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Recap: A Nonparametric Bayesian Mixture Model

A brief sketch of a basic Gibbs sampler (samples Z and {φk}Kk=1) for this model with unbounded K
(note: The mixing proportions πk ’s were collapsed from the prior p(z i |π))

Gibbs Sampler for NPBayes Mixture Model

Set an initial K . Initialize Z(0) and {φ(0)k }Kk=1

For t = 1, . . . ,T

For each observation i = 1, . . . ,N, sample the cluster id z i

p(z i = k|Z(t−1)
−i , φ(t),X) ∝ n

(t−1)
k × p(x i |φ(t−1)

k ) = π̂ik (k = 1, . . . ,K)

p(z i = knew |Z(t−1)
−i , φ(t−1),X) ∝ α(t−1) × p(x i |G0) = π̂iknew

z (t)
i ∼ multinoulli(π̂i1, π̂i2, . . . , π̂iknew )

set K = K + 1 (if x i assigned to a new cluster)

Sample the mixture component parameters {φ(t)k }Kk=1 and α(t) from the respective CPs

Note: “Markov Chain Sampling Methods for Dirichlet Process Mixture Models” (Neal, 2000) is an excellent reference for various MCMC

sampling algorithms for nonparametric Bayesian mixture models (including collapsed versions that don’t require sampling for {φk}Kk=1
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Recap: An Alternate View of Mixture Models

Can represent a mixture model as a discrete distribution as G =
∑K

k=1 πkδφk

Assume {πk}Kk=1 drawn from Dirichlet and parameters {φk}Kk=1 from some base distribution G0

(π1, . . . , πK ) ∼ Dirichlet(α/K , . . . , α/K )

φk ∼ G0 k = 1, . . . ,K

The mixture model defined by G would generate observations x i (i = 1, . . . ,N) as follows

θi ∼ G

x i ∼ p(x |θi )

Discrete G implies that many params θi ’s will be identical (leading to clustered observations)
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Recap: An Alternate View of Mixture Models

This representation doesn’t have an explicit cluster id z i for each observation x i . In this
representation, clustering is implicit (non-uniqueness of θi ’s implies clustering of x i ’s)

G defines a prior on a K comp. mixture model with mix. prop. {πk}Kk=1 and params {φk}Kk=1
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Nonparametric Bayesian Mixture Model (Contd)

Also known as an “infinite mixture model”

Can have an unbounded number of components (limited only by the data size)

Can think of these models in two equivalent ways

An infinite mixture model can be obtaining using an infinite-dim Dirichlet on its mixing proportions

An infinite mixture model is as a discrete distribution G of the form

G =
∞∑
k=1

πkδφk

Can view/define such infinite mixture models using various equivalent ways

Stick-breaking Process

Dirichlet Process

Chinese Restaurant Process

Pólya-Urn Scheme

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 5
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Stick-Breaking Process

Sethuraman (1994) showed how to construct G =
∑∞

k=1 πkδφk

Sethuraman’s stick-breaking construction provides a sequential way to generate πk ’s

We basically need to generate a sequence {πk}∞k=1 s.t. πk ∈ (0, 1) and
∑∞

k=1 πk = 1

Can be done using a stick-breaking construction for {πk}∞k=1 as follows

βk ∼ Beta(1, α) k = 1, . . . ,∞
π1 = β1

πk = βk

k−1∏
`=1

(1− β`−1) k = 2, . . . ,∞
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The Stick-Breaking Construction: Pictorial Illustration

Assume a stick of length 1 to begin with. Now recursively break it as follows:

Choose a random location βk ∈ (0, 1) drawn from Beta(1, α) at which to break the stick

Record πk as “βk times the length of the remaining stick”

It is also very popular in deriving inference algorithms for nonparametric Bayesian mixture models
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Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

So G ∼ DP(α,G0) will give us a distribution

α : concentration param, G0: base distribution (=mean of DP)

Large α means G → G0

Fact 1: If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

Fact 2: Any G drawn from DP(α,G0) will be of the form G =
∑∞

k=1 πkδφk
(Sethuraman, 1994)

Fact 3: G is a discrete dist, i.e., only a few πk ’s will be significant (an informal proof shown next)

Intuitively, can think of DP as an infinite-dim generalization of a Dirichlet (hence the name)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 8



Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

So G ∼ DP(α,G0) will give us a distribution

α : concentration param, G0: base distribution (=mean of DP)

Large α means G → G0

Fact 1: If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

Fact 2: Any G drawn from DP(α,G0) will be of the form G =
∑∞

k=1 πkδφk
(Sethuraman, 1994)

Fact 3: G is a discrete dist, i.e., only a few πk ’s will be significant (an informal proof shown next)

Intuitively, can think of DP as an infinite-dim generalization of a Dirichlet (hence the name)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 8



Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

So G ∼ DP(α,G0) will give us a distribution

α : concentration param, G0: base distribution (=mean of DP)

Large α means G → G0

Fact 1: If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

Fact 2: Any G drawn from DP(α,G0) will be of the form G =
∑∞

k=1 πkδφk
(Sethuraman, 1994)

Fact 3: G is a discrete dist, i.e., only a few πk ’s will be significant (an informal proof shown next)

Intuitively, can think of DP as an infinite-dim generalization of a Dirichlet (hence the name)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 8



Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

So G ∼ DP(α,G0) will give us a distribution

α : concentration param, G0: base distribution (=mean of DP)

Large α means G → G0

Fact 1: If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

Fact 2: Any G drawn from DP(α,G0) will be of the form G =
∑∞

k=1 πkδφk
(Sethuraman, 1994)

Fact 3: G is a discrete dist, i.e., only a few πk ’s will be significant (an informal proof shown next)

Intuitively, can think of DP as an infinite-dim generalization of a Dirichlet (hence the name)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 8



Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

So G ∼ DP(α,G0) will give us a distribution

α : concentration param, G0: base distribution (=mean of DP)

Large α means G → G0

Fact 1: If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

Fact 2: Any G drawn from DP(α,G0) will be of the form G =
∑∞

k=1 πkδφk
(Sethuraman, 1994)

Fact 3: G is a discrete dist, i.e., only a few πk ’s will be significant (an informal proof shown next)

Intuitively, can think of DP as an infinite-dim generalization of a Dirichlet (hence the name)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 8



Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

So G ∼ DP(α,G0) will give us a distribution

α : concentration param, G0: base distribution (=mean of DP)

Large α means G → G0

Fact 1: If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

Fact 2: Any G drawn from DP(α,G0) will be of the form G =
∑∞

k=1 πkδφk
(Sethuraman, 1994)

Fact 3: G is a discrete dist, i.e., only a few πk ’s will be significant (an informal proof shown next)

Intuitively, can think of DP as an infinite-dim generalization of a Dirichlet (hence the name)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 8



Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

So G ∼ DP(α,G0) will give us a distribution

α : concentration param, G0: base distribution (=mean of DP)

Large α means G → G0

Fact 1: If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

Fact 2: Any G drawn from DP(α,G0) will be of the form G =
∑∞

k=1 πkδφk
(Sethuraman, 1994)

Fact 3: G is a discrete dist, i.e., only a few πk ’s will be significant (an informal proof shown next)

Intuitively, can think of DP as an infinite-dim generalization of a Dirichlet (hence the name)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 8



Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

So G ∼ DP(α,G0) will give us a distribution

α : concentration param, G0: base distribution (=mean of DP)

Large α means G → G0

Fact 1: If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

Fact 2: Any G drawn from DP(α,G0) will be of the form G =
∑∞

k=1 πkδφk
(Sethuraman, 1994)

Fact 3: G is a discrete dist, i.e., only a few πk ’s will be significant (an informal proof shown next)

Intuitively, can think of DP as an infinite-dim generalization of a Dirichlet (hence the name)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 8



Dirichlet Process (DP)

A Dirichlet Process DP(α,G0) defines a distribution over distributions

So G ∼ DP(α,G0) will give us a distribution

α : concentration param, G0: base distribution (=mean of DP)

Large α means G → G0

Fact 1: If G ∼ DP(α,G0) then any finite dim. marginal of G is Dirichlet distributed

[G (A1), . . . ,G (AK )] ∼ Dirichlet(αG0(A1), . . . , αG0(AK ))

for any finite partition A1, . . . ,AK of the space Ω (Ferguson, 1973)

Fact 2: Any G drawn from DP(α,G0) will be of the form G =
∑∞

k=1 πkδφk
(Sethuraman, 1994)

Fact 3: G is a discrete dist, i.e., only a few πk ’s will be significant (an informal proof shown next)

Intuitively, can think of DP as an infinite-dim generalization of a Dirichlet (hence the name)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Nonparametric Bayesian Modeling (Contd) 8



Detour: Some Properties of Dirichlet Distribution

Aggregation: If (π1, π2, . . . , πK ) ∼ Dirichlet(α1, α2, . . . , αK ) then

(π1 + π2, π3, . . . , πK )︸ ︷︷ ︸
K -1 dim

∼ Dirichlet(α1 + α2, α3, . . . , αK )

Expansion: If (π1, π2, . . . , πK ) ∼ Dirichlet(α1, α2, . . . , αK ) and π̂ ∼ Beta(α1b, α1(1− b) then

(π1π̂, π1(1− π̂), π2, . . . , πK )︸ ︷︷ ︸
K + 1 dim

∼ Dirichlet(α1b, α1(1− b), α2, . . . , αK )

