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Recap: Markov Chain Monte Carlo (MCMC)

MCMC generates a sequence of “samples” z (1), z (2), . . . , z (L) based on a first-order Markov Chain

z (`+1) ∼ q(z |z (`))

The proposal distribution q(z |z (`)) is also known as transition function (or transition kernel)

MCMC basically does a random walk that (eventually) converges to the target distribution p(z)

The generated samples give a sample based approximation of p(z)
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Recap: The MH Sampling Algorithm

Goal: Generate samples from a probability distribution p(z) = p̃(z)
Zp

The MH Sampling Algorithm

Initialize z (0) randomly

For ` = 0, . . . , L− 1

Sample z∗ ∼ q(z |z (`)) and u ∼ Unif(0, 1)

Compute the acceptance probability A(z∗, z (`)) = min
(

1, p̃(z∗)q(z (`)|z∗)
p̃(z (`))q(z∗|z (`))

)
If u < A(z∗, z (`)) then set z (`+1) = z∗ else z (`+1) = z (`)

Note: Computing acceptance prob. can be expensive in general, e.g., for posterior inference in which
case p̃(z) represents an unnormalized posterior p(X|Z)p(Z), which is product of likelihood and prior
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Recap: Gibbs Sampling

An instance of MH sampling where the acceptance probability = 1

Based on sampling z one “component” at a time with proposal = conditional distribution

Gibbs Sampling

Initialize z (0) = [z
(0)
1 , z

(0)
2 , . . . , z

(0)
M ] randomly

For ` = 1, . . . , L

Sample z (`) by sampling one component at a time (usually cyclic manner)

z
(`)
1 ∼ p(z1|z (`−1)

2 , z
(`−1)
3 , . . . , z

(`−1)
M )

z
(`)
2 ∼ p(z2|z (`)

1 , z
(`−1)
3 , . . . , z

(`−1)
M )

...

z
(`)
M−1 ∼ p(zM−1|z (`)

1 , . . . , z
(`)
M−2, z

(`−1)
M )

z
(`)
M ∼ p(zM |z (`)

1 , z
(`)
2 , . . . , z

(`)
M−1)

Very easy to derive if the conditional distributions are easy to obtain
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Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D
Gaussian, conditionals will simply be 1-D Gaussians)
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          Z
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(one update complete)

z(t+1)

  Z
1 
updated

Note that Gibbs updates are like co-ordinate ascent
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Deriving A Gibbs Sampler: The General Recipe

Suppose our target distribution is a posterior distribution p(Z|X) where Z = [z1, z2, . . . , zM ]

Gibbs sampling requires the conditional posteriors p(zm|Z−m,X) for m = 1, . . . ,M

In general, p(zm|Z−m,X) ∝ p(zm)p(X|zm,Z−m) where Z−m is “known”

If p(zm) and p(X|zm,Z−m) are conjugate then the CP is straightforward

Another way to get each CP p(zm|Z−m,X) is by following this

Write down the expression of p(X,Z)

Terms that contain zm represent the CP of zm (up to proportionality constant)

Note: Sometimes it’s easier to look at the log of everything (like we did while deriving mean-field VI)

Also remember: In p(zm|Z−m,X), we only need to condition on terms in Markov Blanket of zm

Markov Blanket of a variable: Its parents, children, and other parents of its children
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An Aside: Markov Blanket

Markov Blanket of a variable: Its parents, children, and other parents of its children

Very helpful in quickly seeing what to condition on when deriving CPs in complex models
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Gibbs Sampling: A Not-So-Simple Example

K

N

Gaussian
Mixture
Model
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Gibbs Sampling: Another Not-So-Simple Example

J schools
Regression
Problem
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Gibbs Sampling: Some Comments

One of the most popular MCMC algorithm

Very easy to derive and implement for locally conjugate models

Many variations exist, e.g.,

Blocked Gibbs: sample multiple variables jointly (sometimes possible)

Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.
Also called “collapsed” Gibbs sampling (note: collapsing is a more general idea, can also be used in
other inference algorithms such as VI)

MH within Gibbs

Instead of sampling from the conditionals, an alternative is to use the mode of the conditional.

