Nonparametric Bayesian Models (Wrap-up)

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

April 1, 2019

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

イロト イポト イヨト イヨト

• Also known as infinite mixture models. Can be mathematically represented as

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

• Also known as infinite mixture models. Can be mathematically represented as

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

where π_k and ϕ_k are the mixing prop. and params of the k-th component, and for $n = 1, \ldots, N$

• Also known as infinite mixture models. Can be mathematically represented as

$${\it G} = \sum_{k=1}^\infty \pi_k \delta_{\phi_k}$$

where π_k and ϕ_k are the mixing prop. and params of the k-th component, and for $n = 1, \ldots, N$

$$egin{array}{rcl} heta_n &\sim & G & (heta_n ext{ will be equal to } \phi_k ext{ with prob. } \pi_k) \ oldsymbol{x}_n &\sim & p(oldsymbol{x} | heta_n) \end{array}$$

() < </p>

• Also known as infinite mixture models. Can be mathematically represented as

$${\it G} = \sum_{k=1}^\infty \pi_k \delta_{\phi_k}$$

where π_k and ϕ_k are the mixing prop. and params of the k-th component, and for $n = 1, \ldots, N$

$$egin{array}{rcl} heta_n &\sim & G & (heta_n ext{ will be equal to } \phi_k ext{ with prob. } \pi_k) \ oldsymbol{x}_n &\sim & p(oldsymbol{x} | heta_n) \end{array}$$

• Can view/define such infinite mixture models using various equivalent ways

- Stick-breaking Process
- Dirichlet Process
- Chinese Restaurant Process
- Pólya-Urn Scheme

(日) (월) (분) (분)

Recap: Stick-Breaking Process

• Sethuraman's stick-breaking construction provides a sequential way to generate π_k 's

< □ > < □ > < □ > < Ξ > < Ξ >

Recap: Stick-Breaking Process

• Sethuraman's stick-breaking construction provides a sequential way to generate π_k 's

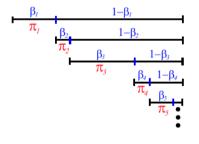
$$\beta_1 \sim \text{Beta}(1, \alpha), \quad \pi_1 = \beta_1$$

< □ > < □ > < □ > < Ξ > < Ξ >

Recap: Stick-Breaking Process

• Sethuraman's stick-breaking construction provides a sequential way to generate π_k 's

$$\begin{array}{lll} \beta_1 & \sim & \mathsf{Beta}(1,\alpha), & \pi_1 = \beta_1 \\ \beta_k & \sim & \mathsf{Beta}(1,\alpha), & \pi_k = \beta_k \prod_{\ell=1}^{k-1} (1-\beta_{\ell-1}), & k = 2, \dots, \infty \end{array}$$



ヨト イヨト

< □ > < 同

• A Dirichlet Process $DP(\alpha, G_0)$ defines a distribution over distributions

イロト イロト イヨト イヨト

• A Dirichlet Process $DP(\alpha, G_0)$ defines a distribution over distributions

• If $G \sim \mathsf{DP}(\alpha, G_0)$ then any finite dim. marginal of G is Dirichlet distributed

• A Dirichlet Process $DP(\alpha, G_0)$ defines a distribution over distributions

• If $G \sim DP(\alpha, G_0)$ then any finite dim. marginal of G is Dirichlet distributed

 $[G(A_1),\ldots,G(A_K)] \sim \mathsf{Dirichlet}(\alpha G_0(A_1),\ldots,\alpha G_0(A_K))$

for any finite partition A_1, \ldots, A_K of the space Ω (Ferguson, 1973)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• A Dirichlet Process $DP(\alpha, G_0)$ defines a distribution over distributions

• If $G \sim DP(\alpha, G_0)$ then any finite dim. marginal of G is Dirichlet distributed

 $[G(A_1),\ldots,G(A_K)] \sim \mathsf{Dirichlet}(\alpha G_0(A_1),\ldots,\alpha G_0(A_K))$

for any finite partition A_1, \ldots, A_K of the space Ω (Ferguson, 1973)

• G is a discrete distribution of the form $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$

• A Dirichlet Process $DP(\alpha, G_0)$ defines a distribution over distributions

• If $G \sim DP(\alpha, G_0)$ then any finite dim. marginal of G is Dirichlet distributed

 $[G(A_1),\ldots,G(A_K)] \sim \mathsf{Dirichlet}(\alpha G_0(A_1),\ldots,\alpha G_0(A_K))$

for any finite partition A_1, \ldots, A_K of the space Ω (Ferguson, 1973)

• G is a discrete distribution of the form $G = \sum_{k=1}^\infty \pi_k \delta_{\phi_k}$

• α is concentration parameter, G_0 is the base distribution of DP(α , G_0)

• A Dirichlet Process $DP(\alpha, G_0)$ defines a distribution over distributions

• If $G \sim DP(\alpha, G_0)$ then any finite dim. marginal of G is Dirichlet distributed

 $[G(A_1),\ldots,G(A_K)] \sim \mathsf{Dirichlet}(\alpha G_0(A_1),\ldots,\alpha G_0(A_K))$

for any finite partition A_1, \ldots, A_K of the space Ω (Ferguson, 1973)

• G is a discrete distribution of the form $G = \sum_{k=1}^\infty \pi_k \delta_{\phi_k}$

• α is concentration parameter, G_0 is the base distribution of DP(α , G_0)

•
$$\mathbb{E}[G] = G_0$$
 and as $lpha o \infty$, $G o G_0$

• Assume N i.i.d. draws $\theta_1, \ldots, \theta_N$ from the discrete distribution $G \sim \mathsf{DP}(\alpha, G_0)$

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

• Assume N i.i.d. draws $\theta_1, \ldots, \theta_N$ from the discrete distribution $G \sim \mathsf{DP}(\alpha, G_0)$

• The posterior of G will also be a DP (due to discrete-Dirichlet conjugacy)

$$G|\theta_1,\ldots,\theta_N \sim \operatorname{DP}(\alpha+N,rac{lpha}{lpha+N}G_0+rac{1}{lpha+N}\sum_{i=1}^N\delta_{\theta_i})$$

• Assume N i.i.d. draws $\theta_1, \ldots, \theta_N$ from the discrete distribution $G \sim \mathsf{DP}(\alpha, G_0)$

