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Using Gradients in MCMC: Langevin Dynamics
o MCMC uses a random-walk based proposal to generate the next sample. For example,

6 ~ N (61, 1)

. and then we accept/reject the generated sample
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o Langevin dynamics: Use posterior's gradient info in the proposal as follows
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o MCMC uses a random-walk based proposal to generate the next sample. For example,
00 ~ N (0" ne)
. and then we accept/reject the generated sample

o Langevin dynamics: Use posterior's gradient info in the proposal as follows
do 609 ~ N(0",m) + MH accept/reject
where 9 = 6“7V 1 TVy[log p(D]6) + log p(6)][ .
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Using Gradients in MCMC: Langevin Dynamics

o MCMC uses a random-walk based proposal to generate the next sample. For example,
oM ./\/'(H(tfl),nt)
. and then we accept/reject the generated sample
o Langevin dynamics: Use posterior's gradient info in the proposal as follows
do 609 ~ N(0",m) + MH accept/reject
where 9 = 6“7V 1 TVy[log p(D]6) + log p(6)][ .
o Note that the above is equivalent to

o — plt=1 4 %Ve[log p(D|6) + log P(9)]|9(H> +e| +  MH accept/reject
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o Langevin dynamics: Use posterior's gradient info in the proposal as follows
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o Note that the above is equivalent to

o — plt=1 4 %Ve[log p(D|6) + log P(9)]|9(H> +e| +  MH accept/reject

. which is same as gradient based optimization for MAP + injected noise €; ~ N(0,7;)
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Using Gradients in MCMC: Langevin Dynamics

o MCMC uses a random-walk based proposal to generate the next sample. For example,
00 ~ N (0" ne)

. and then we accept/reject the generated sample
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Langevin dynamics: Use posterior's gradient info in the proposal as follows
do 609 ~ N(0",m) + MH accept/reject
where 9 = 6“7V 1 TVy[log p(D]6) + log p(6)][ .
Note that the above is equivalent to

(+]

o — plt=1 4 %Ve[log p(D|6) + log P(9)]|9(H> +e| +  MH accept/reject

. which is same as gradient based optimization for MAP + injected noise €; ~ N(0,7;)

o Incorporating gradients in proposals takes us to high-prob regions faster
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Using Gradients in MCMC: Langevin Dynamics

o MCMC uses a random-walk based proposal to generate the next sample. For example,

6 ~ N (61, 1)

. and then we accept/reject the generated sample

©

Langevin dynamics: Use posterior's gradient info in the proposal as follows

do 69 ~ N(9*77]t) + MH accept/reject
where 0° = ¢4 Ve[logp(D\H)JrlogP O g1y

(+]

Note that the above is equivalent to

6 = 9+ LVs[log p(D|6) + log p(O)] | + <t

+ MH accept/reject

. which is same as gradient based optimization for MAP + injected noise €; ~ N(0,7;)

o Incorporating gradients in proposals takes us to high-prob regions faster

To+S

o After some waiting period Ty, the iterates {H(t)}T0+1 are MCMC samples from the target p(6|D)
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Using Gradients in MCMC: Langevin Dynamics

22

Langevin

Gibbs

21
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Langevin Dynamics: A Closer Look

o LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Langevin Dynamics: A Closer Look

o LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

o Recall the form of LD updates

o — plt=1 4 %Vg[log p(D|0) + log p(e)]‘g(t—l) +e| + MH accept/reject

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Langevin Dynamics: A Closer Look

o LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

o Recall the form of LD updates

o — plt=1 4 %Vg[log p(D|0) + log p(e)]‘g(t—l) +e| + MH accept/reject

o Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr < exp(log p(D, 6))
df, = —VL(6,)dt + /2dB,

. where L(6;) = —log p(D, ;) and (B:)¢>0 is Brownian motion s.t. AB; are i.i.d. Gaussian r.v.s

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Langevin Dynamics: A Closer Look
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LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

o Recall the form of LD updates

o — plt=1 4 %Vg[log p(D|0) + log p(e)]‘g(t—l) +e| + MH accept/reject

©

Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr o exp(log p(D, 9))
df, = —VL(6,)dt + /2dB,