Called the “Iterative Conditional Mode” (ICM) algorithm (doesn’t give the posterior though)
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Sampling Methods: Label Switching Issue

A subtle but important issue

Suppose we are given samples Z(1), . . . ,Z(S) from the posterior p(Z|X)

We can’t always simply “average” them to get the “posterior mean” Z̄

Reason: Non-identifiability of latent variables in models that have multiple posterior modes

Example: In a clustering model (e.g., GMM), the likelihood is invariant to how we label clusters

What we call cluster 1 in one sample may be cluster 2 in the next sample

Therefore averaging latent variables across samples can be meaningless

Quantities not affected by permutations of latent variables can be safely averaged

E.g., probability that two points belong to the same cluster (e.g., in GMM)

Predicting the mean/variance of a missing entry rij in matrix factorization
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MCMC: Some Other Aspects

Choice of proposal distribution is important

For MH sampling, Gaussian proposal is popular when z is continuous, e.g.,

q(z (`)|z (`−1)) = N (z |z (`−1),H)

where H is the Hessian at the MAP of the target distribution

More sophisticated proposals: Mixture of proposal distributions, data-driven or adaptive proposals

Autocorrelation. Can show that when approximating f ∗ = E[f ] using S samples {z (s)}Ss=1

varMCMC [f̄ ] = varMC [f̄ ] +
1

S2

∑
s 6=t

E[(fs − f ∗)(ft − f ∗)], Effective Sample Size (ESS) =
varMC [f ]

varMCMC [f ]

In above, fs is value of f computed using the st MCMC sample z (s). Assume f̄ = 1
S

∑S
s=1 fs

Autocorrelation function (ACF) at lag t is define as ρt =
1

S−t

∑S−t
s=1 (fs−f̄ )(fs+t−f̄ )

1
S−1

∑S
s=1(fs−f̄ )2 . Lower is better!

Multiple Chains: Run multiple chains, take union of generated samples (ignoring burn-in samples)
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MCMC and Random Walk

MCMC methods use a proposal distribution to draw the next sample given the previous sample

θ(t) ∼ N (θ(t−1), σ2)

.. and then we accept/reject (if doing MH) or always accept (if doing Gibbs sampling)

Such proposal distributions typically lead to a random-walk behavior (e.g., a zig-zag trajectory in
Gibbs sampling) and may lead to very slow convergence (pic below: θ = [z1, z2])

Can be especially critical when the components of θ are highly correlated

Using gradient info of the posterior can be helpful in avoiding the random walk (more in next class)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 13



MCMC and Random Walk

MCMC methods use a proposal distribution to draw the next sample given the previous sample

θ(t) ∼ N (θ(t−1), σ2)

.. and then we accept/reject (if doing MH) or always accept (if doing Gibbs sampling)

Such proposal distributions typically lead to a random-walk behavior (e.g., a zig-zag trajectory in
Gibbs sampling) and may lead to very slow convergence (pic below: θ = [z1, z2])

Can be especially critical when the components of θ are highly correlated

Using gradient info of the posterior can be helpful in avoiding the random walk (more in next class)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 13



MCMC and Random Walk

MCMC methods use a proposal distribution to draw the next sample given the previous sample

θ(t) ∼ N (θ(t−1), σ2)

.. and then we accept/reject (if doing MH) or always accept (if doing Gibbs sampling)

Such proposal distributions typically lead to a random-walk behavior (e.g., a zig-zag trajectory in
Gibbs sampling) and may lead to very slow convergence (pic below: θ = [z1, z2])

Can be especially critical when the components of θ are highly correlated

Using gradient info of the posterior can be helpful in avoiding the random walk (more in next class)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 13



MCMC and Random Walk

MCMC methods use a proposal distribution to draw the next sample given the previous sample

θ(t) ∼ N (θ(t−1), σ2)

.. and then we accept/reject (if doing MH) or always accept (if doing Gibbs sampling)

Such proposal distributions typically lead to a random-walk behavior (e.g., a zig-zag trajectory in
Gibbs sampling) and may lead to very slow convergence (pic below: θ = [z1, z2])

Can be especially critical when the components of θ are highly correlated

Using gradient info of the posterior can be helpful in avoiding the random walk (more in next class)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 13



Using Gradient Info via Langevin Dynamics

Constructs proposal distribution using gradient of the log-posterior

Gradient of the log-posterior: ∇θ log p(θ,D)
p(D) = ∇θ log p(D|θ)p(θ)

p(D) = ∇θ[log p(D|θ) + log p(θ)]

Now let’s construct a proposal and generate a random sample as follows

θ∗ = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1)

θ(t) ∼ N (θ∗, η) (and then accept/reject using an MH step)

This method is called Langevin dynamics (Neal, 2010). Has its origins in statistical Physics.
(Move proposal’s mean towards posterior’s mode)
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Langevin Dynamics (Contd)

Note that the updates of θ can also be written in the form

θ(t) = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) +εt where εt ∼ N (0, η)

After this update, we accept/reject θ(t) using MH test

Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)

The random noise ensures that we aren’t stuck just on the MAP estimate but explore the posterior

Almost as efficient computationally as standard gradient ascent/descent based MAP estimation

A few technical conditions (Welling and Teh, 2011)

The noise variance needs to be controlled (here, we are setting it to twice the learning rate)

As η → 0, the acceptance probability approaches 1 and we can always accept

Note that the procedure is almost as fast as MAP estimation!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 15



Langevin Dynamics (Contd)