• The posterior of G will also be a DP (due to discrete-Dirichlet conjugacy)

$$\begin{aligned} G|\theta_1, \dots, \theta_N &\sim \quad \mathsf{DP}(\alpha + N, \frac{\alpha}{\alpha + N}G_0 + \frac{1}{\alpha + N}\sum_{i=1}^N \delta_{\theta_i}) \\ (\text{equivalent to}) \quad G|\theta_1, \dots, \theta_N &\sim \quad \mathsf{DP}(\alpha + N, \frac{\alpha}{\alpha + N}G_0 + \sum_{k=1}^K \frac{n_k}{\alpha + N}\delta_{\phi_k}) \end{aligned}$$

.. where n_k = number of θ_i 's that are equal to ϕ_k

• Assume N i.i.d. draws $\theta_1, \ldots, \theta_N$ from the discrete distribution $G \sim \mathsf{DP}(\alpha, G_0)$

• The posterior of G will also be a DP (due to discrete-Dirichlet conjugacy)

$$\begin{aligned} G|\theta_1, \dots, \theta_N &\sim \quad \mathsf{DP}(\alpha + N, \frac{\alpha}{\alpha + N} G_0 + \frac{1}{\alpha + N} \sum_{i=1}^N \delta_{\theta_i}) \\ (\text{equivalent to}) \quad G|\theta_1, \dots, \theta_N &\sim \quad \mathsf{DP}(\alpha + N, \frac{\alpha}{\alpha + N} G_0 + \sum_{k=1}^K \frac{n_k}{\alpha + N} \delta_{\phi_k}) \end{aligned}$$

.. where n_k = number of θ_i 's that are equal to ϕ_k

• The posterior predictive for the next draw θ_{N+1} from G will be

$$\theta_{N+1}|\theta_1,\ldots,\theta_N \quad \sim \quad \frac{\alpha}{\alpha+N}G_0 + \frac{1}{\alpha+N}\sum_{i=1}^N \delta_{\theta_i}$$

・ロト ・四ト ・モト ・モト

• Assume N i.i.d. draws $\theta_1, \ldots, \theta_N$ from the discrete distribution $G \sim \mathsf{DP}(\alpha, G_0)$

• The posterior of G will also be a DP (due to discrete-Dirichlet conjugacy)

$$\begin{aligned} G|\theta_1, \dots, \theta_N &\sim \quad \mathsf{DP}(\alpha + N, \frac{\alpha}{\alpha + N} G_0 + \frac{1}{\alpha + N} \sum_{i=1}^N \delta_{\theta_i}) \\ (\text{equivalent to}) \quad G|\theta_1, \dots, \theta_N &\sim \quad \mathsf{DP}(\alpha + N, \frac{\alpha}{\alpha + N} G_0 + \sum_{k=1}^K \frac{n_k}{\alpha + N} \delta_{\phi_k}) \end{aligned}$$

.. where n_k = number of θ_i 's that are equal to ϕ_k

• The posterior predictive for the next draw θ_{N+1} from G will be

$$\begin{array}{lll} \theta_{N+1}|\theta_1,\ldots,\theta_N & \sim & \displaystyle \frac{\alpha}{\alpha+N}\,G_0 + \displaystyle \frac{1}{\alpha+N}\sum_{i=1}^N \delta_{\theta_i} \\ (\text{equivalent to}) & \theta_{N+1}|\theta_1,\ldots,\theta_N & \sim & \displaystyle \frac{\alpha}{\alpha+N}\,G_0 + \sum_{k=1}^K \displaystyle \frac{n_k}{\alpha+N}\delta_{\phi_k} \quad (\text{mixture of } K+1 \text{ distributions}) \end{array}$$

・ロト ・四ト ・モト ・モト

• Assume N i.i.d. draws $\theta_1, \ldots, \theta_N$ from the discrete distribution $G \sim \mathsf{DP}(\alpha, G_0)$

• The posterior of G will also be a DP (due to discrete-Dirichlet conjugacy)

$$\begin{aligned} G|\theta_1, \dots, \theta_N &\sim \quad \mathsf{DP}(\alpha + N, \frac{\alpha}{\alpha + N} G_0 + \frac{1}{\alpha + N} \sum_{i=1}^N \delta_{\theta_i}) \\ (\text{equivalent to}) \quad G|\theta_1, \dots, \theta_N &\sim \quad \mathsf{DP}(\alpha + N, \frac{\alpha}{\alpha + N} G_0 + \sum_{k=1}^K \frac{n_k}{\alpha + N} \delta_{\phi_k}) \end{aligned}$$

.. where n_k = number of θ_i 's that are equal to ϕ_k

• The posterior predictive for the next draw θ_{N+1} from G will be

$$\begin{array}{lll} \theta_{N+1}|\theta_1,\ldots,\theta_N & \sim & \displaystyle \frac{\alpha}{\alpha+N}\,G_0 + \displaystyle \frac{1}{\alpha+N}\sum_{i=1}^N \delta_{\theta_i} \\ (\text{equivalent to}) & \theta_{N+1}|\theta_1,\ldots,\theta_N & \sim & \displaystyle \frac{\alpha}{\alpha+N}\,G_0 + \sum_{k=1}^K \displaystyle \frac{n_k}{\alpha+N}\delta_{\phi_k} \quad (\text{mixture of } K+1 \text{ distributions}) \end{array}$$

i.e., $\theta_{N+1} = \phi_k$ with prob. $\frac{n_k}{\alpha + N}$ or a new value drawn from G_0 with prob. $\frac{\alpha}{\alpha + N}G_0$

• The form of the DP predictive distribution

$$heta_{N+1}| heta_1,\ldots, heta_N\sim rac{lpha}{lpha+N}G_0+rac{1}{lpha+N}\sum_{i=1}^N\delta_{ heta_i}$$

suggests the following scheme to generate a sequence of parameters $\theta_1, \ldots, \theta_N, \theta_{N+1}, \ldots$

(D) (D) (E) (E) (E)

• The form of the DP predictive distribution

$$\theta_{N+1}|\theta_1,\ldots,\theta_N\sim rac{lpha}{lpha+N}G_0+rac{1}{lpha+N}\sum_{i=1}^N\delta_{ heta_i}$$

suggests the following scheme to generate a sequence of parameters $\theta_1, \ldots, \theta_N, \theta_{N+1}, \ldots$

