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Modeling Graphs

Often we wish to understand the underlying structure (e.g., communities/groups/topics) in a
graph, predict links, classify nodes, visualize, etc.

An example graph† (a 575,000 node citation network of papers; each node is a paper):

Statistical models of graphs can help us solve these problems
†Efficient discovery of overlapping communities in massive networks (Gopalan and Blei, 2013)
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Probabilistic Models for Graphs

Assume each entity/node n to have a latent representation vector (“embedding”) zn of size K

We can model each link/non-link Anm ∈ {0, 1} via a probability model, e.g.

p(Anm = 1|zn, zm, θ) = f (zn, zm, θ)

where f is some function of zn, zm and params θ, and returns a probability

The overall probability of the observed graph

p(A|Z, θ) =
∏
n,m

p(Anm|zn, zm, θ)

Various models differ in terms of what the embeddings zn look like, and what f is defined as

Some representative models

Latent Space Model

Stochastic Blockmodel

Mixed-Membership Blockmodel (MMSB)
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Latent Space Model for Graphs

LSM† assumes each node to have a real-valued embedding vector zn ∈ RK

The link probability is defined in terms of the Euclidean similarity between nodes in latent space

One such possible model would be

p(Anm = 1|zn, zm) = σ(−||zn − zm||)

A reasonable model for link prediction

However, the real-valued embeddings in LSM don’t provide a good interpretability

Therefore not very ideal for discovering clusters etc.

Blockmodels and its variants has such properties as we will see next

†Latent space approaches to social network analysis (Hoff et al, 2002)
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Stochastic Blockmodel

SBM† assumes each node belongs to a cluster/community or “block” (total K clusters)

The node n’s cluster membership denoted by a one-hot vector zn of size K

Assume probability of link b/w a node with zn = k and another node with zm = ` to be ηk`

p(Anm = 1|zn, zm, η) = ηzn,zm

The full generative model looks like

For n = 1, . . . ,N
zn ∼ multinoulli(π)

For n = 1, . . . ,N

For m = 1, . . . , n − 1
Anm ∼ Bernoulli(ηzn,zm )

Note: In the fully Bayesian version, π and η can also be given priors

†Estimation and prediction for stochastic blockmodels for graphs with latent block structure (Snijders and Nowicki, 1997), Discovering latent classes in relational data (Kemp et al, 2004)
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Mixed-Membership Stochastic Blockmodel

Unlike SBM, the MMSB† assumes each node n to have a K × 1 probability vector πn

πn denotes the probabilities of memberships of node n in each of the K communities

For n = 1, . . . ,N
πn ∼ Dirichlet(α, . . . , α)

For n = 1, . . . ,N

For m = 1, . . . , n − 1

zn→m ∼ multinoulli(πn)

zm→n ∼ multinoulli(πm)

Anm ∼ Bernoulli(ηzn→m,zm→n )

Unlike SBM in which node n has a unique one-hot zn vector, in MMSB, each node n has an
interaction-specific cluster assignment

†Mixed-Membership Stochastic Blockmodel (Airoldi et al, 2008), Efficient discovery of overlapping communities in massive networks (Gopalan and Blei, 2013)
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Modeling Graphs: Some Other Comments

A lot of work on various extensions∗ of LSM, SBM, MMSB, etc.

A lot of work on scalable Bayesian inference# in these models (e.g., online MCMC/VI)

Some of the recent trends in this area

Combining classical prob. models of graphs with graph neural nets (e.g., Graph Convolutional Net†)

Learning to generate graphs‡ (just like image or text generation in deep learning)

∗Nonparametric Bayesian modeling of complex networks: an introduction (Schmidt et al, 2013), #Efficient discovery of overlapping communities in massive networks (Gopalan and Blei,

2013), †Graph Convolutional Networks (Kipf and Welling, 2016), ‡GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models (You et al, 2018)
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Nonparametric Bayesian Modeling

(A way of learning the “right” model size/complexity)
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Motivating Problem: Mixture Models

A mixture model can be used to cluster/partition the data into multiple groups

Defined by K component distributions (e.g., K Gaussians for a Gaussian Mixture Model)

Every component distribution p(x |φk) has a mixing weight πk ∈ (0, 1), and
∑K

k=1 πk = 1

The distribution of any observation x

p(x |π, φ) =
K∑

k=1

πkp(x |φk)

where π = {πk}Kk=1 and φ = {φk}Kk=1

Question: What’s the “right” number of clusters? Can do Bayesian model comparison (try
different K ’s and compute marginal likelihood for each choice of K ). But that can be expensive.