. where L(6;) = —log p(D, ;) and (B:)¢>0 is Brownian motion s.t. AB; are i.i.d. Gaussian r.v.s

o Discretization introduces some error which is corrected by MH accept/reject step
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o LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

o Recall the form of LD updates

60 = 6~V 1 LV, log p(D|6) + log p(6)]] 5. 1) + e
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df, = —VL(6,)dt + /2dB,

+ MH accept/reject

Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr o exp(log p(D, 9))

. where L(6;) = —log p(D, ;) and (B:)¢>0 is Brownian motion s.t. AB; are i.i.d. Gaussian r.v.s

o Discretization introduces some error which is corrected by MH accept/reject step

©

Note: As learning rate 7); decreases, discretization error also decreases (and rejection rate — 0)
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Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr o exp(log p(D, 9))

. where L(6;) = —log p(D, ;) and (B:)¢>0 is Brownian motion s.t. AB; are i.i.d. Gaussian r.v.s

o Discretization introduces some error which is corrected by MH accept/reject step

©

©

Note: Gradient computations require all the data (thus slow)

Note: As learning rate 7); decreases, discretization error also decreases (and rejection rate — 0)
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o LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

o Recall the form of LD updates

60 = 6~V 1 LV, log p(D|6) + log p(6)]] 5. 1) + e
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df, = —VL(6,)dt + /2dB,

+ MH accept/reject

Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr o exp(log p(D, 9))

. where L(6;) = —log p(D, ;) and (B:)¢>0 is Brownian motion s.t. AB; are i.i.d. Gaussian r.v.s

o Discretization introduces some error which is corrected by MH accept/reject step

©

©

Note: Gradient computations require all the data (thus slow)

Note: As learning rate 7); decreases, discretization error also decreases (and rejection rate — 0)

o Solution: Use stochastic gradients - Stochastic Gradient Langevin Dynamics (SGLD)
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Stochastic Gradient Langevin Dynamics (SGLD)

o An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients
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Stochastic Gradient Langevin Dynamics (SGLD)

o An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

o Given minibatch Dy = {xs1,...,x¢n,}. Then the (stochastic) Langevin dynamics update is
U N <
* o (t—1) i3 e
00 = 0+ Ve D] ;Iogp(xm|9) +log p(8) |,
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Stochastic Gradient Langevin Dynamics (SGLD)

o An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

o Given minibatch Dy = {xs1,...,x¢n,}. Then the (stochastic) Langevin dynamics update is

S
*
\

Ny
B N
0+ V0 | 5> log plxal6) + log p(0) |
t
n=1

IO N7, n¢)
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Stochastic Gradient Langevin Dynamics (SGLD)

o An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

o Given minibatch Dy = {xs1,...,x¢n,}. Then the (stochastic) Langevin dynamics update is

S
*
\

Ny
B N
0+ V0 | 5> log plxal6) + log p(0) |
t
n=1

0~ N(6",7m:) then MH accept/reject
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Stochastic Gradient Langevin Dynamics (SGLD)

o An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

o Given minibatch Dy = {xs1,...,x¢n,}. Then the (stochastic) Langevin dynamics update is

S
*
\

Ne
N
0D 4 g, | 3T 210) + log p(6
+5 Ve \DA; og p(xe|0) + log p(9) | ,
0~ N(6",7m:) then MH accept/reject

o Choice of the learning rate is important. For convergence, 1, = a(b+ t)™"
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Stochastic Gradient Langevin Dynamics (SGLD)

o An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

o Given minibatch Dy = {xs1,...,x¢n,}. Then the (stochastic) Langevin dynamics update is
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B N
0+ V0 | 5> log plxal6) + log p(0) |
t
n=1