 $heta_1 ~\sim~ G_0$

• The form of the DP predictive distribution

$$\theta_{N+1}|\theta_1,\ldots,\theta_N\sim rac{lpha}{lpha+N}G_0+rac{1}{lpha+N}\sum_{i=1}^N\delta_{\theta_i}$$

suggests the following scheme to generate a sequence of parameters $\theta_1, \ldots, \theta_N, \theta_{N+1}, \ldots$

$$egin{array}{rcl} heta_1 &\sim & {\cal G}_0 \ heta_2| heta_1 &\sim & rac{lpha}{lpha+1}{\cal G}_0+rac{1}{lpha+1}\delta_{ heta_1} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The form of the DP predictive distribution

$$\theta_{N+1}|\theta_1,\ldots,\theta_N\sim rac{lpha}{lpha+N}G_0+rac{1}{lpha+N}\sum_{i=1}^N\delta_{\theta_i}$$

suggests the following scheme to generate a sequence of parameters $\theta_1, \ldots, \theta_N, \theta_{N+1}, \ldots$

$$\begin{array}{rcl} \theta_1 & \sim & \mathcal{G}_0 \\ \\ \theta_2 | \theta_1 & \sim & \displaystyle \frac{\alpha}{\alpha+1} \mathcal{G}_0 + \displaystyle \frac{1}{\alpha+1} \delta_{\theta_1} \\ \\ \\ \vdots \\ \\ \theta_n | \theta_1, \ldots, \theta_{n-1} & \sim & \displaystyle \frac{\alpha \mathcal{G}_0 + \sum_{i=1}^{n-1} \delta_{\theta_i}}{\alpha+n-1} \end{array}$$

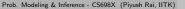
• The form of the DP predictive distribution

$$\theta_{N+1}|\theta_1,\ldots,\theta_N\sim rac{lpha}{lpha+N}G_0+rac{1}{lpha+N}\sum_{i=1}^N\delta_{\theta_i}$$

suggests the following scheme to generate a sequence of parameters $\theta_1, \ldots, \theta_N, \theta_{N+1}, \ldots$

$$\begin{array}{rcl} \theta_1 & \sim & \mathcal{G}_0 \\ \\ \theta_2 | \theta_1 & \sim & \displaystyle \frac{\alpha}{\alpha+1} \mathcal{G}_0 + \displaystyle \frac{1}{\alpha+1} \delta_{\theta_1} \\ \\ \\ \vdots \\ \\ \theta_n | \theta_1, \ldots, \theta_{n-1} & \sim & \displaystyle \frac{\alpha \mathcal{G}_0 + \sum_{i=1}^{n-1} \delta_{\theta_i}}{\alpha+n-1} \end{array}$$

• The joint distribution $p(\theta_1, \theta_2, \dots, \theta_n) = p(\theta_1)p(\theta_2|\theta_1) \dots p(\theta_n|\theta_1, \dots, \theta_{n-1})$



《曰》《卽》《言》《言》

• The form of the DP predictive distribution

$$\theta_{N+1}|\theta_1,\ldots,\theta_N\sim rac{lpha}{lpha+N}G_0+rac{1}{lpha+N}\sum_{i=1}^N\delta_{\theta_i}$$

suggests the following scheme to generate a sequence of parameters $\theta_1, \ldots, \theta_N, \theta_{N+1}, \ldots$

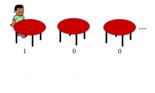
$$\begin{array}{rcl} \theta_1 & \sim & \mathcal{G}_0 \\ \\ \theta_2 | \theta_1 & \sim & \displaystyle \frac{\alpha}{\alpha+1} \mathcal{G}_0 + \frac{1}{\alpha+1} \delta_{\theta_1} \\ \\ & \vdots \\ \\ \theta_n | \theta_1, \dots, \theta_{n-1} & \sim & \displaystyle \frac{\alpha \mathcal{G}_0 + \sum_{i=1}^{n-1} \delta_{\theta_i}}{\alpha+n-1} \end{array}$$

• The joint distribution $p(\theta_1, \theta_2, \dots, \theta_n) = p(\theta_1)p(\theta_2|\theta_1) \dots p(\theta_n|\theta_1, \dots, \theta_{n-1})$

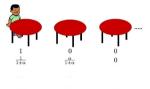
• Note that $\theta_1, \ldots, \theta_{n-1}, \theta_n$ is an "exchangeable sequence" (joint probability invariant to ordering)

$$p(\theta_1, \theta_2, \dots, \theta_n) = p(\theta_{\sigma(1)}, \theta_{\sigma(2)}, \dots, \theta_{\sigma(n)}) \quad \text{(for any permutation } \sigma)$$

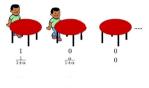
- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



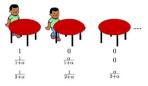
- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.

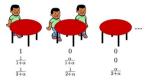


- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



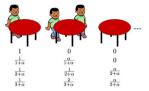
イロト イロト イヨト イヨト

- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



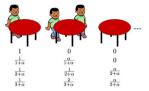
イロト イロト イヨト イヨ

- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



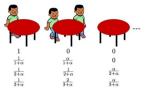
イロト イロト イヨト イヨ

- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



• Probability of sitting at an already occupied table $k \propto n_k$ (n_k : # of people sitting at table k)

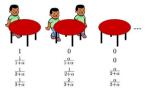
- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



Probability of sitting at an already occupied table k ∝ nk (nk: # of people sitting at table k)
Probability of sitting at an unoccupied table ∝ α (where α is a novelty hyperparameter)

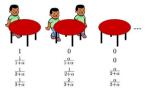
A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



- Probability of sitting at an already occupied table $k \propto n_k$ (n_k : # of people sitting at table k)
- Probability of sitting at an unoccupied table $\propto lpha$ (where lpha is a novelty hyperparameter)
- Imagine table k is associated with a unique ϕ_k . Then the arragement would look like..

- A metaphor to describe the way $\theta_1, \ldots, \theta_n$ (equivalently, the cluster assignments) are generated
- Think of the θ_i 's as customers who sequentially enter a restaurant (need not be Chinese!) and decide which table to sit at. All θ_i 's sitting at the same table will be identical.



 (ϕ_1) (ϕ_2) (ϕ_3) (ϕ_4) ()

- Probability of sitting at an already occupied table $k \propto n_k$ (n_k : # of people sitting at table k)
- $\, \bullet \,$ Probability of sitting at an unoccupied table $\propto \alpha$ (where α is a novelty hyperparameter)
- Imagine table k is associated with a unique ϕ_k . Then the arragement would look like..