How about having a single model but allowing the number of clusters to “grow” with data?
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Prelude: A Bayesian Mixture Model (with fixed K)

Assuming some observed data x1, . . . , xN , the generative model can be defined as follows

Draw mixture proportion vector π = [π1, . . . , πK ] from the prior Dirichlet(α/K , . . . , α/K)

Draw parameters {φk}Kk=1 of each mixture component i.i.d. from a prior “base distribution” G0 (note:
choice of G0 depends on what the component distributions are; e.g., for Gaussians, G0 can be NIW)

Draw the data: For each observation i = 1, . . . ,N

Draw a cluster id z i ∈ {1, . . . ,K} from multinoulli(π)

Suppose z i = k. Draw x i from p(x |φk )
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Bayesian Inference for Mixture Models: A Gibbs Sampler

Assume a Gaussian Mixture Model (GMM) with φk = (µk ,Σk). Thus G0 can be NIW

Due to conjugacy, we can easily derive a Gibbs sampler for this model

The basic Gibbs sampler is sketched below

Randomly initialize Z , π, φ. Repeat until we have enough samples

Sample π as (due to Dirichlet-multinomial conjugacy)

π|Z ∼ Dirichlet(n1 + α/K , . . . , nK + α/K)

.. where nk is the number of observations currently assigned to cluster k

Sample each z i using

p(z i = k|Z−i , π, φ,X) ∝ p(z i |π)× p(x i |φk ) = πk × p(x i |φk )

.. (note: the above is equivalent to computing the above posterior probabilities for k = 1, . . . ,K and
drawing z i from a multinoulli with probability parameter vector given by these posterior probabilities)

Sample φk = (µk ,Σk ) from NIW posterior given Z and X (NIW posterior also has a closed form).
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A “Collapsed” Gibbs Sampler

Let’s integrate out π (due to Dirichlet-multinomial conjugacy) from prior p(z i |π) and eliminate π

p(z i = k|α,Z−i ) =

∫
p(z i = k|π)p(π|Z−i )dπ =

∫
πkp(π|Z−i )dπ = Ep(π|Z−i )[πk ] =

nk + α/K

α + N − 1

.. where nk is the number of examples (other than x i ) assigned to cluster k

The collapsed Gibbs sampler is sketched below

Randomly initialize Z , φ. Repeat until we have enough samples

Sample each z i as
p(z i = k|Z−i , φ,X) ∝ (nk + α/K)p(x i |φk )

.. (note: just like the uncollapsed case, this is equivalent to drawing z i from a multinoulli with probability
parameter vector given by the above posterior probabilities evaluated for k = 1, . . . ,K)

Sample φk = (µk ,Σk ) from NIW posterior given Z and X
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Nonparametric Bayesian Mixture Model
(.. which you get when you allow unbounded K )

(.. i.e., you allow K →∞)
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Let’s Have K →∞ (i.e., Unbounded)

For the collapsed Gibbs sampler, we saw that p(z i = k |Z−i , φ,X) ∝ (nk + α/K )p(x i |φk)

As K →∞, the probability that x i will be assigned to an existing cluster (say k) is given by

p(z i = k |Z−i , φ,X) ∝ nk × p(x i |φk)

It’s proportional to the no. of obs. already in cluster k (it’s like a “rich gets richer” tendency)

Now suppose there are a total of K+ occupied clusters (with number of data points ≥ 1)

Number of empty clusters = K − K+. Can think of all of these as a single unoccupied cluster

The probability of x i being assigned to this new (so far empty) cluster

p(z i = knew |Z−i , φ,X) ∝ α× p(x i |G0) (WHY? Reason on the next slide!)

where p(x i |G0) =
∫
p(x i |φnew )p(φnew |G0)dφnew
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Let’s Have K →∞ (i.e., Unbounded)

The probability of x i being assigned to the new (so far empty) cluster

p(z i = knew |Z−i , φ,X) ∝ α× p(x i |G0)

The α above is due to the fact that, for the conditional prior on z i , as K →∞ we have

p(z i = knew |α,Z−i ) =
0 + (α/K)× (K − K+)

α + N − 1
→

α

α + N − 1

Note: Another way - p(z i = knew |α,Z−i ) = 1−
∑K+

k=1
nk

α+N−1 = α
α+N−1 (since

∑K+

k=1 nk = N − 1)

Also, instead of the likelihood, we use the marginal likelihood

p(x i |G0) =

∫
p(x i |φnew )p(φnew |G0)dφnew

.. because the new cluster hasn’t yet been created and thus we don’t have its φknew

Note: Once the new cluster has been created (after a data point has been assigned to it), we also
have to sample for φnew from its posterior.
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Gibbs Sampler for Nonparametric Bayesian Mixture Model

A brief sketch of a basic Gibbs sampler (samples Z and {φk}Kk=1) for this model with unbounded K
(note: The mixing proportions πk ’s were collapsed from the prior p(z i |π))