S
*
\

0~ N(6",7m:) then MH accept/reject

o Choice of the learning rate is important. For convergence, 1, = a(b+ t)™"

o In practice however, switching to constant learning rates (after a few iterations) also helps convergence
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Stochastic Gradient Langevin Dynamics (SGLD)

o An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

o Given minibatch Dy = {xs1,...,x¢n,}. Then the (stochastic) Langevin dynamics update is
n N o
00 = 0V Eg, | — S 210) + log p(0
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0~ N(6",7m:) then MH accept/reject

o Choice of the learning rate is important. For convergence, 1, = a(b+ t)™"
o In practice however, switching to constant learning rates (after a few iterations) also helps convergence

o When the learning rate becomes very very small, acceptance prob. becomes close to 1 (so no more

need to do MH accept/reject test; can accept every
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Stochastic Gradient Langevin Dynamics (SGLD)

o An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

o Given minibatch Dy = {xs1,...,x¢n,}. Then the (stochastic) Langevin dynamics update is
n N o
00 = 0V Eg, | — S 210) + log p(0
+ 5 Vo \DA; og p(xu|0) + log p(6) | ,

0~ N(6",7m:) then MH accept/reject

o Choice of the learning rate is important. For convergence, 1, = a(b+ t)™"
o In practice however, switching to constant learning rates (after a few iterations) also helps convergence

o When the learning rate becomes very very small, acceptance prob. becomes close to 1 (so no more

need to do MH accept/reject test; can accept every sample)

o Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)
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o The basic SGLD, although fairly simple, has many limitations
«4O0>» «F>r «E» «E)» = DA
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Improvements to SLGD

o The basic SGLD, although fairly simple, has many limitations, e.g.

o Exhibits slow convergence and mixing. Uses same learning rate 7; in all dimensions of 6
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Improvements to SLGD

o The basic SGLD, although fairly simple, has many limitations, e.g.
Exhibits slow convergence and mixing. Uses same learning rate n; in all dimensions of 0

Doesn’t apply to models where 6 is constrained (e.g., non-neg or prob. vector)

©

o Assumes that the model is differentiable

o A lot of recent work on improving the basic SGLD to handle such limitations

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Improvements to SLGD

o The basic SGLD, although fairly simple, has many limitations, e.g.
o Exhibits slow convergence and mixing. Uses same learning rate 7; in all dimensions of 6
o Doesn't apply to models where @ is constrained (e.g., non-neg or prob. vector)
o Assumes that the model is differentiable
o A lot of recent work on improving the basic SGLD to handle such limitations. Some examples

o Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)
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Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

o Uses a preconditioner matrix in the learning rate to improve convergence
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o The basic SGLD, although fairly simple, has many limitations, e.g.
o Exhibits slow convergence and mixing. Uses same learning rate 7; in all dimensions of 6
o Doesn't apply to models where @ is constrained (e.g., non-neg or prob. vector)
o Assumes that the model is differentiable
o A lot of recent work on improving the basic SGLD to handle such limitations. Some examples

o Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

o Uses a preconditioner matrix in the learning rate to improve convergence

o This allows differet amounts of updates in different dimensions
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Improvements to SLGD

o The basic SGLD, although fairly simple, has many limitations, e.g.
o Exhibits slow convergence and mixing. Uses same learning rate 7; in all dimensions of 6
o Doesn't apply to models where @ is constrained (e.g., non-neg or prob. vector)

o Assumes that the model is differentiable

o A lot of recent work on improving the basic SGLD to handle such limitations. Some examples

o Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

o Uses a preconditioner matrix in the learning rate to improve convergence

o This allows differet amounts of updates in different dimensions

o Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 2013)
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Improvements to SLGD

o The basic SGLD, although fairly simple, has many limitations, e.g.
o Exhibits slow convergence and mixing. Uses same learning rate 7; in all dimensions of 6
o Doesn't apply to models where @ is constrained (e.g., non-neg or prob. vector)

o Assumes that the model is differentiable

o A lot of recent work on improving the basic SGLD to handle such limitations. Some examples

o Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

o Uses a preconditioner matrix in the learning rate to improve convergence

o This allows differet amounts of updates in different dimensions
o Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 2013)

o SLGD in Riemannian to handle constrained variables
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Applications of SLGD

o Has become very popular recenty for Baysian neural networks and other complex Bayesian models

o Reason: We know how to do backprop, SLGD = backprop based updates + Gaussian noise