• The table assignment distribution is the same as the DP predictive distribution $(\Box \rightarrow (\Box) \rightarrow ($

• Another metaphor to describe the way $\theta_1, \ldots, \theta_n$ are sequentially generated

- Another metaphor to describe the way $\theta_1, \ldots, \theta_n$ are sequentially generated
- Suppose we have a collection of uncolored ball. We'd like to color them using a set of colors

- ${\ }$ Another metaphor to describe the way θ_1,\ldots,θ_n are sequentially generated
- Suppose we have a collection of uncolored ball. We'd like to color them using a set of colors
- Take a ball. Color it using some color. Put it in an urn.

- Another metaphor to describe the way $\theta_1, \ldots, \theta_n$ are sequentially generated
- Suppose we have a collection of uncolored ball. We'd like to color them using a set of colors
- Take a ball. Color it using some color. Put it in an urn.
- For each subsequent ball (say number n + 1), color it using following scheme

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

- Another metaphor to describe the way $\theta_1, \ldots, \theta_n$ are sequentially generated
- Suppose we have a collection of uncolored ball. We'd like to color them using a set of colors
- Take a ball. Color it using some color. Put it in an urn.
- For each subsequent ball (say number n + 1), color it using following scheme
 - ${\ \circ \ }$ Use a new color with probability $\frac{\alpha}{\alpha+n}$

- Another metaphor to describe the way $\theta_1, \ldots, \theta_n$ are sequentially generated
- Suppose we have a collection of uncolored ball. We'd like to color them using a set of colors
- Take a ball. Color it using some color. Put it in an urn.
- For each subsequent ball (say number n + 1), color it using following scheme
 - Use a new color with probability $\frac{\alpha}{\alpha+n}$
 - With probability $\frac{n}{\alpha+n}$, pull out a ball randomly from the urn and copy its color

- Another metaphor to describe the way $\theta_1, \ldots, \theta_n$ are sequentially generated
- Suppose we have a collection of uncolored ball. We'd like to color them using a set of colors
- Take a ball. Color it using some color. Put it in an urn.
- For each subsequent ball (say number n + 1), color it using following scheme
 - Use a new color with probability $\frac{\alpha}{\alpha+n}$
 - With probability $\frac{n}{\alpha+n}$, pull out a ball randomly from the urn and copy its color
 - Place both balls (chosen and the new one) back to the urn

- Another metaphor to describe the way $\theta_1, \ldots, \theta_n$ are sequentially generated
- Suppose we have a collection of uncolored ball. We'd like to color them using a set of colors
- Take a ball. Color it using some color. Put it in an urn.
- For each subsequent ball (say number n + 1), color it using following scheme
 - Use a new color with probability $\frac{\alpha}{\alpha+n}$
 - With probability $\frac{n}{\alpha+n}$, pull out a ball randomly from the urn and copy its color
 - Place both balls (chosen and the new one) back to the urn
- The color assignment scheme has the same distribution as the DP predictive distribution

• de Finetti's Theorem is one of the most fundamental results in Bayesian statistics

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

• de Finetti's Theorem is one of the most fundamental results in Bayesian statistics

• Infinitely Exchangeable Sequence: One for which any finite collection $\theta_1, \ldots, \theta_N$ is exchangeable

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

- de Finetti's Theorem is one of the most fundamental results in Bayesian statistics
- Infinitely Exchangeable Sequence: One for which any finite collection $\theta_1, \ldots, \theta_N$ is exchangeable
- Exchangeable: A finite sequence of random variables $\theta_1, \ldots, \theta_N$ is called exchangeable if its joint distribution is invariant under permutations

$$p(heta_1,\ldots, heta_N)=p(heta_{\sigma(1)},\ldots, heta_{\sigma(N)})$$

.. for any permutation $\sigma(1),\ldots,\sigma(N)$ of $1,\ldots,N$

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

- de Finetti's Theorem is one of the most fundamental results in Bayesian statistics
- Infinitely Exchangeable Sequence: One for which any finite collection $\theta_1, \ldots, \theta_N$ is exchangeable
- Exchangeable: A finite sequence of random variables $\theta_1, \ldots, \theta_N$ is called exchangeable if its joint distribution is invariant under permutations

$$p(heta_1,\ldots, heta_N)=p(heta_{\sigma(1)},\ldots, heta_{\sigma(N)})$$

- .. for any permutation $\sigma(1),\ldots,\sigma(N)$ of $1,\ldots,N$
- de Finetti's Theorem: For an inf. exchangeable sequence, there exists a random distribution G s.t.

$$p(\theta_1,\ldots,\theta_N) = \int \prod_{i=1}^{N} p(\theta_i|G) dp(G)$$

.. that is, $\theta_1, \ldots, \theta_N$ are i.i.d. given G

- de Finetti's Theorem is one of the most fundamental results in Bayesian statistics
- Infinitely Exchangeable Sequence: One for which any finite collection $\theta_1, \ldots, \theta_N$ is exchangeable
- Exchangeable: A finite sequence of random variables $\theta_1, \ldots, \theta_N$ is called exchangeable if its joint distribution is invariant under permutations

$$p(heta_1,\ldots, heta_N)=p(heta_{\sigma(1)},\ldots, heta_{\sigma(N)})$$

.. for any permutation $\sigma(1),\ldots,\sigma(N)$ of $1,\ldots,N$

• de Finetti's Theorem: For an inf. exchangeable sequence, there exists a random distribution G s.t. $p(\theta_1, \dots, \theta_N) = \int \prod_{i=1}^N p(\theta_i | G) dp(G)$

.. that is, $\theta_1, \ldots, \theta_N$ are i.i.d. given G

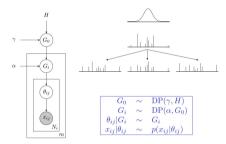
• Note that the sequence $\theta_1, \ldots, \theta_N$ generated by the Pólya-Urn/CRP schemes is also exchangeable

