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Using Gradients in MCMC: Langevin Dynamics

MCMC uses a random-walk based proposal to generate the next sample. For example,

θ(t) ∼ N (θ(t−1), ηt)

.. and then we accept/reject the generated sample

Langevin dynamics: Use posterior’s gradient info in the proposal as follows

do θ(t) ∼ N (θ∗, ηt) + MH accept/reject

where θ∗ = θ(t−1) +
ηt
2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1)

Note that the above is equivalent to

θ(t) = θ(t−1) +
ηt
2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) + εt + MH accept/reject

.. which is same as gradient based optimization for MAP + injected noise εt ∼ N (0, ηt)

Incorporating gradients in proposals takes us to high-prob regions faster

After some waiting period T0, the iterates {θ(t)}T0+S
T0+1 are MCMC samples from the target p(θ|D)
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Using Gradients in MCMC: Langevin Dynamics
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Langevin Dynamics: A Closer Look

LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

Recall the form of LD updates

θ(t) = θ(t−1) +
ηt
2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) + εt + MH accept/reject

Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr ∝ exp(log p(D, θ))

dθt = −∇L(θt)dt +
√

2dBt

.. where L(θt) = − log p(D, θt) and (Bt)t≥0 is Brownian motion s.t. ∆Bt are i.i.d. Gaussian r.v.s

Discretization introduces some error which is corrected by MH accept/reject step

Note: As learning rate ηt decreases, discretization error also decreases (and rejection rate → 0)

Note: Gradient computations require all the data (thus slow)

Solution: Use stochastic gradients - Stochastic Gradient Langevin Dynamics (SGLD)
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Stochastic Gradient Langevin Dynamics (SGLD)

An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) +
ηt
2
∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, ηt) then MH accept/reject

Choice of the learning rate is important. For convergence, ηt = a(b + t)−κ

In practice however, switching to constant learning rates (after a few iterations) also helps convergence

When the learning rate becomes very very small, acceptance prob. becomes close to 1 (so no more
need to do MH accept/reject test; can accept every sample)

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)
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Improvements to SLGD

The basic SGLD, although fairly simple, has many limitations, e.g.

Exhibits slow convergence and mixing. Uses same learning rate ηt in all dimensions of θ

Doesn’t apply to models where θ is constrained (e.g., non-neg or prob. vector)

Assumes that the model is differentiable

A lot of recent work on improving the basic SGLD to handle such limitations. Some examples

Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

Uses a preconditioner matrix in the learning rate to improve convergence

This allows differet amounts of updates in different dimensions

Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 2013)

SLGD in Riemannian to handle constrained variables
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Applications of SLGD

Has become very popular recenty for Baysian neural networks and other complex Bayesian models

Reason: We know how to do backprop, SLGD = backprop based updates + Gaussian noise

Feedforward Neural Net on MNIST Convolutional Neural Net on MNIST

(Figure: Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016))
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Other Recent “SGD-inspired” Sampling Algorithms

Can run SGD and use the SGD iterates θ1, θ2, . . . , θT to construct a Gaussian approximation

Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

If we want a Gaussian approximation with diagonal covariance, this is very easy

θSWA =
1

T

T∑
t=1

θt

θ̄2 =
1

T

T∑
t=1

θ2
t , Σdiag = diag(θ̄2 − θ2

SWA)

p(θ|D) ≈ N (θSWA,Σdiag)

Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)

Why does this work? Reason: SGD is asymptotically Normal under certain conditions

For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic
Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

Such algos are now becoming popular for getting fast posterior approximations for complex models
∗Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Hamiltonian/Hybrid Monte Carlo (HMC)

HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info

Uses the idea of simulating a Hamiltonian Dynamics of a physical system

Consider the target posterior p(θ|D) ∝ exp(−U(θ))

Think of θ as the position and U(θ) = − log[p(D|θ)p(θ)] is like “potential energy”

Let’s introduce an auxiliary variable - the momentum r of the system

Can now define a joint distribution over the position and momentum as

p(θ, r) ∝ exp

(
−U(θ)− 1

2
r>M−1r

)
= p(θ|D)p(r)

H(θ, r) = U(θ) + 1
2 r
>M−1r = U(θ) + K (r) is the total energy (potential + kinetic) of the system

H(θ, r) is also known as the Hamiltonian and constant w.r.t. time

Given samples (θ, r) from joint p(θ, r), we can ignore r and θ will be a sample from p(θ|D)
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Hamiltonian/Hybrid Monte Carlo (HMC)

How do we generate samples (θ, r) in HMC?