Feedforward Neural Net on MNIST Convolutional Neural Net on MNIST

5 1.6
SGD SGD

- ----SGLD = —-—-SGLD
X S & ——RMSpro
o RMSprop C12 prop
15 S pSGLD
i, L ’
D 7]
8.5 '908

12 0.4

0 Epg?:hs 100 5 10 15 20

(Figure: Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016))
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation
o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

o If we want a Gaussian approximation with diagonal covariance, this is very easy

1 T
GSWA = ?;&

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation
o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

o If we want a Gaussian approximation with diagonal covariance, this is very easy

1 T

GSWA = ?Zet
t=1
1 T

o= =)0
t=1
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation
o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

o If we want a Gaussian approximation with diagonal covariance, this is very easy

1 T
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t=1
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P = 720“ Yaing = diag(0? — O2a)
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation
o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

o If we want a Gaussian approximation with diagonal covariance, this is very easy

1
GSWA = ? Z 01‘
=1
T
0_2 = % Z 0?, zdiag - dlag(0_2 - egWA)
=1
p(OID) = N(Oswa, Zdisg)

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation
o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

o If we want a Gaussian approximation with diagonal covariance, this is very easy

1 T
GSWA = ?Zet
t=1
a2 1 u 2 T A2 2
P = 720“ Yaing = diag(0? — O2a)
t=1

p(0|D) =~ N(Oswa, Zdiag)

o Note: If we want full cov., we can use a low-rank approx. of ¥ (see Maddox et al for details)

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation
o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

o If we want a Gaussian approximation with diagonal covariance, this is very easy

1 T
GSWA = ?Zet
t=1
a2 1 u 2 T A2 2
P = 720“ Yaing = diag(0? — O2a)
t=1

p(0|D) =~ N(Oswa, Zdiag)

o Note: If we want full cov., we can use a low-rank approx. of ¥ (see Maddox et al for details)
o Why does this work?

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation
o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

o If we want a Gaussian approximation with diagonal covariance, this is very easy

1 T
GSWA = ? Z 01‘
t=1
T
0_2 = % Z 0?, Zdiag = d|ag(0_2 — 6§”WA)
t=1

p(0|D) =~ N(Oswa, Zdiag)

o Note: If we want full cov., we can use a low-rank approx. of ¥ (see Maddox et al for details)

o Why does this work? Reason: SGD is asymptotically Normal under certain conditions

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation
o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

o If we want a Gaussian approximation with diagonal covariance, this is very easy

1 T
GSWA = ?Zet
t=1
a2 1 u 2 T A2 2
P = 720“ Yaing = diag(0? — O2a)
t=1

p(0|D) =~ N(Oswa, Zdiag)

o Note: If we want full cov., we can use a low-rank approx. of ¥ (see Maddox et al for details)
o Why does this work? Reason: SGD is asymptotically Normal under certain conditions

o For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic
Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Other Recent “SGD-inspired” Sampling Algorithms

o Can run SGD and use the SGD iterates 61, 6,,...,01 to construct a Gaussian approximation
o Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

o If we want a Gaussian approximation with diagonal covariance, this is very easy

1 T
GSWA = ?Zet
t=1
a2 1 u 2 T A2 2
P = 720“ Yaing = diag(0? — O2a)
t=1

p(0|D) =~ N(Oswa, Zdiag)

o Note: If we want full cov., we can use a low-rank approx. of ¥ (see Maddox et al for details)
o Why does this work? Reason: SGD is asymptotically Normal under certain conditions

o For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic
Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

o Such algos are now becoming popular for getting fast posterior approximations for complex models

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Hamiltonian/Hybrid Monte Carlo (HMC)

o HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info
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o HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info
o Uses the idea of simulating a Hamiltonian Dynamics of a physical system

o Consider the target posterior p(6|D) o exp(—U(0))

o Think of @ as the position and U(0) = — log[p(D|0)p(8)] is like “potential energy”
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Hamiltonian/Hybrid Monte Carlo (HMC)

HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info

©

Uses the idea of simulating a Hamiltonian Dynamics of a physical system

©

Consider the target posterior p(6|D) o exp(—U(0))

©

o Think of @ as the position and U(0) = — log[p(D|0)p(8)] is like “potential energy”

©

Let's introduce an auxiliary variable - the momentum r of the system
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Hamiltonian/Hybrid Monte Carlo (HMC)

o HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info
o Uses the idea of simulating a Hamiltonian Dynamics of a physical system

o Consider the target posterior p(6|D) o exp(—U(0))

o Think of @ as the position and U(0) = — log[p(D|0)p(8)] is like “potential energy”

©

Let's introduce an auxiliary variable - the momentum r of the system

o Can now define a joint distribution over the position and momentum as

p(0, 1) o exp (— u(e) - érTer) — p(BD)(r)
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Hamiltonian/Hybrid Monte Carlo (HMC)
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HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info

©

Uses the idea of simulating a Hamiltonian Dynamics of a physical system

©

Consider the target posterior p(6|D) o exp(—U(0))
o Think of @ as the position and U(0) = — log[p(D|0)p(8)] is like “potential energy”

©

Let's introduce an auxiliary variable - the momentum r of the system

o Can now define a joint distribution over the position and momentum as
1
p(0, 1) o exp (— u(e) - 2rTer) — p(BD)(r)

o H(0,r)=U(0)+ 3r"M~1r = U(0) + K(r) is the total energy (potential + kinetic) of the system

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Hamiltonian/Hybrid Monte Carlo (HMC)

o HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info
o Uses the idea of simulating a Hamiltonian Dynamics of a physical system

o Consider the target posterior p(6|D) o exp(—U(0))

o Think of @ as the position and U(0) = — log[p(D|0)p(8)] is like “potential energy”

o Let's introduce an auxiliary variable - the momentum r of the system

o Can now define a joint distribution over the position and momentum as
1
p(0, 1) o exp (— u(e) - 2rTer) — p(BD)(r)

o H(0,r)=U(0)+ 3r"M~1r = U(0) + K(r) is the total energy (potential + kinetic) of the system

o H(6,r) is also known as the Hamiltonian and constant w.r.t. time
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Hamiltonian/Hybrid Monte Carlo (HMC)

o HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info
o Uses the idea of simulating a Hamiltonian Dynamics of a physical system

o Consider the target posterior p(6|D) o exp(—U(0))

o Think of @ as the position and U(0) = — log[p(D|0)p(8)] is like “potential energy”

o Let's introduce an auxiliary variable - the momentum r of the system

o Can now define a joint distribution over the position and momentum as
1
p(0, 1) o exp (— u(e) - 2rTer) — p(BD)(r)

o H(0,r)=U(0)+ 3r"M~1r = U(0) + K(r) is the total energy (potential + kinetic) of the system
o H(6,r) is also known as the Hamiltonian and constant w.r.t. time

o Given samples (6, r) from joint p(6, r), we can ignore r and 6 will be a sample from p(0|D)
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

00 OH 0K

ot or  or
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90

o We can use these equations to update (0, r) — (6*, r*) by discretizing time
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90

o We can use these equations to update (0, r) — (6*, r*) by discretizing time

o For s=1:5, sample as follows
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90

o We can use these equations to update (0, r) — (6*, r*) by discretizing time
o For s=1:5, sample as follows

o Initialize 6y = 6(s—1)
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90

o We can use these equations to update (0, r) — (6*, r*) by discretizing time
o For s=1:5, sample as follows

o Initialize 6o = 66—, r, ~ N(0,1)
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90

o We can use these equations to update (0, r) — (6*, r*) by discretizing time
o For s=1:5, sample as follows

o Initialize 0 = 01, r. ~ N(0,1) and ro = r. — £9Y |5
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90

o We can use these equations to update (0, r) — (6*, r*) by discretizing time
o For s=1:5, sample as follows
o Initialize 6p = 66—, r, ~ N(0,1) and ro = r. — g%bo

o Do L “leapfrog” steps with learning rates p; = p for £ < L, and p; = p/2
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90