- de Finetti's Theorem is one of the most fundamental results in Bayesian statistics
- Infinitely Exchangeable Sequence: One for which any finite collection $\theta_1, \ldots, \theta_N$ is exchangeable
- Exchangeable: A finite sequence of random variables $\theta_1, \ldots, \theta_N$ is called exchangeable if its joint distribution is invariant under permutations

$$p(heta_1,\ldots, heta_N)=p(heta_{\sigma(1)},\ldots, heta_{\sigma(N)})$$

- .. for any permutation $\sigma(1),\ldots,\sigma(N)$ of $1,\ldots,N$
- de Finetti's Theorem: For an inf. exchangeable sequence, there exists a random distribution G s.t. $p(\theta_1, \dots, \theta_N) = \int \prod_{i=1}^N p(\theta_i | G) dp(G)$
 - .. that is, $\theta_1, \ldots, \theta_N$ are i.i.d. given G
- Note that the sequence $\theta_1, \ldots, \theta_N$ generated by the Pólya-Urn/CRP schemes is also exchangeable
 - It implies that there must exist such a distribution G (and that is $G \sim \mathsf{DP}(\alpha, G_0)$)

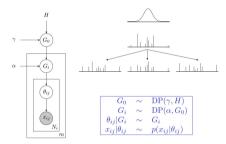
• Defines a DP whose base distribution G_0 itself is drawn from another DP



• Can be used if we would like to cluster m data sets, each using a DP mixture model

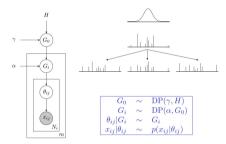
< ∃ > < ∃ >

• Defines a DP whose base distribution G_0 itself is drawn from another DP



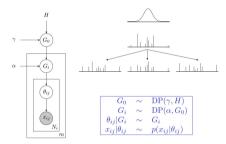
- Can be used if we would like to cluster m data sets, each using a DP mixture model
- The discreteness of the shared base distribution G_0 enables sharing information across the *m* clustering problems (reason: because the discreteness allows sharing clusters/atoms)

• Defines a DP whose base distribution G_0 itself is drawn from another DP



- Can be used if we would like to cluster m data sets, each using a DP mixture model
- The discreteness of the shared base distribution G_0 enables sharing information across the *m* clustering problems (reason: because the discreteness allows sharing clusters/atoms)
- Important: If G_0 were a continuous distribution, we won't be able to share atoms (probability of G_i and G_j sharing any atoms will be zero if G_0 is a continuous distribution)

• Defines a DP whose base distribution G_0 itself is drawn from another DP



- Can be used if we would like to cluster m data sets, each using a DP mixture model
- The discreteness of the shared base distribution G_0 enables sharing information across the *m* clustering problems (reason: because the discreteness allows sharing clusters/atoms)
- Important: If G_0 were a continuous distribution, we won't be able to share atoms (probability of G_i and G_j sharing any atoms will be zero if G_0 is a continuous distribution)
- HDP used in nonparametric Bayesian version of LDA topic model

ヨト イヨト

• a priori expected number of clusters (as per the DP prior) $K = O(\alpha \log N)$

• a priori expected number of clusters (as per the DP prior) $K = O(\alpha \log N)$

• Pitman-Yor Process: A variant of DP for which K has a power-law growth $\mathcal{O}(N^d)$, where $0 \le d < 1$ is an additional "discount" parameter and $\alpha > -d$

• a priori expected number of clusters (as per the DP prior) $K = O(\alpha \log N)$

- Pitman-Yor Process: A variant of DP for which K has a power-law growth $\mathcal{O}(N^d)$, where $0 \le d < 1$ is an additional "discount" parameter and $\alpha > -d$
- For the *n*-th customer, the probabilities are

$$p(table = k) \propto \frac{n_k - d}{n - 1 + \alpha} \qquad k = 1, \dots, K$$

• a priori expected number of clusters (as per the DP prior) $K = O(\alpha \log N)$

- Pitman-Yor Process: A variant of DP for which K has a power-law growth $\mathcal{O}(N^d)$, where $0 \le d < 1$ is an additional "discount" parameter and $\alpha > -d$
- For the *n*-th customer, the probabilities are

$$p(table = k) \propto \frac{n_k - d}{n - 1 + \alpha}$$
 $k = 1, ..., K$
 $p(new table) \propto \frac{\alpha + dK}{n - 1 + \alpha}$

・ロト ・四ト ・モト ・モト

• a priori expected number of clusters (as per the DP prior) $K = O(\alpha \log N)$

- Pitman-Yor Process: A variant of DP for which K has a power-law growth $\mathcal{O}(N^d)$, where $0 \le d < 1$ is an additional "discount" parameter and $\alpha > -d$
- For the *n*-th customer, the probabilities are

$$p(table = k) \propto \frac{n_k - d}{n - 1 + \alpha}$$
 $k = 1, \dots, K$
 $p(new table) \propto \frac{\alpha + dK}{n - 1 + \alpha}$

• For PY process, probability of occupying existing tables with discounted by d

・ロト ・四ト ・モト ・モト

• a priori expected number of clusters (as per the DP prior) $K = O(\alpha \log N)$

- Pitman-Yor Process: A variant of DP for which K has a power-law growth $\mathcal{O}(N^d)$, where $0 \le d < 1$ is an additional "discount" parameter and $\alpha > -d$
- For the *n*-th customer, the probabilities are

$$p(table = k) \propto \frac{n_k - d}{n - 1 + \alpha}$$
 $k = 1, \dots, K$
 $p(new table) \propto \frac{\alpha + dK}{n - 1 + \alpha}$

• For PY process, probability of occupying existing tables with discounted by d

• Creation of new tables is encouraged more and more and K grows

イロト イロト イヨト

• Assume each observation $\boldsymbol{x}_n \in \mathbb{R}^D$ to be a subset combination of K vectors $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_K$

$$\boldsymbol{x}_n = \sum_{k=1}^{K} z_{nk} \boldsymbol{a}_k + \epsilon_n$$

where $\boldsymbol{z}_n = [\boldsymbol{z}_{n1}, \ldots, \boldsymbol{z}_{nK}]$ is a binary vector

"Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

Nonparametric Bayesian Models (Wrap-up)

• Assume each observation $\boldsymbol{x}_n \in \mathbb{R}^D$ to be a subset combination of K vectors $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_K$

$$\boldsymbol{x}_n = \sum_{k=1}^K z_{nk} \boldsymbol{a}_k + \epsilon_n$$

where $\boldsymbol{z}_n = [\boldsymbol{z}_{n1}, \ldots, \boldsymbol{z}_{nK}]$ is a binary vector

• For N observations $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, the model can be written as $\mathbf{X} = \mathbf{Z}\mathbf{A} + \mathbf{E}$