Note that the updates of θ can also be written in the form

θ(t) = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) +εt where εt ∼ N (0, η)

After this update, we accept/reject θ(t) using MH test

Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)

The random noise ensures that we aren’t stuck just on the MAP estimate but explore the posterior

Almost as efficient computationally as standard gradient ascent/descent based MAP estimation

A few technical conditions (Welling and Teh, 2011)

The noise variance needs to be controlled (here, we are setting it to twice the learning rate)

As η → 0, the acceptance probability approaches 1 and we can always accept

Note that the procedure is almost as fast as MAP estimation!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 15



Langevin Dynamics (Contd)

Note that the updates of θ can also be written in the form

θ(t) = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) +εt where εt ∼ N (0, η)

After this update, we accept/reject θ(t) using MH test

Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)

The random noise ensures that we aren’t stuck just on the MAP estimate but explore the posterior

Almost as efficient computationally as standard gradient ascent/descent based MAP estimation

A few technical conditions (Welling and Teh, 2011)

The noise variance needs to be controlled (here, we are setting it to twice the learning rate)

As η → 0, the acceptance probability approaches 1 and we can always accept

Note that the procedure is almost as fast as MAP estimation!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 15



Langevin Dynamics (Contd)

Note that the updates of θ can also be written in the form

θ(t) = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) +εt where εt ∼ N (0, η)

After this update, we accept/reject θ(t) using MH test

Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)

The random noise ensures that we aren’t stuck just on the MAP estimate but explore the posterior

Almost as efficient computationally as standard gradient ascent/descent based MAP estimation

A few technical conditions (Welling and Teh, 2011)

The noise variance needs to be controlled (here, we are setting it to twice the learning rate)

As η → 0, the acceptance probability approaches 1 and we can always accept

Note that the procedure is almost as fast as MAP estimation!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 15



Langevin Dynamics (Contd)

Note that the updates of θ can also be written in the form

θ(t) = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) +εt where εt ∼ N (0, η)

After this update, we accept/reject θ(t) using MH test

Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)

The random noise ensures that we aren’t stuck just on the MAP estimate but explore the posterior

Almost as efficient computationally as standard gradient ascent/descent based MAP estimation

A few technical conditions (Welling and Teh, 2011)

The noise variance needs to be controlled (here, we are setting it to twice the learning rate)

As η → 0, the acceptance probability approaches 1 and we can always accept

Note that the procedure is almost as fast as MAP estimation!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 15



Langevin Dynamics (Contd)

Note that the updates of θ can also be written in the form

θ(t) = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) +εt where εt ∼ N (0, η)

After this update, we accept/reject θ(t) using MH test

Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)

The random noise ensures that we aren’t stuck just on the MAP estimate but explore the posterior

Almost as efficient computationally as standard gradient ascent/descent based MAP estimation

A few technical conditions (Welling and Teh, 2011)

The noise variance needs to be controlled (here, we are setting it to twice the learning rate)

As η → 0, the acceptance probability approaches 1 and we can always accept

Note that the procedure is almost as fast as MAP estimation!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 15



Langevin Dynamics (Contd)

Note that the updates of θ can also be written in the form

θ(t) = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) +εt where εt ∼ N (0, η)

After this update, we accept/reject θ(t) using MH test

Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)

The random noise ensures that we aren’t stuck just on the MAP estimate but explore the posterior

Almost as efficient computationally as standard gradient ascent/descent based MAP estimation

A few technical conditions (Welling and Teh, 2011)

The noise variance needs to be controlled (here, we are setting it to twice the learning rate)

As η → 0, the acceptance probability approaches 1 and we can always accept

Note that the procedure is almost as fast as MAP estimation!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 15



Langevin Dynamics (Contd)

Note that the updates of θ can also be written in the form

θ(t) = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) +εt where εt ∼ N (0, η)

After this update, we accept/reject θ(t) using MH test

Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)

The random noise ensures that we aren’t stuck just on the MAP estimate but explore the posterior

Almost as efficient computationally as standard gradient ascent/descent based MAP estimation

A few technical conditions (Welling and Teh, 2011)

The noise variance needs to be controlled (here, we are setting it to twice the learning rate)

As η → 0, the acceptance probability approaches 1 and we can always accept

Note that the procedure is almost as fast as MAP estimation!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 15



Langevin Dynamics (Contd)

Note that the updates of θ can also be written in the form

θ(t) = θ(t−1) +
η

2
∇θ[log p(D|θ) + log p(θ)]

∣∣
θ(t−1) +εt where εt ∼ N (0, η)

After this update, we accept/reject θ(t) using MH test

Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)

The random noise ensures that we aren’t stuck just on the MAP estimate but explore the posterior

Almost as efficient computationally as standard gradient ascent/descent based MAP estimation

A few technical conditions (Welling and Teh, 2011)

The noise variance needs to be controlled (here, we are setting it to twice the learning rate)

As η → 0, the acceptance probability approaches 1 and we can always accept

Note that the procedure is almost as fast as MAP estimation!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 15



Stochastic Gradient (Online) Langevin Dynamics

Allows scaling up MCMC algorithms by processing data in small minibatches

Stocahstic Gradient Langevin Dynamics (SGLD) is one such example

Basically an online extension of the Langevin Dynamics method we saw earlier

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, σ2) then accept/reject

Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH

Valid under some technical conditions on learning rate ηt , noise variance σ2, etc.