Given an initial (θ, r), Hamiltonian Dynamics defines how (θ, r) changes w.r.t. continuous time t

∂θ

∂t
=

∂H

∂r
=
∂K

∂r
∂r
∂t

= −∂H
∂θ

= −∂U
∂θ

We can use these equations to update (θ, r)→ (θ∗, r∗) by discretizing time

For s = 1 : S , sample as follows

Initialize θ0 = θ(s−1), r∗ ∼ N (0, I) and r0 = r∗ − ρ
2
∂U
∂θ
|θ0

Do L “leapfrog” steps with learning rates ρl = ρ for ` < L, and ρL = ρ/2

for ` = 1 : L, θ` = θ`−1 + ρ ∂K
∂r |r`−1 , r` = r`−1 − ρ` ∂U∂θ |θ`

Perform MH accept/reject test on (θL, rL). If accepted, θ(s) = θL

The momentum forces exploring different regions instead of getting driven to regions where MAP is
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Hamiltonian/Hybrid Monte Carlo (HMC)

HMC typically has very low rejection rate (that too, primarily due to discretization error)

Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune

A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)

Prob. Prog. packages e.g., Tensorflow Probability, Stan, etc, contain implementations of HMC

Can also do online HMC (Stochastic Gradient HMC - Chen et al, 2014)

An illustration: SGHMC vs some other methods on MNIST classification
Feedforward Neural Net on MNIST

(Figure: Stochastic Gradient Hamiltonian Monte Carlo (Chen et al, 2014))
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Parallel/Distributed MCMC

Suppose our goal is to compute the posterior of θ ∈ RD (assuming N is very large)

p(θ|X) ∝ p(θ)p(X|θ) = p(θ)
N∏

n=1

p(xn|θ)

Suppose we have J machines with data partitioned as X = {X(j)}Jj=1

Let’s assume that posterior p(θ|X) to be factorized as

p(θ|X) =
J∏

j=1

p(j)(θ|X(j))

where p(j)(θ|X(j)) ∝ p(θ)1/J
∏

xn∈X(j) p(xn|θ) is the “subset posterior”

Assume {θj,t}Tt=1 to be the set of T MCMC samples generated by the j th machine

We need a way to combine these subset posteriors using a “consensus”

θ̂1, . . . , θ̂T = CONSENSUSSAMPLES({θj,1, . . . , θj,T}Jj=1)

∗Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Computing Consensus Samples: Some Methods

Weighted avg: θ̂t =
∑J

j=1 Wjθj,t where Wj can be learned. Assuming Gaussian prior and lik.

Σ̄j = sample covariance of {θj,1, . . . , θj,T}

Σ = (Σ−1
0 +

J∑
j=1

Σ̄−1
j )−1 (Σ0 is the prior’s covariance)

Wj = Σ(Σ−1
0 /J + Σ̄−1

j )

Fit J Gaussians, one for each {θj,1, . . . , θj,T} and take their product

µ̄j = sample mean of {θj,1, . . . , θj,T}, Σ̄j = sample covariance of {θj,1, . . . , θj,T}

Σ̂J = (
J∑

j=1

Σ̄−1
j )−1, µ̂J = Σ̂J(

J∑
j=1

Σ̄−1
j µ̄j) (cov and mean of prod. of Gaussians)

θ̂t ∼ N (µ̂J , Σ̂J), t = 1, . . . ,T (the final consensus samples)

For detailed proof and other more sophisticated ways, please refer to the provided reading

Note: VI can also be parallelized using similar techniques
∗Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Inference Methods: Summary

MLE/MAP: Straightforward for differentiable models (can even use automatic diffentiation)

Conjugate models with one “main” parameter: Straightforward posterior updates

MLE-II/MAP-II: Often useful for estimating the hyperparameters

EM: If we want to do MLE/MAP for models with latent variables

Very general algorithm, can also be made online

Used when we want point estimates for some unknowns and posterior over others

Can use it for hyperparameter estimation as well

Often better than using direct gradient methods

VI ans sampling methods can be used to get full posterior for complex models

Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

In other cases, we have general VI with Monte-Carlo gradients, MH sampling

MCMC can also make use of gradient info (LD/SGLD)

For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations
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