Nonparametric Bayesian Models (Wrap-up)

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

April 1, 2019

Recap: Nonparametric Bayesian Mixture Models

Also known as infinite mixture models. Can be mathematically represented as

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

where π_k and ϕ_k are the mixing prop. and params of the k-th component, and for $n=1,\ldots,N$

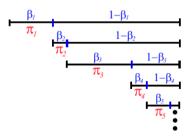
$$\theta_n \sim G$$
 (θ_n will be equal to ϕ_k with prob. π_k)
 $x_n \sim p(x|\theta_n)$

- Can view/define such infinite mixture models using various equivalent ways
 - Stick-breaking Process
 - Dirichlet Process
 - Chinese Restaurant Process
 - Pólya-Urn Scheme

Recap: Stick-Breaking Process

ullet Sethuraman's stick-breaking construction provides a sequential way to generate π_{k} 's

$$eta_1 \sim \operatorname{Beta}(1,lpha), \quad \pi_1=eta_1 \ eta_k \sim \operatorname{Beta}(1,lpha), \quad \pi_k=eta_k\prod_{\ell=1}^{k-1}(1-eta_{\ell-1}), \quad k=2,\ldots,\infty$$



Recap: Dirichlet Process (DP)

- A Dirichlet Process $DP(\alpha, G_0)$ defines a distribution over distributions
- If $G \sim DP(\alpha, G_0)$ then any finite dim. marginal of G is Dirichlet distributed

$$[G(A_1),\ldots,G(A_K)] \sim \mathsf{Dirichlet}(\alpha G_0(A_1),\ldots,\alpha G_0(A_K))$$

for any finite partition A_1, \ldots, A_K of the space Ω (Ferguson, 1973)

- G is a discrete distribution of the form $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$
- α is concentration parameter, G_0 is the base distribution of $DP(\alpha, G_0)$
- \bullet $\mathbb{E}[G] = G_0$ and as $\alpha \to \infty$, $G \to G_0$

Recap: DP Posterior and Posterior Predictive

- Assume N i.i.d. draws $\theta_1, \dots, \theta_N$ from the discrete distribution $G \sim \mathsf{DP}(\alpha, G_0)$
- The posterior of G will also be a DP (due to discrete-Dirichlet conjugacy)

$$G|\theta_1,\ldots,\theta_N \sim \mathsf{DP}(\alpha+N,rac{lpha}{lpha+N}G_0+rac{1}{lpha+N}\sum_{i=1}^N\delta_{ heta_i})$$

(equivalent to)
$$G|\theta_1,\ldots,\theta_N \sim \mathsf{DP}(\alpha+N,\frac{\alpha}{\alpha+N}G_0+\sum_{k=1}^K\frac{n_k}{\alpha+N}\delta_{\phi_k})$$

- .. where n_k = number of θ_i 's that are equal to ϕ_k
- The posterior predictive for the next draw θ_{N+1} from G will be

$$\theta_{N+1}|\theta_1,\ldots,\theta_N \sim \frac{\alpha}{\alpha+N}G_0 + \frac{1}{\alpha+N}\sum_{i=1}^N \delta_{\theta_i}$$

(equivalent to)
$$\theta_{N+1}|\theta_1,\ldots,\theta_N \sim \frac{\alpha}{\alpha+N}G_0 + \sum_{k=1}^K \frac{n_k}{\alpha+N}\delta_{\phi_k}$$
 (mixture of $K+1$ distributions)

i.e., $\theta_{N+1}=\phi_k$ with prob. $\frac{n_k}{\alpha+N}$ or a new value drawn from G_0 with prob. $\frac{\alpha}{\alpha+N}G_0$

A Sequential Generative Scheme

The form of the DP predictive distribution

$$\theta_{N+1}|\theta_1,\ldots,\theta_N\sim rac{lpha}{lpha+N}G_0+rac{1}{lpha+N}\sum_{i=1}^N\delta_{\theta_i}$$

suggests the following scheme to generate a sequence of parameters $\theta_1, \ldots, \theta_N, \theta_{N+1}, \ldots$

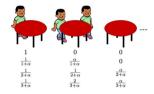
$$\begin{array}{ccc} \theta_1 & \sim & \mathsf{G_0} \\ \theta_2|\theta_1 & \sim & \frac{\alpha}{\alpha+1}\mathsf{G_0} + \frac{1}{\alpha+1}\delta_{\theta_1} \\ & \vdots & \\ \theta_n|\theta_1,\dots,\theta_{n-1} & \sim & \frac{\alpha\mathsf{G_0} + \sum_{i=1}^{n-1}\delta_{\theta_i}}{\alpha+n-1} \end{array}$$