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 16



Stochastic Gradient (Online) Langevin Dynamics

Allows scaling up MCMC algorithms by processing data in small minibatches

Stocahstic Gradient Langevin Dynamics (SGLD) is one such example

Basically an online extension of the Langevin Dynamics method we saw earlier

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, σ2) then accept/reject

Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH

Valid under some technical conditions on learning rate ηt , noise variance σ2, etc.

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 16



Stochastic Gradient (Online) Langevin Dynamics

Allows scaling up MCMC algorithms by processing data in small minibatches

Stocahstic Gradient Langevin Dynamics (SGLD) is one such example

Basically an online extension of the Langevin Dynamics method we saw earlier

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, σ2) then accept/reject

Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH

Valid under some technical conditions on learning rate ηt , noise variance σ2, etc.

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 16



Stochastic Gradient (Online) Langevin Dynamics

Allows scaling up MCMC algorithms by processing data in small minibatches

Stocahstic Gradient Langevin Dynamics (SGLD) is one such example

Basically an online extension of the Langevin Dynamics method we saw earlier

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, σ2) then accept/reject

Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH

Valid under some technical conditions on learning rate ηt , noise variance σ2, etc.

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 16



Stochastic Gradient (Online) Langevin Dynamics

Allows scaling up MCMC algorithms by processing data in small minibatches

Stocahstic Gradient Langevin Dynamics (SGLD) is one such example

Basically an online extension of the Langevin Dynamics method we saw earlier

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, σ2)

then accept/reject

Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH

Valid under some technical conditions on learning rate ηt , noise variance σ2, etc.

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 16



Stochastic Gradient (Online) Langevin Dynamics

Allows scaling up MCMC algorithms by processing data in small minibatches

Stocahstic Gradient Langevin Dynamics (SGLD) is one such example

Basically an online extension of the Langevin Dynamics method we saw earlier

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, σ2) then accept/reject

Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH

Valid under some technical conditions on learning rate ηt , noise variance σ2, etc.

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 16



Stochastic Gradient (Online) Langevin Dynamics

Allows scaling up MCMC algorithms by processing data in small minibatches

Stocahstic Gradient Langevin Dynamics (SGLD) is one such example

Basically an online extension of the Langevin Dynamics method we saw earlier

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, σ2) then accept/reject

Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH

Valid under some technical conditions on learning rate ηt , noise variance σ2, etc.

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 16



Stochastic Gradient (Online) Langevin Dynamics

Allows scaling up MCMC algorithms by processing data in small minibatches

Stocahstic Gradient Langevin Dynamics (SGLD) is one such example

Basically an online extension of the Langevin Dynamics method we saw earlier

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, σ2) then accept/reject

Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH

Valid under some technical conditions on learning rate ηt , noise variance σ2, etc.

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 16



Stochastic Gradient (Online) Langevin Dynamics

Allows scaling up MCMC algorithms by processing data in small minibatches

Stocahstic Gradient Langevin Dynamics (SGLD) is one such example

Basically an online extension of the Langevin Dynamics method we saw earlier

Given minibatch Dt = {x t1, . . . , x tNt}. Then the (stochastic) Langevin dynamics update is

θ∗ = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
,

θ(t) ∼ N (θ∗, σ2) then accept/reject

Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH

Valid under some technical conditions on learning rate ηt , noise variance σ2, etc.

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin
Dynamics” by Welling and Teh (2011) and follow-up works)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd), and Gradient-based and Online MCMC 16



SGLD: Some Comments

Very easy to implement (only need to compute gradients of log-lik and log-prior)

If not doing accept/reject, we just need to do the following for each minibatch of data

θ(t) = θ(t−1) + ηt∇θ

[
N

|Dt |

Nt∑
n=1

log p(x tn|θ) + log p(θ)

]
+εt

It’s just like SGD updates (+added Gaussian noise). Highly scalable even when N is very large

Almost as efficient as doing MAP estimation using stochastic gradient methods

Applies to non-conjugate models easily (so long as we can take derivatives)

Several improvements on SGLD in the past couple of years

Better choice of learning rate and pre-conditioners for improving convergence

Extending to the case when θ has some constraints (e.g., a point on simplex)

Theoretical analysis and justification for the “correctness” of the procedure
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