Expansion: If (π̂1, . . . , π̂M) ∼ Dirichlet(α1b1, α1b2, . . . , α1bM) with
∑M

m=1 bm = 1 then

(π1π̂1, . . . , π1π̂M , π2, . . . , πK )︸ ︷︷ ︸
K + M − 1 dim

∼ Dirichlet(α1b1, α1b2, . . . , α1bM , α2, . . . , αK )
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An Informal Proof: Discreteness of DP Draws

Note: (x , 1− x) ∼ Dirichlet(α, α) is equivalent to x ∼ Beta(α, 1)

If α is very small, x will be close to 0 or close to 1 (thus (x , 1− x) will be skewed)

Therefore, if we recursively keep expanding a Dirichlet, it will eventually become discrete
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DP Posterior Distribution

Assume G ∼ DP(α,G0). Note that G is discrete

Assume N i.i.d. (non-unique) draws θ1, . . . , θN from the discrete G

What will be the posterior distribution of G?

For the finite-dimensional marginal of G , due to Dirichlet-multinoulli conjugacy, we will have

[G(A1), . . . ,G(AK )]|θ1, . . . , θN ∼ Dirichlet(αG0(A1) + n1, . . . , αG0(AK ) + nK )

.. where nk = #{i : θi ∈ Ak}
This implies that the posterior of G will also be a DP (a nice property!)

G |θ1, . . . , θN ∼ DP(α + N,
α

α + N
G0 +

1

α + N

N∑
i=1

δθi )

.. note also that nk =
∑N

i=1 δθi (Ak)

Note that the posterior’s base dist. is a weighted avg. of prior base dist. and an empirical dist.

α

α + N
G0 +

N

α + N

∑N
i=1 δθi
N
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DP Predictive Distribution

We saw that the posterior of G is another DP

G |θ1, . . . , θN ∼ DP

(
α + N,

α

α + N
G0 +

1

α + N

N∑
i=1

δθi

)

where nk =
∑N

i=1 δi (Ak) or nk = #{i : θi ∈ Ak}

What will be the predictive posterior p(θN+1|θ1, . . . , θN)?

p(θN+1|θ1, . . . , θN ) =
∫

p(θN+1|G , θ1, . . . , θN )p(G |θ1, . . . , θN )dG =

∫
p(θN+1|G)p(G |θ1, . . . , θN )dG

Intuitively, due to the discreteness of the DP posterior, this would simply be the mean of the DP
posterior (= the posterior base distribution)

θN+1|θ1, . . . , θN ∼
α

α + N
G0 +

1

α + N

N∑
i=1

δθi

Thus θN+1 will be equal to a previous θi with probability proportional to
∑N

j=1 δθj=θi , and will be a
new value with probability proportional to α
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A Sequential Generative Scheme

The form of the DP predictive distribution

θN+1|θ1, . . . , θN ∼
α

α + N
G0 +

1

α + N

N∑
i=1

δθi

suggests the following scheme to generate a sequence of parameters θ1, . . . , θN , θN+1, . . .

θ1 ∼ G0

θ2|θ1 ∼
α

α + 1
G0 +

1

α + 1
δθ1

.

.

.

θn|θ1, . . . , θn−1 ∼
αG0 +

∑n−1
i=1 δθi

α + n − 1

Note that θ1, . . . , θn−1, θn is an “exchangeable sequence” (joint probability invariant to ordering)

p(θ1, θ2, . . . , θn) =
n∏

i=1

p(θi |θ1, . . . , θi−1)

Related to de-Finetti’s theorem (next class)
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Chinese Restaurant Process (CRP)

The CRP is another (culinary) metaphor to describe the way θ1, . . . , θn are sequentially generated

Think of the θi ’s as customers who sequentially enter a restaurant (need not be Chinese!) and
decide which table to sit at. All θi ’s sitting at the same table will be “colored”/labeled identical.

Probability of sitting at an already occupied table k ∝ nk (nk : # of people sitting at table k)

Probability of sitting at an unoccupied table ∝ α (where α is a novelty hyperparameter)

Imagine table k is associated with a unique φk . Then the arragement would look like..

The table assignment distribution is the same as the DP predictive distribution
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Hierarchical Dirichlet Process (HDP)

Defines a DP whose base distribution G0 itself is drawn from another DP

Can be used if we would like to cluster m data sets, each using a DP mixture model

The discreteness of the shared base distribution G0 enables sharing information across the m
clustering problems (reason: because the discreteness allows sharing clusters/atoms)

Important: If G0 were a continuous distribution, we won’t be able to share atoms (probability of Gi

and Gj sharing any atoms will be zero if G0 is a continuous distribution)

HDP used in nonparametric Bayesian version of LDA topic model

Hierarchical Dirichlet Processes (Teh et al, 2006)
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Next Class

Some other aspects of NPBayes mixture models

Other examples of NPBayes models and wrap-up of discussion on NPBayes

On to next topic: Deep Probabilistic Modeling
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