
Nonparametric Bayesian Models (Wrap-up)

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

April 1, 2019

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Models (Wrap-up) 1



Recap: Nonparametric Bayesian Mixture Models

Also known as infinite mixture models. Can be mathematically represented as

G =
∞∑
k=1

πkδφk

where πk and φk are the mixing prop. and params of the k-th component, and for n = 1, . . . ,N

θn ∼ G (θn will be equal to φk with prob. πk)

xn ∼ p(x |θn)

Can view/define such infinite mixture models using various equivalent ways

Stick-breaking Process

Dirichlet Process

Chinese Restaurant Process

Pólya-Urn Scheme
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Recap: Stick-Breaking Process

Sethuraman’s stick-breaking construction provides a sequential way to generate πk ’s

β1 ∼ Beta(1, α), π1 = β1

βk ∼ Beta(1, α), πk = βk

k−1∏
`=1

(1− β`−1), k = 2, . . . ,∞
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Recap: Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

G is a discrete distribution of the form G =
∑∞

k=1 πkδφk

α is concentration parameter, G0 is the base distribution of DP(α,G0)

E[G ] = G0 and as α→∞, G → G0
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Recap: DP Posterior and Posterior Predictive

Assume N i.i.d. draws θ1, . . . , θN from the discrete distribution G ∼ DP(α,G0)

The posterior of G will also be a DP (due to discrete-Dirichlet conjugacy)

G |θ1, . . . , θN ∼ DP(α + N,
α

α + N
G0 +

1

α + N

N∑
i=1

δθi )

(equivalent to) G |θ1, . . . , θN ∼ DP(α + N,
α

α + N
G0 +

K∑
k=1

nk

α + N
δφk )

.. where nk = number of θi ’s that are equal to φk

The posterior predictive for the next draw θN+1 from G will be

θN+1|θ1, . . . , θN ∼
α

α + N
G0 +

1

α + N

N∑
i=1

δθi

(equivalent to) θN+1|θ1, . . . , θN ∼
α

α + N
G0 +

K∑
k=1

nk

α + N
δφk (mixture of K + 1 distributions)

i.e., θN+1 = φk with prob. nk
α+N or a new value drawn from G0 with prob. α

α+NG0
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A Sequential Generative Scheme

The form of the DP predictive distribution

θN+1|θ1, . . . , θN ∼
α

α + N
G0 +

1

α + N

N∑
i=1

δθi

suggests the following scheme to generate a sequence of parameters θ1, . . . , θN , θN+1, . . .

θ1 ∼ G0

θ2|θ1 ∼
α

α + 1
G0 +

1

α + 1
δθ1

.

.

.

θn|θ1, . . . , θn−1 ∼
αG0 +

∑n−1
i=1 δθi

α + n − 1

The joint distribution p(θ1, θ2, . . . , θn) = p(θ1)p(θ2|θ1) . . . p(θn|θ1, . . . , θn−1)

Note that θ1, . . . , θn−1, θn is an “exchangeable sequence” (joint probability invariant to ordering)

p(θ1, θ2, . . . , θn) = p(θσ(1), θσ(2), . . . , θσ(n)) (for any permutation σ)
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Chinese Restaurant Process (CRP)

A metaphor to describe the way θ1, . . . , θn (equivalently, the cluster assignments) are generated

Think of the θi ’s as customers who sequentially enter a restaurant (need not be Chinese!) and
decide which table to sit at. All θi ’s sitting at the same table will be identical.

Probability of sitting at an already occupied table k ∝ nk (nk : # of people sitting at table k)

Probability of sitting at an unoccupied table ∝ α (where α is a novelty hyperparameter)

Imagine table k is associated with a unique φk . Then the arragement would look like..

The table assignment distribution is the same as the DP predictive distribution
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Pólya-Urn Scheme

Another metaphor to describe the way θ1, . . . , θn are sequentially generated

Suppose we have a collection of uncolored ball. We’d like to color them using a set of colors

Take a ball. Color it using some color. Put it in an urn.

For each subsequent ball (say number n + 1), color it using following scheme

Use a new color with probability α
α+n

With probability n
α+n

, pull out a ball randomly from the urn and copy its color

Place both balls (chosen and the new one) back to the urn

The color assignment scheme has the same distribution as the DP predictive distribution
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de Finetti’s Theorem and Infinite Exchangeability

de Finetti’s Theorem is one of the most fundamental results in Bayesian statistics

Infinitely Exchangeable Sequence: One for which any finite collection θ1, . . . , θN is exchangeable

Exchangeable: A finite sequence of random variables θ1, . . . , θN is called exchangeable if its joint
distribution is invariant under permutations

p(θ1, . . . , θN) = p(θσ(1), . . . , θσ(N))

.. for any permutation σ(1), . . . , σ(N) of 1, . . . ,N

de Finetti’s Theorem: For an inf. exchangeable sequence, there exists a random distribution G s.t.

p(θ1, . . . , θN) =

∫ N∏
i=1

p(θi |G )dp(G )

.. that is, θ1, . . . , θN are i.i.d. given G

Note that the sequence θ1, . . . , θN generated by the Pólya-Urn/CRP schemes is also exchangeable

It implies that there must exist such a distribution G (and that is G ∼ DP(α,G0))
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Hierarchical Dirichlet Process (HDP)

Defines a DP whose base distribution G0 itself is drawn from another DP

Can be used if we would like to cluster m data sets, each using a DP mixture model

The discreteness of the shared base distribution G0 enables sharing information across the m
clustering problems (reason: because the discreteness allows sharing clusters/atoms)

Important: If G0 were a continuous distribution, we won’t be able to share atoms (probability of Gi

and Gj sharing any atoms will be zero if G0 is a continuous distribution)

