

Can be thought of as a two-player minimax game

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G (z))]

With the generator G fixed, the optimal discriminator D∗G (x) = pdata(x)
pdata(x)+pg (x)

At the global minimum of the objective, pg = pdata

†Generative Adversarial Nets (Goodfellow et al, 2013), Figure: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 17

Generative Adversarial Networks (GAN)

Based on a game between a generator and a discriminator (Goodfellow et al, 2013)†

Can be thought of as a two-player minimax game

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G (z))]

With the generator G fixed, the optimal discriminator D∗G (x) = pdata(x)
pdata(x)+pg (x)

At the global minimum of the objective, pg = pdata

†Generative Adversarial Nets (Goodfellow et al, 2013), Figure: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 17

Summary

Probabilistic modeling allows developing very flexible deep learning models

Much of the recent progress is fuelled by advances in probabilistic modeling and inference

State-of-the-art results on a variety of tasks such as

Representation Learning (latent variables used as a new learned representation of data)

Density Estimation (i.e., p(x))

Data generation (models like VAE and GAN can generate very realistic looking synthetic data)

Semi-supervised learning (models like VAE and GAN can be combined with supervised learning)

Several other models such as Deep Boltzmann Machines, Neural Autoregressive Density Estimator,
etc. that we didn’t cover here

An important distinction between explicit and implicit generative models

Models like PPCA, FA, DLGM, SBN, VAE, etc. have an explicit likelihood model for data

A model like GAN only defines p(x) implicitly (no “likelihood” model for data)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 18

Summary

Probabilistic modeling allows developing very flexible deep learning models

Much of the recent progress is fuelled by advances in probabilistic modeling and inference

State-of-the-art results on a variety of tasks such as

Representation Learning (latent variables used as a new learned representation of data)

Density Estimation (i.e., p(x))

Data generation (models like VAE and GAN can generate very realistic looking synthetic data)

Semi-supervised learning (models like VAE and GAN can be combined with supervised learning)

Several other models such as Deep Boltzmann Machines, Neural Autoregressive Density Estimator,
etc. that we didn’t cover here

An important distinction between explicit and implicit generative models

Models like PPCA, FA, DLGM, SBN, VAE, etc. have an explicit likelihood model for data

A model like GAN only defines p(x) implicitly (no “likelihood” model for data)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 18

Summary

Probabilistic modeling allows developing very flexible deep learning models

Much of the recent progress is fuelled by advances in probabilistic modeling and inference

State-of-the-art results on a variety of tasks such as

Representation Learning (latent variables used as a new learned representation of data)

Density Estimation (i.e., p(x))

Data generation (models like VAE and GAN can generate very realistic looking synthetic data)

Semi-supervised learning (models like VAE and GAN can be combined with supervised learning)

Several other models such as Deep Boltzmann Machines, Neural Autoregressive Density Estimator,
etc. that we didn’t cover here

An important distinction between explicit and implicit generative models

Models like PPCA, FA, DLGM, SBN, VAE, etc. have an explicit likelihood model for data

A model like GAN only defines p(x) implicitly (no “likelihood” model for data)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 18

Summary

Probabilistic modeling allows developing very flexible deep learning models

Much of the recent progress is fuelled by advances in probabilistic modeling and inference

State-of-the-art results on a variety of tasks such as

Representation Learning (latent variables used as a new learned representation of data)

Density Estimation (i.e., p(x))

Data generation (models like VAE and GAN can generate very realistic looking synthetic data)

Semi-supervised learning (models like VAE and GAN can be combined with supervised learning)

Several other models such as Deep Boltzmann Machines, Neural Autoregressive Density Estimator,
etc. that we didn’t cover here

An important distinction between explicit and implicit generative models

Models like PPCA, FA, DLGM, SBN, VAE, etc. have an explicit likelihood model for data

A model like GAN only defines p(x) implicitly (no “likelihood” model for data)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 18

Summary

Probabilistic modeling allows developing very flexible deep learning models

Much of the recent progress is fuelled by advances in probabilistic modeling and inference

State-of-the-art results on a variety of tasks such as

Representation Learning (latent variables used as a new learned representation of data)

Density Estimation (i.e., p(x))

Data generation (models like VAE and GAN can generate very realistic looking synthetic data)

Semi-supervised learning (models like VAE and GAN can be combined with supervised learning)

Several other models such as Deep Boltzmann Machines, Neural Autoregressive Density Estimator,
etc. that we didn’t cover here

An important distinction between explicit and implicit generative models

Models like PPCA, FA, DLGM, SBN, VAE, etc. have an explicit likelihood model for data

A model like GAN only defines p(x) implicitly (no “likelihood” model for data)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 18

Summary

Probabilistic modeling allows developing very flexible deep learning models

Much of the recent progress is fuelled by advances in probabilistic modeling and inference

State-of-the-art results on a variety of tasks such as

Representation Learning (latent variables used as a new learned representation of data)

Density Estimation (i.e., p(x))

Data generation (models like VAE and GAN can generate very realistic looking synthetic data)

Semi-supervised learning (models like VAE and GAN can be combined with supervised learning)

Several other models such as Deep Boltzmann Machines, Neural Autoregressive Density Estimator,
etc. that we didn’t cover here

An important distinction between explicit and implicit generative models

Models like PPCA, FA, DLGM, SBN, VAE, etc. have an explicit likelihood model for data

A model like GAN only defines p(x) implicitly (no “likelihood” model for data)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 18

Summary

Probabilistic modeling allows developing very flexible deep learning models

Much of the recent progress is fuelled by advances in probabilistic modeling and inference

State-of-the-art results on a variety of tasks such as

Representation Learning (latent variables used as a new learned representation of data)

Density Estimation (i.e., p(x))

Data generation (models like VAE and GAN can generate very realistic looking synthetic data)

Semi-supervised learning (models like VAE and GAN can be combined with supervised learning)

Several other models such as Deep Boltzmann Machines, Neural Autoregressive Density Estimator,
etc. that we didn’t cover here

An important distinction between explicit and implicit generative models

Models like PPCA, FA, DLGM, SBN, VAE, etc. have an explicit likelihood model for data

A model like GAN only defines p(x) implicitly (no “likelihood” model for data)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Modeling meets Deep Learning 18