o We can use these equations to update (0, r) — (6*, r*) by discretizing time
o For s=1:5, sample as follows
o Initialize 6p = 66—, r, ~ N(0,1) and ro = r. — g%bo
o Do L “leapfrog” steps with learning rates p; = p for £ < L, and p; = p/2

for £=1:L 60p="0p_14p%)r,_, re=ri_1—peS5lo,
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90

o We can use these equations to update (0, r) — (6*, r*) by discretizing time
o For s=1:5, sample as follows
o Initialize 6p = 66—, r, ~ N(0,1) and ro = r. — g%bo
o Do L “leapfrog” steps with learning rates p; = p for £ < L, and p; = p/2
for 0=1:1L,0p=0,_1+p2,, |, ro=ri_1—peZYlo,

o Perform MH accept/reject test on (6, r;). If accepted, 8(5) =6,
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Hamiltonian/Hybrid Monte Carlo (HMC)

o How do we generate samples (6, r) in HMC?

o Given an initial (6, r), Hamiltonian Dynamics defines how (6, r) changes w.r.t. continuous time ¢t

90  OH 0K
ot —  oar  or
or  O0H _ oU
a 90 90

o We can use these equations to update (0, r) — (6*, r*) by discretizing time
o For s=1:5, sample as follows
o Initialize 6p = 66—, r, ~ N(0,1) and ro = r. — g%bo
o Do L “leapfrog” steps with learning rates p; = p for £ < L, and p; = p/2
for 0=1:1L,0p=0,_1+p2,, |, ro=ri_1—peZYlo,
o Perform MH accept/reject test on (6, r;). If accepted, 8(5) =6,

o The momentum forces exploring different regions instead of getting driven to regions where MAP is
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Hamiltonian/Hybrid Monte Carlo (HMC)

o HMC typically has very low rejection rate (that too, primarily due to discretization error)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Hamiltonian/Hybrid Monte Carlo (HMC)

o HMC typically has very low rejection rate (that too, primarily due to discretization error)

o Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune
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Hamiltonian/Hybrid Monte Carlo (HMC)

o HMC typically has very low rejection rate (that too, primarily due to discretization error)
o Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune

o A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)
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o A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)

o Prob. Prog. packages e.g., Tensorflow Probability, Stan, etc, contain implementations of HMC
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Hamiltonian/Hybrid Monte Carlo (HMC)

o HMC typically has very low rejection rate (that too, primarily due to discretization error)
o Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune
o A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)

o Prob. Prog. packages e.g., Tensorflow Probability, Stan, etc, contain implementations of HMC

o Can also do online HMC (Stochastic Gradient HMC - Chen et al, 2014)
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Hamiltonian/Hybrid Monte Carlo (HMC)

©

HMC typically has very low rejection rate (that too, primarily due to discretization error)

©

Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune
o A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)

o Prob. Prog. packages e.g., Tensorflow Probability, Stan, etc, contain implementations of HMC

©

Can also do online HMC (Stochastic Gradient HMC - Chen et al, 2014)
An illustration: SGHMC vs some other methods on MNIST classification

Feedforward Neural Net on MNIST
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(Figure: Stochastic Gradient Hamiltonian Monte Carlo (Chen et al, 2014))
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Parallel /Distributed MCMC

o Suppose our goal is to compute the posterior of § € RP (assuming N is very large)

p(O1X) ox p(0)p(X[0) = Hp xo/0)

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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o Suppose we have J machines with data partitioned as X = {XU)}JJ:1
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o Suppose our goal is to compute the posterior of § € RP (assuming N is very large)
p(81X) o p(8)p(X|0) = p(d Hp xs|0)

o Suppose we have J machines with data partitioned as X = {XU)}JJ:1

o Let's assume that posterior p(6|X) to be factorized as
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p(01X) = [T P9 (61X9)

j=1
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Parallel /Distributed MCMC

o Suppose our goal is to compute the posterior of § € RP (assuming N is very large)
p(81X) o p(8)p(X|0) = p(d Hp xs|0)

o Suppose we have J machines with data partitioned as X = {XU)}JJ:1

o Let's assume that posterior p(6|X) to be factorized as
J

p(01X) = [T P9 (61X9)

j=1

where p@(]XU)) oc p(0)Y/7 [T, cxi P(xn|0) is the “subset posterior”
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Parallel /Distributed MCMC

o Suppose our goal is to compute the posterior of § € RP (assuming N is very large)
p(81X) o p(8)p(X|0) = p(d Hp xs|0)

o Suppose we have J machines with data partitioned as X = {XU)}JJ:1

o Let's assume that posterior p(6|X) to be factorized as
J

p(01X) = [T P9 (61X9)