[&]quot;Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

• Assume each observation $\boldsymbol{x}_n \in \mathbb{R}^D$ to be a subset combination of K vectors $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_K$

$$\boldsymbol{x}_n = \sum_{k=1}^{K} z_{nk} \boldsymbol{a}_k + \epsilon_n$$

where $\boldsymbol{z}_n = [\boldsymbol{z}_{n1}, \ldots, \boldsymbol{z}_{nK}]$ is a binary vector

- For N observations $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, the model can be written as $\mathbf{X} = \mathbf{Z}\mathbf{A} + \mathbf{E}$
- Here **Z** is $N \times K$ binary matrix (row *n* is z_n), and **A** is $K \times D$ matrix (row *k* is a_k)

・ロト ・日 ト ・日 ト ・日 ト

"Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

• Assume each observation $\boldsymbol{x}_n \in \mathbb{R}^D$ to be a subset combination of K vectors $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_K$

$$\boldsymbol{x}_n = \sum_{k=1}^{K} z_{nk} \boldsymbol{a}_k + \epsilon_n$$

where $\boldsymbol{z}_n = [\boldsymbol{z}_{n1}, \ldots, \boldsymbol{z}_{nK}]$ is a binary vector

- For N observations $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, the model can be written as $\mathbf{X} = \mathbf{Z}\mathbf{A} + \mathbf{E}$
- Here **Z** is $N \times K$ binary matrix (row *n* is z_n), and **A** is $K \times D$ matrix (row *k* is a_k)

• How do we learn K? Can do it if we can learn the number of columns in the binary matrix Z

"Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

• Assume each observation $\boldsymbol{x}_n \in \mathbb{R}^D$ to be a subset combination of K vectors $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_K$

$$\boldsymbol{x}_n = \sum_{k=1}^{K} z_{nk} \boldsymbol{a}_k + \epsilon_n$$

where $\boldsymbol{z}_n = [\boldsymbol{z}_{n1}, \ldots, \boldsymbol{z}_{nK}]$ is a binary vector

- For N observations $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, the model can be written as $\mathbf{X} = \mathbf{Z}\mathbf{A} + \mathbf{E}$
- Here **Z** is $N \times K$ binary matrix (row *n* is z_n), and **A** is $K \times D$ matrix (row *k* is a_k)
- How do we learn K? Can do it if we can learn the number of columns in the binary matrix Z

• A nonparam. Bayesian model called "Indian Buffet Process" (IBP) defines a prior for such matrices

[&]quot;Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

• Assume each observation $\boldsymbol{x}_n \in \mathbb{R}^D$ to be a subset combination of K vectors $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_K$

$$\boldsymbol{x}_n = \sum_{k=1}^{K} z_{nk} \boldsymbol{a}_k + \epsilon_n$$

where $\boldsymbol{z}_n = [\boldsymbol{z}_{n1}, \ldots, \boldsymbol{z}_{nK}]$ is a binary vector

- For N observations $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, the model can be written as $\mathbf{X} = \mathbf{Z}\mathbf{A} + \mathbf{E}$
- Here **Z** is $N \times K$ binary matrix (row *n* is z_n), and **A** is $K \times D$ matrix (row *k* is a_k)
- How do we learn K? Can do it if we can learn the number of columns in the binary matrix Z

A nonparam. Bayesian model called "Indian Buffet Process" (IBP) defines a prior for such matrices
Just like CRP, the IBP is a metaphor to describe the process that generates such matrices

"Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

イロト イロト イヨト イヨト (道) りんの

 ${\scriptstyle \bullet}$ Consider the generative process of an ${\it N} \times {\it K}$ binary matrix ${\it Z}$

• Rows denote the N examples, columns denote the K latent features

イロト イポト イヨト イヨト

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

 $\, \bullet \,$ Consider the generative process of an ${\it N} \times {\it K}$ binary matrix ${\it Z}$

- $\, \circ \,$ Rows denote the N examples, columns denote the K latent features
- Assume $\pi_k \in (0,1)$ to be probabiliy of latent feature k being 1

$$z_{nk} \sim \text{Bernoulli}(\pi_k), \quad \pi_k \sim \text{Beta}(lpha/K, 1)$$

 $\, \bullet \,$ Consider the generative process of an ${\it N} \times {\it K}$ binary matrix ${\it Z}$

- $\, \circ \,$ Rows denote the N examples, columns denote the K latent features
- Assume $\pi_k \in (0,1)$ to be probabiliy of latent feature k being 1

$$z_{nk} \sim {\sf Bernoulli}(\pi_k), \qquad \pi_k \sim {\sf Beta}(lpha/{\cal K},1)$$

• Note: All z_{nk} 's are i.i.d. given π_k

 $\, \bullet \,$ Consider the generative process of an ${\it N} \times {\it K}$ binary matrix ${\it Z}$

- $\, \circ \,$ Rows denote the N examples, columns denote the K latent features
- Assume $\pi_k \in (0,1)$ to be probabiliy of latent feature k being 1

$$z_{nk} \sim {\sf Bernoulli}(\pi_k), \qquad \pi_k \sim {\sf Beta}(lpha/{\cal K},1)$$

- Note: All z_{nk} 's are i.i.d. given π_k
- For this model, the conditional probability of $z_{nk} = 1$, given other entries in column k of **Z**

$$p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \int p(z_{nk} = 1 | \pi_k) p(\pi_k | \boldsymbol{z}_{-n,k})$$

・ロト ・四ト ・モト ・モト

 $\, \bullet \,$ Consider the generative process of an ${\it N} \times {\it K}$ binary matrix ${\it Z}$

- $\, \circ \,$ Rows denote the N examples, columns denote the K latent features
- Assume $\pi_k \in (0,1)$ to be probabiliy of latent feature k being 1

$$z_{nk} \sim {\sf Bernoulli}(\pi_k), \qquad \pi_k \sim {\sf Beta}(lpha/{\cal K},1)$$

- Note: All z_{nk} 's are i.i.d. given π_k
- For this model, the conditional probability of $z_{nk} = 1$, given other entries in column k of **Z**

$$p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \int p(z_{nk} = 1 | \pi_k) p(\pi_k | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}} \quad (\text{verify})$$

where $m_{-n,k} = \sum_{i \neq n} z_{ik}$ denotes how many other entries in column k are equal to 1

Towards Unbounded Number of Columns

• For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$

"Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

• For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$

• As $K \to \infty$, we will have $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | \boldsymbol{z}_{-n,k}) = \frac{N - m_{-n,k}}{N}$

・ロト ・日 ト ・日 ト ・日 ト

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | \boldsymbol{z}_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)