HDP used in nonparametric Bayesian version of LDA topic model
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Some Other Properties/Extensions of DP

a priori expected number of clusters (as per the DP prior) K = O(α logN)

Pitman-Yor Process: A variant of DP for which K has a power-law growth O(Nd), where
0 ≤ d < 1 is an additional “discount” parameter and α > −d

For the n-th customer, the probabilities are

p(table = k) ∝ nk − d

n − 1 + α
k = 1, . . . ,K

p(new table) ∝ α + dK

n − 1 + α

For PY process, probability of occupying existing tables with discounted by d

Creation of new tables is encouraged more and more and K grows
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Modeling Binary Matrices with Unbounded Number of Columns

Assume each observation xn ∈ RD to be a subset combination of K vectors a1, . . . , aK

xn =
K∑

k=1

znkak + εn

where zn = [zn1, . . . , znK ] is a binary vector

For N observations X = [x1, . . . , xN ], the model can be written as X = ZA + E

Here Z is N × K binary matrix (row n is zn), and A is K × D matrix (row k is ak)

How do we learn K? Can do it if we can learn the number of columns in the binary matrix Z

A nonparam. Bayesian model called “Indian Buffet Process” (IBP) defines a prior for such matrices

Just like CRP, the IBP is a metaphor to describe the process that generates such matrices

“Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)
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Here Z is N × K binary matrix (row n is zn), and A is K × D matrix (row k is ak)

How do we learn K? Can do it if we can learn the number of columns in the binary matrix Z

A nonparam. Bayesian model called “Indian Buffet Process” (IBP) defines a prior for such matrices

Just like CRP, the IBP is a metaphor to describe the process that generates such matrices
“Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)
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Modeling Binary Matrices with Finite Many Columns

Consider the generative process of an N × K binary matrix Z

Rows denote the N examples, columns denote the K latent features

Assume πk ∈ (0, 1) to be probabiliy of latent feature k being 1

znk ∼ Bernoulli(πk), πk ∼ Beta(α/K , 1)

Note: All znk ’s are i.i.d. given πk

For this model, the conditional probability of znk = 1, given other entries in column k of Z

p(znk = 1|z−n,k) =

∫
p(znk = 1|πk)p(πk |z−n,k) =

m−n,k + α
K

N + α
K

(verify)

where m−n,k =
∑

i 6=n zik denotes how many other entries in column k are equal to 1
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Towards Unbounded Number of Columns

For the finite K case, we saw that p(znk = 1|z−n,k) =
m−n,k+α

K

N+α
K

As K →∞, we will have p(znk = 1|z−n,k) =
m−n,k

N and p(znk = 0|z−n,k) =
N−m−n,k

N

Note that this too exhibits a “rich-gets-richer” phenomenon (just like CRP)

The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes

Customer 1 selects Poisson(α) dishes

The n-th customer selects:

Each already selected dish k with probability m−n,k/n
(mk : how many previous customers before n selected dish k)

Poisson(α/n) new dishes (this can create new columns in Z)

Note that as n grows, number of new dishes goes to zero (and the number
of columns K converges to some finite number)

Customers = objects; dishes = latent features

The above can be used as a prior for Z. Refer to (Griffiths and Ghahramani, 2011) for examples
and other theoretical details of the model. Also has connections to Beta Processes

“Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)
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Another Example: Multiplicative Gamma Process

Consider the following probabilistic version of SVD

X =
K∑

k=1

λkukv>k + E

Consider the following prior on the “singular values” λk

λk ∼ N (0, τ−1
k )

τk =
k∏
`=1

δ`

δ` ∼ Gamma(α, 1) where α > 1

Note that as k becomes large, τk gets larger and larger and λk shrinks to zero

“Sparse Bayesian infinite factor models (Bhattacharya and Dunson, 2011)
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NPBayes-inspired Simpler Non-probabilistic Models

Many NPBayes models can be reduced to simpler non-probabilistic models with NPBayes flavor

Example: DP Mixture Models reduced to “DP-means” (akin to K -means with unbounded clusters)

Such simplications are based on small-variance asymptotics (SVA)

Basically, take the noise variance of observation model to zero

E.g., in DP mixture model with Gaussian clusters, take σ2 → 0

The data to cluster assignments in the DP-means algorithm look like

Assign xn to the closest existing cluster k∗ if ||xn − µk∗ || ≤ ρ

Otherwise, assign x∗ to a new cluster and set µK+1 = xn

For more details, please refer to Kulis and Jordan (2012) and Broderick (2013)

Many complex NPBayes models have been simplified using small-variance asymptotics idea

“Revisiting k-means: New Algorithms via Bayesian Nonparametrics” (Kulis and Jordan, 2012), MAD-Bayes: MAP-based Asymptotic Derivations from Bayes (Broderick et al, 2013)
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Some Comments

Nonparametric Bayesian models have been widely used in several applications

Clustering, dim-red, regression/classification, time-series models such as HMM, and many others

Nonparametric Bayesian models are not the only way to learn the right model size

Marginal likelihood p(D|M) can be used for model selection from a set of models {Mi}Li=1

Other criteria such as Akaike or Bayesian Information Criteria are also commonly used

Usually defined as a sum of negative log-lik. and model size (models with smaller values preferred)

AIC = 2k − 2× log-lik

BIC = k logN − 2× log-lik

where k denotes the number of parameters of the model, N denotes number of data points

However, marginal likelihood, AIC/BIC, etc. try multiple models and then choose the best

In contrast, NPBayes models learn a single model having an unbounded complexity

Also natural for streaming data where model selection is difficult/impractical to perform
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