=1
where p@(]XU)) oc p(0)Y/7 [T, cxi P(xn|0) is the “subset posterior”

o Assume {0;,}]_; to be the set of T MCMC samples generated by the j® machine

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Parallel /Distributed MCMC

o Suppose our goal is to compute the posterior of § € RP (assuming N is very large)

p(81X) o p(8)p(X|0) = p(d Hp xs|0)

o Suppose we have J machines with data partitioned as X = {XU)}JJ:1
o Let's assume that posterior p(6|X) to be factorized as
p(|X) = Hp(/) 9|x(1 )
j=1
where p@(]XU)) oc p(0)Y/7 [T, cxi P(xn|0) is the “subset posterior”
o Assume {0;,}]_; to be the set of T MCMC samples generated by the j® machine

o We need a way to combine these subset posteriors using a “consensus”

~

f1,...,01 = CONSENSUSSAMPLES({0;1,...,0;,7}7_)

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Computing Consensus Samples: Some Methods

o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

¥; = sample covariance of {0j1,...,0; 1}

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Computing Consensus Samples: Some Methods

o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

¥; = sample covariance of {0j1,...,0; 1}

J
X (ot + Z )_:jfl)fl (Xo is the prior's covariance)
j=1

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Computing Consensus Samples: Some Methods

o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

X
3

W;

sample covariance of {6, 1,...,0; 7}
J
(Tt + Z )_:jfl)fl (Xo is the prior's covariance)
=1

(X J+ 5

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Computing Consensus Samples: Some Methods

o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

X
3

W;

sample covariance of {6, 1,...,0; 7}
J
(Tt + Z )_:jfl)fl (Xo is the prior's covariance)
=1

(X J+ 5

o Fit J Gaussians, one for each {6;1,...,6; 7} and take their product

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Computing Consensus Samples: Some Methods

o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

¥; = sample covariance of {0j1,...,0; 1}
J
Y o= (It + Z ifl)fl (Xo is the prior's covariance)
=1
W= (% /45T

o Fit J Gaussians, one for each {6;1,...,6; 7} and take their product

fij = sample mean of {6;1,...,6; 7}, X;=sample covariance of {;1,...,0; 1}

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Computing Consensus Samples: Some Methods

o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

¥; = sample covariance of {0j1,...,0; 1}
J
px ():0—1 + Z ifl)fl (Xo is the prior's covariance)
j=1
W, = (% /J+ET)

o Fit J Gaussians, one for each {6;1,...,6; 7} and take their product

fij = sample mean of {6;1,...,6; 7}, X;=sample covariance of {;1,...,0; 1}
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* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Computing Consensus Samples: Some Methods

o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

¥; = sample covariance of {0j1,...,0; 1}
J
px ():0—1 + Z ifl)fl (Xo is the prior's covariance)
j=1
W, = (% /J+ET)

o Fit J Gaussians, one for each {6;1,...,6; 7} and take their product

fij = sample mean of {6;1,...,6; 7}, X;=sample covariance of {;1,...,0; 1}
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J J
(Z )_:j_l)_l, iy = fJ(Z fj_lﬁj) (cov and mean of prod. of Gaussians)
j=1 =1

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Computing Consensus Samples: Some Methods

o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

¥; = sample covariance of {0j1,...,0; 1}
J
Y o= (It + Z ifl)fl (Xo is the prior's covariance)
=1
W= (% /45T

o Fit J Gaussians, one for each {6;1,...,6; 7} and take their product
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o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

¥; = sample covariance of {0j1,...,0; 1}
Y = (L' + i ifl)fl (Xo is the prior's covariance)
=1
W= (% /45T
o Fit J Gaussians, one for each {6;1,...,6; 7} and take their product
fij = sample mean of {6;1,...,0;,7}, X;=sample covariance of {#;1,...,0; 7}
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o For detailed proof and other more sophisticated ways, please refer to the provided reading
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Computing Consensus Samples: Some Methods

o Weighted avg: 8, = Zle W;0; + where W; can be learned. Assuming Gaussian prior and lik.