・ロト ・日 ト ・日 ト ・日 ト

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | z_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | z_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | z_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | z_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes

《口》 《四》 《臣》 《臣》

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | z_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | z_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes
 - Customer 1 selects $\mathsf{Poisson}(\alpha)$ dishes

< ロ > < 回 > < 三 > < 三 >

"Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | z_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | z_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes
 - Customer 1 selects $\mathsf{Poisson}(\alpha)$ dishes
 - The *n*-th customer selects:

< ロ > < 回 > < 三 > < 三 >

[&]quot;Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | \boldsymbol{z}_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes
 - Customer 1 selects $\mathsf{Poisson}(\alpha)$ dishes
 - The *n*-th customer selects:
 - Each already selected dish k with probability m_{-n,k}/n (m_k : how many previous customers before n selected dish k)

< ロ > < 回 > < 三 > < 三 >

• Customers = objects; dishes = latent features

[&]quot;Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | \boldsymbol{z}_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes
 - Customer 1 selects $\mathsf{Poisson}(\alpha)$ dishes
 - The *n*-th customer selects:
 - Each already selected dish k with probability m_{-n,k}/n (m_k : how many previous customers before n selected dish k)
 - Poisson (α/n) new dishes (this can create new columns in Z)

< ロ > < 回 > < 三 > < 三 >

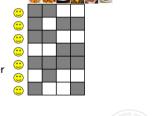
• Customers = objects; dishes = latent features

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | \boldsymbol{z}_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes
 - Customer 1 selects $\mathsf{Poisson}(\alpha)$ dishes
 - The *n*-th customer selects:
 - Each already selected dish k with probability m_{-n,k}/n (m_k : how many previous customers before n selected dish k)
 - Poisson (α/n) new dishes (this can create new columns in Z)
 - Note that as n grows, number of new dishes goes to zero (and the number of columns K converges to some finite number)
 - Customers = objects; dishes = latent features

イロト イロト イヨト イヨト

[&]quot;Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | \boldsymbol{z}_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes
 - Customer 1 selects $\mathsf{Poisson}(\alpha)$ dishes
 - The *n*-th customer selects:
 - Each already selected dish k with probability m_{-n,k}/n (m_k : how many previous customers before n selected dish k)
 - Poisson (α/n) new dishes (this can create new columns in Z)
 - Note that as *n* grows, number of new dishes goes to zero (and the number of columns *K* converges to some finite number)
 - Customers = objects; dishes = latent features

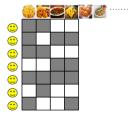


イロト イロト イヨト イヨト

[&]quot;Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

- For the finite K case, we saw that $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$
- As $K \to \infty$, we will have $p(z_{nk} = 1 | \boldsymbol{z}_{-n,k}) = \frac{m_{-n,k}}{N}$ and $p(z_{nk} = 0 | \boldsymbol{z}_{-n,k}) = \frac{N m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes
 - Customer 1 selects $\mathsf{Poisson}(\alpha)$ dishes
 - The *n*-th customer selects:
 - Each already selected dish k with probability m_{-n,k}/n (m_k : how many previous customers before n selected dish k)
 - Poisson (α/n) new dishes (this can create new columns in Z)
 - Note that as *n* grows, number of new dishes goes to zero (and the number of columns *K* converges to some finite number)
 - Customers = objects; dishes = latent features
- The above can be used as a prior for **Z**. Refer to (Griffiths and Ghahramani, 2011) for examples and other theoretical details of the model. Also has connections to Beta Processes

"Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011) Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonp



• Consider the following probabilistic version of SVD

$$\mathbf{X} = \sum_{k=1}^{K} \lambda_k oldsymbol{u}_k oldsymbol{v}_k^ op + \mathbf{E}$$

イロト イロト イヨト イヨト

"Sparse Bayesian infinite factor models (Bhattacharya and Dunson, 2011)

• Consider the following probabilistic version of SVD

$$\mathbf{X} = \sum_{k=1}^{K} \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^\top + \mathbf{E}$$

• Consider the following prior on the "singular values" λ_k

イロト イロト イヨト イヨト

"Sparse Bayesian infinite factor models (Bhattacharya and Dunson, 2011)

• Consider the following probabilistic version of SVD

$$\mathbf{X} = \sum_{k=1}^{K} \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^\top + \mathbf{E}$$

• Consider the following prior on the "singular values" λ_k

$$\lambda_k ~\sim~ \mathcal{N}(0, au_k^{-1})$$

[&]quot;Sparse Bayesian infinite factor models (Bhattacharya and Dunson, 2011)

• Consider the following probabilistic version of SVD

$$\mathbf{X} = \sum_{k=1}^{K} \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^\top + \mathbf{E}$$

• Consider the following prior on the "singular values" λ_k

$$\lambda_k \sim \mathcal{N}(0, \tau_k^{-1})$$

 $\tau_k = \prod_{\ell=1}^k \delta_\ell$

• Consider the following probabilistic version of SVD

$$\mathbf{X} = \sum_{k=1}^{K} \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^\top + \mathbf{E}$$

• Consider the following prior on the "singular values" λ_k

"Sparse Bayesian infinite factor models (Bhattacharya and Dunson, 2011)

• Consider the following probabilistic version of SVD

$$\mathbf{X} = \sum_{k=1}^{K} \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^\top + \mathbf{E}$$

• Consider the following prior on the "singular values" λ_k

• Note that as k becomes large, τ_k gets larger and larger and λ_k shrinks to zero

"Sparse Bayesian infinite factor models (Bhattacharya and Dunson, 2011)

イロト イ伊ト イヨト イヨン

• Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor

"Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Brodericket al, 2013)

• Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor

• Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)

"Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Broderic 🖶 al, 2013)

- Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor
- Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)
- Such simplications are based on small-variance asymptotics (SVA)

"Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Broderickettal, 2013)

- Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor
- Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)
- Such simplications are based on small-variance asymptotics (SVA)
 - Basically, take the noise variance of observation model to zero

"Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Brodericket al, 2013)

- Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor
- Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)
- Such simplications are based on small-variance asymptotics (SVA)
 - Basically, take the noise variance of observation model to zero
 - $\circ\,$ E.g., in DP mixture model with Gaussian clusters, take $\sigma^2 \rightarrow 0$

[&]quot;Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Broderickettal, 2013)

- Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor
- Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)
- Such simplications are based on small-variance asymptotics (SVA)
 - Basically, take the noise variance of observation model to zero
 - $\circ\,$ E.g., in DP mixture model with Gaussian clusters, take $\sigma^2 \rightarrow 0$
- The data to cluster assignments in the DP-means algorithm look like