- The joint distribution $p(\theta_1, \theta_2, \dots, \theta_n) = p(\theta_1)p(\theta_2|\theta_1)\dots p(\theta_n|\theta_1, \dots, \theta_{n-1})$
- Note that $\theta_1, \dots, \theta_{n-1}, \theta_n$ is an "exchangeable sequence" (joint probability invariant to ordering)

$$p(\theta_1, \theta_2, \dots, \theta_n) = p(\theta_{\sigma(1)}, \theta_{\sigma(2)}, \dots, \theta_{\sigma(n)})$$
 (for any permutation σ)

Chinese Restaurant Process (CRP)

- \bullet A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



- Probability of sitting at an already occupied table $k \propto n_k$ (n_k : # of people sitting at table k)
- ullet Probability of sitting at an unoccupied table $\propto lpha$ (where lpha is a novelty hyperparameter)
- Imagine table k is associated with a unique ϕ_k . Then the arragement would look like..

• The table assignment distribution is the same as the DP predictive distribution

Pólya-Urn Scheme

- Another metaphor to describe the way $\theta_1, \ldots, \theta_n$ are sequentially generated
- Suppose we have a collection of uncolored ball. We'd like to color them using a set of colors
- Take a ball. Color it using some color. Put it in an urn.
- For each subsequent ball (say number n+1), color it using following scheme
 - Use a new color with probability $\frac{\alpha}{\alpha+n}$
 - With probability $\frac{n}{n+n}$, pull out a ball randomly from the urn and copy its color
 - Place both balls (chosen and the new one) back to the urn
- The color assignment scheme has the same distribution as the DP predictive distribution

de Finetti's Theorem and Infinite Exchangeability

- de Finetti's Theorem is one of the most fundamental results in Bayesian statistics
- Infinitely Exchangeable Sequence: One for which any finite collection $\theta_1, \dots, \theta_N$ is exchangeable
- Exchangeable: A finite sequence of random variables $\theta_1, \dots, \theta_N$ is called exchangeable if its joint distribution is invariant under permutations

$$p(\theta_1,\ldots,\theta_N)=p(\theta_{\sigma(1)},\ldots,\theta_{\sigma(N)})$$

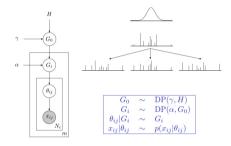
- .. for any permutation $\sigma(1), \ldots, \sigma(N)$ of $1, \ldots, N$
- de Finetti's Theorem: For an inf. exchangeable sequence, there exists a random distribution G s.t.

$$p(\theta_1,\ldots,\theta_N) = \int \prod_{i=1}^N p(\theta_i|G) dp(G)$$

- .. that is, $\theta_1, \ldots, \theta_N$ are i.i.d. given G
- Note that the sequence $\theta_1, \dots, \theta_N$ generated by the Pólya-Urn/CRP schemes is also exchangeable
 - It implies that there must exist such a distribution G (and that is $G \sim \mathsf{DP}(\alpha, G_0)$)

Hierarchical Dirichlet Process (HDP)

• Defines a DP whose base distribution G_0 itself is drawn from another DP



- Can be used if we would like to cluster m data sets, each using a DP mixture model
- The discreteness of the shared base distribution G_0 enables sharing information across the m clustering problems (reason: because the discreteness allows sharing clusters/atoms)
- Important: If G_0 were a continuous distribution, we won't be able to share atoms (probability of G_i and G_j sharing any atoms will be zero if G_0 is a continuous distribution)
- HDP used in nonparametric Bayesian version of LDA topic model

Some Other Properties/Extensions of DP

- a priori expected number of clusters (as per the DP prior) $K = \mathcal{O}(\alpha \log N)$
- Pitman-Yor Process: A variant of DP for which K has a power-law growth $\mathcal{O}(N^d)$, where $0 \le d \le 1$ is an additional "discount" parameter and $\alpha > -d$
- For the *n*-th customer, the probabilities are

$$p(\mathsf{table} = k) \propto \frac{n_k - d}{n - 1 + \alpha} \qquad k = 1, \dots, K$$
 $p(\mathsf{new table}) \propto \frac{\alpha + dK}{n - 1 + \alpha}$

- For PY process, probability of occupying existing tables with discounted by d
- Creation of new tables is encouraged more and more and K grows