¥; = sample covariance of {0j1,...,0; 1}
J
Y o= (It + Z )_:jfl)fl (Xo is the prior's covariance)
=1
W= (% /45T

o Fit J Gaussians, one for each {6;1,...,6; 7} and take their product

fij = sample mean of {6;1,...,6; 7}, X;=sample covariance of {;1,...,0; 1}
J J

s, = (Z )_:j_l)_l, iy = fJ(Z fj_lﬁj) (cov and mean of prod. of Gaussians)
j=1 j=1

0, ~ N(iiy, i_j), t=1,..., T (the final consensus samples)
o For detailed proof and other more sophisticated ways, please refer to the provided reading

o Note: VI can also be parallelized using similar techniques

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
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Inference Methods: Summary

o MLE/MAP: Straightforward for differentiable models (can even use automatic diffentiation)
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MLE/MAP: Straightforward for differentiable models (can even use automatic diffentiation)
Conjugate models with one “main” parameter: Straightforward posterior updates
MLE-11/MAP-II: Often useful for estimating the hyperparameters

EM: If we want to do MLE/MAP for models with latent variables

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Inference Methods: Summary

o MLE/MAP: Straightforward for differentiable models (can even use automatic diffentiation)
o Conjugate models with one "main” parameter: Straightforward posterior updates

o MLE-II/MAP-II: Often useful for estimating the hyperparameters

o EM: If we want to do MLE/MAP for models with latent variables

o Very general algorithm, can also be made online

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Inference Methods: Summary

o MLE/MAP: Straightforward for differentiable models (can even use automatic diffentiation)
o Conjugate models with one "main” parameter: Straightforward posterior updates

o MLE-II/MAP-II: Often useful for estimating the hyperparameters

o EM: If we want to do MLE/MAP for models with latent variables

o Very general algorithm, can also be made online

o Used when we want point estimates for some unknowns and posterior over others

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Inference Methods: Summary

o MLE/MAP: Straightforward for differentiable models (can even use automatic diffentiation)
o Conjugate models with one "main” parameter: Straightforward posterior updates

o MLE-II/MAP-II: Often useful for estimating the hyperparameters

o EM: If we want to do MLE/MAP for models with latent variables

o Very general algorithm, can also be made online
o Used when we want point estimates for some unknowns and posterior over others

o Can use it for hyperparameter estimation as well

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods



Inference Methods: Summary

o MLE/MAP: Straightforward for differentiable models (can even use automatic diffentiation)
o Conjugate models with one "main” parameter: Straightforward posterior updates

o MLE-II/MAP-II: Often useful for estimating the hyperparameters

o EM: If we want to do MLE/MAP for models with latent variables

o Very general algorithm, can also be made online
o Used when we want point estimates for some unknowns and posterior over others

o Can use it for hyperparameter estimation as well

©

Often better than using direct gradient methods
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Inference Methods: Summary

o MLE/MAP: Straightforward for differentiable models (can even use automatic diffentiation)
o Conjugate models with one "main” parameter: Straightforward posterior updates

o MLE-II/MAP-II: Often useful for estimating the hyperparameters

o EM: If we want to do MLE/MAP for models with latent variables

o Very general algorithm, can also be made online
o Used when we want point estimates for some unknowns and posterior over others
o Can use it for hyperparameter estimation as well
o Often better than using direct gradient methods

o VI ans sampling methods can be used to get full posterior for complex models

o Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
o In other cases, we have general VI with Monte-Carlo gradients, MH sampling
o MCMC can also make use of gradient info (LD/SGLD)

o For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations
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