[&]quot;Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Brodericket al, 2013)

- Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor
- Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)
- Such simplications are based on small-variance asymptotics (SVA)
 - Basically, take the noise variance of observation model to zero
 - $\circ\,$ E.g., in DP mixture model with Gaussian clusters, take $\sigma^2 \rightarrow 0$
- The data to cluster assignments in the DP-means algorithm look like
 - Assign $m{x}_n$ to the closest existing cluster k_* if $||m{x}_n \mu_{k_*}|| \leq
 ho$

[&]quot;Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Broderickettal, 2013) 🔗 🔍

- Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor
- Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)
- Such simplications are based on small-variance asymptotics (SVA)
 - Basically, take the noise variance of observation model to zero
 - $\circ\,$ E.g., in DP mixture model with Gaussian clusters, take $\sigma^2 \rightarrow 0$
- The data to cluster assignments in the DP-means algorithm look like
 - Assign $m{x}_n$ to the closest existing cluster k_* if $||m{x}_n \mu_{k_*}|| \leq
 ho$
 - Otherwise, assign \pmb{x}_* to a new cluster and set $\mu_{\mathcal{K}+1}=\pmb{x}_n$

"Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Broderic 🖶 al, 2013)

- Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor
- Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)
- Such simplications are based on small-variance asymptotics (SVA)
 - Basically, take the noise variance of observation model to zero
 - $\circ\,$ E.g., in DP mixture model with Gaussian clusters, take $\sigma^2 \rightarrow 0$
- The data to cluster assignments in the DP-means algorithm look like
 - Assign $m{x}_n$ to the closest existing cluster k_* if $||m{x}_n \mu_{k_*}|| \leq
 ho$
 - Otherwise, assign \pmb{x}_* to a new cluster and set $\mu_{\mathcal{K}+1}=\pmb{x}_n$
- For more details, please refer to Kulis and Jordan (2012) and Broderick (2013)

[&]quot;Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Brodericketrial, 2013) 🔗 🔍 🕐

- Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor
- Example: DP Mixture Models reduced to "DP-means" (akin to K-means with unbounded clusters)
- Such simplications are based on small-variance asymptotics (SVA)
 - Basically, take the noise variance of observation model to zero
 - $\circ\,$ E.g., in DP mixture model with Gaussian clusters, take $\sigma^2 \rightarrow 0$
- The data to cluster assignments in the DP-means algorithm look like
 - Assign $m{x}_n$ to the closest existing cluster k_* if $||m{x}_n \mu_{k_*}|| \leq
 ho$
 - Otherwise, assign \pmb{x}_* to a new cluster and set $\mu_{K+1}=\pmb{x}_n$
- For more details, please refer to Kulis and Jordan (2012) and Broderick (2013)
- Many complex NPBayes models have been simplified using small-variance asymptotics idea

[&]quot;Revisiting k-means: New Algorithms via Bayesian Nonparametrics" (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Broderic 🖶 tal, 2013)

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size
- Marginal likelihood $p(\mathcal{D}|\mathcal{M})$ can be used for model selection from a set of models $\{\mathcal{M}_i\}_{i=1}^L$

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size
- Marginal likelihood $p(\mathcal{D}|\mathcal{M})$ can be used for model selection from a set of models $\{\mathcal{M}_i\}_{i=1}^L$
- Other criteria such as Akaike or Bayesian Information Criteria are also commonly used

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size
- Marginal likelihood $p(\mathcal{D}|\mathcal{M})$ can be used for model selection from a set of models $\{\mathcal{M}_i\}_{i=1}^L$
- Other criteria such as Akaike or Bayesian Information Criteria are also commonly used
 - Usually defined as a sum of negative log-lik. and model size (models with smaller values preferred)

$$AIC = 2k - 2 \times \log - lik$$

 $BIC = k \log N - 2 \times \log - lil$

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size
- Marginal likelihood $p(\mathcal{D}|\mathcal{M})$ can be used for model selection from a set of models $\{\mathcal{M}_i\}_{i=1}^L$
- Other criteria such as Akaike or Bayesian Information Criteria are also commonly used
 - Usually defined as a sum of negative log-lik. and model size (models with smaller values preferred)

 $AIC = 2k - 2 \times \text{log-lik}$ $BIC = k \log N - 2 \times \text{log-lik}$

where k denotes the number of parameters of the model, N denotes number of data points

900 로/ (로 > (로 > (= > (= >

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size
- Marginal likelihood $p(\mathcal{D}|\mathcal{M})$ can be used for model selection from a set of models $\{\mathcal{M}_i\}_{i=1}^L$
- Other criteria such as Akaike or Bayesian Information Criteria are also commonly used
 - Usually defined as a sum of negative log-lik. and model size (models with smaller values preferred)

 $AIC = 2k - 2 \times \text{log-lik}$ $BIC = k \log N - 2 \times \text{log-lik}$

where k denotes the number of parameters of the model, N denotes number of data points • However, marginal likelihood, AIC/BIC, etc. try multiple models and then choose the best

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size
- Marginal likelihood $p(\mathcal{D}|\mathcal{M})$ can be used for model selection from a set of models $\{\mathcal{M}_i\}_{i=1}^L$
- Other criteria such as Akaike or Bayesian Information Criteria are also commonly used
 - Usually defined as a sum of negative log-lik. and model size (models with smaller values preferred)

 $AIC = 2k - 2 \times \text{log-lik}$ $BIC = k \log N - 2 \times \text{log-lik}$

where k denotes the number of parameters of the model, N denotes number of data points • However, marginal likelihood, AIC/BIC, etc. try multiple models and then choose the best

• In contrast, NPBayes models learn a single model having an unbounded complexity

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size
- Marginal likelihood $p(\mathcal{D}|\mathcal{M})$ can be used for model selection from a set of models $\{\mathcal{M}_i\}_{i=1}^L$
- Other criteria such as Akaike or Bayesian Information Criteria are also commonly used
 - Usually defined as a sum of negative log-lik. and model size (models with smaller values preferred)

 $AIC = 2k - 2 \times \text{log-lik}$ $BIC = k \log N - 2 \times \text{log-lik}$

where k denotes the number of parameters of the model, N denotes number of data points • However, marginal likelihood, AIC/BIC, etc. try multiple models and then choose the best

- In contrast, NPBayes models learn a single model having an unbounded complexity

E Dac