Modeling Binary Matrices with Unbounded Number of Columns

• Assume each observation $\mathbf{x}_n \in \mathbb{R}^D$ to be a subset combination of K vectors $\mathbf{a}_1, \dots, \mathbf{a}_K$

$$\boldsymbol{x}_n = \sum_{k=1}^K z_{nk} \boldsymbol{a}_k + \epsilon_n$$

where $z_n = [z_{n1}, \dots, z_{nK}]$ is a binary vector

- For N observations $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, the model can be written as $\mathbf{X} = \mathbf{Z}\mathbf{A} + \mathbf{E}$
- Here **Z** is $N \times K$ binary matrix (row n is z_n), and **A** is $K \times D$ matrix (row k is a_k)
- How do we learn K? Can do it if we can learn the number of columns in the binary matrix Z

- A nonparam. Bayesian model called "Indian Buffet Process" (IBP) defines a prior for such matrices
- Just like CRP, the IBP is a metaphor to describe the process that generates such matrices

Modeling Binary Matrices with Finite Many Columns

• Consider the generative process of an $N \times K$ binary matrix Z

- \bullet Rows denote the N examples, columns denote the K latent features
- Assume $\pi_k \in (0,1)$ to be probability of latent feature k being 1

$$z_{nk} \sim \text{Bernoulli}(\pi_k), \quad \pi_k \sim \text{Beta}(\alpha/K, 1)$$

- Note: All z_{nk} 's are i.i.d. given π_k
- For this model, the conditional probability of $z_{nk} = 1$, given other entries in column k of **Z**

$$p(z_{nk}=1|oldsymbol{z}_{-n,k})=\int p(z_{nk}=1|\pi_k)p(\pi_k|oldsymbol{z}_{-n,k})=rac{m_{-n,k}+rac{lpha}{K}}{N+rac{lpha}{K}}$$
 (verify)

where $m_{-n,k} = \sum_{i \neq n} z_{ik}$ denotes how many other entries in column k are equal to 1

Towards Unbounded Number of Columns

- For the finite K case, we saw that $p(z_{nk}=1|z_{-n,k})=\frac{m_{-n,k}+\frac{\alpha}{K}}{N+\alpha}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | z_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | z_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes
 - Customer 1 selects Poisson(α) dishes
 - The n-th customer selects:
 - Each already selected dish k with probability $m_{-n,k}/n$ $(m_k$: how many previous customers before n selected dish k)
 - Poisson(α/n) new dishes (this can create new columns in **Z**)
 - Note that as n grows, number of new dishes goes to zero (and the number of columns K converges to some finite number)
 - Customers = objects: dishes = latent features
- The above can be used as a prior for **Z**. Refer to (Griffiths and Ghahramani, 2011) for examples and other theoretical details of the model. Also has connections to Beta Processes

Another Example: Multiplicative Gamma Process

Consider the following probabilistic version of SVD

$$\mathbf{X} = \sum_{k=1}^K \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^{ op} + \mathbf{E}$$

ullet Consider the following prior on the "singular values" λ_k

$$\begin{array}{lcl} \lambda_k & \sim & \mathcal{N}(0,\tau_k^{-1}) \\ \\ \tau_k & = & \prod_{\ell=1}^k \delta_\ell \\ \\ \delta_\ell & \sim & \mathsf{Gamma}(\alpha,1) \quad \mathsf{where} \ \alpha > 1 \end{array}$$

• Note that as k becomes large, τ_k gets larger and larger and λ_k shrinks to zero

NPBayes-inspired Simpler Non-probabilistic Models

- Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor
- Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)
- Such simplications are based on small-variance asymptotics (SVA)
 - Basically, take the noise variance of observation model to zero
 - ullet E.g., in DP mixture model with Gaussian clusters, take $\sigma^2
 ightarrow 0$
- The data to cluster assignments in the DP-means algorithm look like
 - Assign x_n to the closest existing cluster k_* if $||x_n \mu_{k_*}|| \le \rho$
 - Otherwise, assign x_* to a new cluster and set $\mu_{K+1} = x_n$
- For more details, please refer to Kulis and Jordan (2012) and Broderick (2013)
- Many complex NPBayes models have been simplified using small-variance asymptotics idea

Some Comments

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size
- ullet Marginal likelihood $p(\mathcal{D}|\mathcal{M})$ can be used for model selection from a set of models $\{\mathcal{M}_i\}_{i=1}^L$
- Other criteria such as Akaike or Bayesian Information Criteria are also commonly used
 - Usually defined as a sum of negative log-lik. and model size (models with smaller values preferred)

$$AIC = 2k - 2 \times \text{log-lik}$$

 $BIC = k \log N - 2 \times \text{log-lik}$

where k denotes the number of parameters of the model, N denotes number of data points

- However, marginal likelihood, AIC/BIC, etc. try multiple models and then choose the best
- In contrast, NPBayes models learn a single model having an unbounded complexity
 - Also natural for streaming data where model selection is difficult/impractical to perform