Gibbs Sampler for NPBayes Mixture Model

Set an initial K . Initialize Z(0) and {φ(0)
k }Kk=1

For t = 1, . . . ,T

For each observation i = 1, . . . ,N, sample the cluster id z i

p(z i = k|Z(t−1)
−i , φ(t),X) ∝ n

(t−1)
k × p(x i |φ(t−1)

k ) = π̂ik (k = 1, . . . ,K)

p(z i = knew |Z(t−1)
−i , φ(t−1),X) ∝ α(t−1) × p(x i |G0) = π̂iknew

z (t)
i ∼ multinoulli(π̂i1, π̂i2, . . . , π̂iknew )

set K = K + 1 (if x i assigned to a new cluster)

Sample the mixture component parameters {φ(t)
k }Kk=1 and α(t) from the respective CPs

Note: “Markov Chain Sampling Methods for Dirichlet Process Mixture Models” (Neal, 2000) is an excellent reference for various MCMC

sampling algorithms for nonparametric Bayesian mixture models (including collapsed versions that don’t require sampling for {φk}Kk=1
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Nonparametric Bayesian Mixture Models
(A More Formal Perspective..)
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A Gentle Start: A Discrete Distribution

Assume some space Ω (e.g., the real line) and K “locations” φ1, . . . , φK in that space

Assume these locations have “weights” π1, . . . , πK where πk ∈ (0, 1),∀k and
∑K

k=1 πk = 1

Can think of πk as how “popular” location φk is

Then we can define a discrete distribution G as

G =
K∑

k=1

πkδφk

where δφk
is an “atom” or point-mass at location φk (δφk

(φ) = 1 iff φ = φk , and 0 otherwise)

Important: The support of this discrete distribution G is {φk}Kk=1

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Models for Graphs, and Intro to Nonparametric Bayesian Modeling 18



A Bayesian Construction of G

Let’s define appropriate priors on {φk}Kk=1 and {πk}Kk=1

(π1, . . . , πK ) ∼ Dirichlet(α/K , . . . , α/K )

φk ∼ G0 k = 1, . . . ,K

G0 (its support being Ω) is a “base distribution” (the choice depends on what φk ’s are)

Note that G is now a random distribution (or a random measure)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Models for Graphs, and Intro to Nonparametric Bayesian Modeling 19



Discrete Distributions Induce Clustering!

Drawing values repeatedly from a discrete distribution leads to repetitions

E.g., Drawing 5 times from the above G is guaranteed to have at least one repetition

Suppose we draw N > K “parameters” θ1, . . . , θN i.i.d. from G =
∑K

k=1 πkδφk

θi ∼ G i = 1, . . . ,N

.. then the collection (θ1, . . . , θN) will have at most K unique parameters (φ1, . . . , φK )

Thus G induces a clustering of parameters θi ’s, s.t. θi ’s within any group are all identical

Therefore G can be used in a mixture model where θi ’s define the params of mixture distributions
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Constructing a Mixture Model for Data

Let us use G to construct a mixture model for some observed data x1, . . . , xN

How: Generate each observation x i , i = 1, . . . ,N, assuming the following generative model

Why drawing the parameters {θi}Ni=1 from G clusters the observations {x i}Ni=1?

Reason: Since G is discrete, θi ’s generated by G won’t be unique (only K unique values {φk}Kk=1)

Thus effectively the data is generated from not N separate distributions but only K < N unique
distributions {p(x |φk)}Kk=1, which naturally results in a clustering of data
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Two Equivalent Views

View-1 (the familiar one!): Clustering is explicitly described by the indicator z i

(Equivalent) View-2: Clustering is implicit (non-uniqueness of θi ’s denotes clustering of x i ’s)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Probabilistic Models for Graphs, and Intro to Nonparametric Bayesian Modeling 22



An Infinite Mixture Model

Recall that our Bayesian mixture model construction for the finite K was

To get a mixture model with unbounded number of cluster, we need G of the form

G =
∞∑
k=1

πkδφk

How can we formally construct such a G that has potentially infinite mixture components?
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The Stick-Breaking Construction

Sethuraman (1994) gave an “explicit” construction of G having infinite mixture components

G =
∞∑
k=1

πkδφk

We basically need to generate {πk}∞k=1 s.t. πk ∈ (0, 1) and
∑∞

k=1 πk = 1

Can be done using a stick-breaking construction for {πk}∞k=1 as follows

βk ∼ Beta(1, α) k = 1, . . . ,∞
π1 = β1

πk = βk

k−1∏
`=1

(1− βk−1) k = 2, . . . ,∞
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The Stick-Breaking Construction

Assume a stick of length 1 to begin with. Now recursively break it as follows:

Choose a random location βk ∈ (0, 1) drawn from Beta(1, α) at which to break the stick

Record πk as “βk times the length of the remaining stick”

Can show that
∑K

k=1 πk = 1 as K →∞. One easy way to verify this is by showing that

1−
∑K

k=1 πk → 0 as K →∞
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Next Class

Some other (equivalent) ways of looking at nonparametric Bayesian mixture models

Dirichlet Process

Chinese Restaurant Process

Pólya-Urn Scheme

Hierarchical Dirichlet Process

Some other examples of nonparametric Bayesian models
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