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Recap: Basic Sampling Methods

Inverse CDF method. Assume F (z) to be CDF of our distribution of interest p(z)

Reparametrization method (also used in VI - pathwise gradient methods), e.g.,

ẑ ∼ N (0, 1)⇒ z = µ+ σẑ ∼ N (µ, σ2)

Note: The above are examples of the more general idea of transformation of distributions

p(z) = q(ẑ)

∣∣∣∣∂ẑ∂z
∣∣∣∣

.. where
∣∣∂ẑ
∂z

∣∣ is the determinant of the Jacobian
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Recap: Basic Sampling Methods

Rejection Sampling: Sample from p(z) = p̃(z)
Zp

by sampling from q(z), s.t., Mq(z) ≥ p̃(z)

z∗ ∼ q(z) and u ∼ Uniform(0,Mq(z))

If u ≤ p̃(z∗), accept z∗ else reject

Repeat the above two steps until we have generated the desired number of samples
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Computing Expectations via Monte Carlo Sampling

Often we are interested in computing expectations of the form

E[f ] =

∫
f (z)p(z)dz

where f (z) is some function of a random variable z ∼ p(z)

A simple approximation scheme: Monte Carlo integration

Suppose we can generate L independent samples from p(z): {z (`)}L`=1 ∼ p(z)

Monte-Carlo approximation replaces the expectation by an empirical average

f̂ ≈ 1

L

L∑
`=1

f (z (`))

Since the samples are independent of each other, can show the following (exercise)

E[f̂ ] = E[f ] and var[f̂ ] =
1

L
var[f ] =

1

L
E[(f − E[f ])2]

Note that the variance in the estimate of expectation decreases as L increases

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd) 4



Computing Expectations via Monte Carlo Sampling

Often we are interested in computing expectations of the form

E[f ] =

∫
f (z)p(z)dz

where f (z) is some function of a random variable z ∼ p(z)

A simple approximation scheme: Monte Carlo integration

Suppose we can generate L independent samples from p(z): {z (`)}L`=1 ∼ p(z)

Monte-Carlo approximation replaces the expectation by an empirical average

f̂ ≈ 1

L

L∑
`=1

f (z (`))

Since the samples are independent of each other, can show the following (exercise)

E[f̂ ] = E[f ] and var[f̂ ] =
1

L
var[f ] =

1

L
E[(f − E[f ])2]

Note that the variance in the estimate of expectation decreases as L increases

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd) 4



Computing Expectations via Monte Carlo Sampling

Often we are interested in computing expectations of the form

E[f ] =

∫
f (z)p(z)dz

where f (z) is some function of a random variable z ∼ p(z)

A simple approximation scheme: Monte Carlo integration

Suppose we can generate L independent samples from p(z): {z (`)}L`=1 ∼ p(z)

Monte-Carlo approximation replaces the expectation by an empirical average

f̂ ≈ 1

L

L∑
`=1

f (z (`))

Since the samples are independent of each other, can show the following (exercise)

E[f̂ ] = E[f ] and var[f̂ ] =
1

L
var[f ] =

1

L
E[(f − E[f ])2]

Note that the variance in the estimate of expectation decreases as L increases

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd) 4



Computing Expectations via Monte Carlo Sampling

Often we are interested in computing expectations of the form

E[f ] =

∫
f (z)p(z)dz

where f (z) is some function of a random variable z ∼ p(z)

A simple approximation scheme: Monte Carlo integration

Suppose we can generate L independent samples from p(z): {z (`)}L`=1 ∼ p(z)

Monte-Carlo approximation replaces the expectation by an empirical average

f̂ ≈ 1

L

L∑
`=1

f (z (`))

Since the samples are independent of each other, can show the following (exercise)

E[f̂ ] = E[f ] and var[f̂ ] =
1

L
var[f ] =

1

L
E[(f − E[f ])2]

Note that the variance in the estimate of expectation decreases as L increases

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd) 4



Computing Expectations via Monte Carlo Sampling

Often we are interested in computing expectations of the form

E[f ] =

∫
f (z)p(z)dz

where f (z) is some function of a random variable z ∼ p(z)

A simple approximation scheme: Monte Carlo integration

Suppose we can generate L independent samples from p(z): {z (`)}L`=1 ∼ p(z)

Monte-Carlo approximation replaces the expectation by an empirical average

f̂ ≈ 1

L

L∑
`=1

f (z (`))

Since the samples are independent of each other, can show the following (exercise)

E[f̂ ] = E[f ] and var[f̂ ] =
1

L
var[f ] =

1

L
E[(f − E[f ])2]

Note that the variance in the estimate of expectation decreases as L increases

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd) 4



Computing Expectations via Monte Carlo Sampling

Often we are interested in computing expectations of the form

E[f ] =

∫
f (z)p(z)dz

where f (z) is some function of a random variable z ∼ p(z)

A simple approximation scheme: Monte Carlo integration

Suppose we can generate L independent samples from p(z): {z (`)}L`=1 ∼ p(z)

Monte-Carlo approximation replaces the expectation by an empirical average

f̂ ≈ 1

L

L∑
`=1

f (z (`))

Since the samples are independent of each other, can show the following (exercise)

E[f̂ ] = E[f ] and var[f̂ ] =
1

L
var[f ] =

1

L
E[(f − E[f ])2]

Note that the variance in the estimate of expectation decreases as L increases

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Inference via Sampling (Contd) 4



Computing Expectations via Importance Sampling

Monte Carlo assumes we know how to generate samples from p(z). What if we don’t know?

Transformation methods can be one way to handle this situation

Importance Sampling is another way: Generate from a “proposal” q(z), i.e., {z (`)}L`=1 ∼ q(z)

Additionally, suppose we can evaluate p(z) at any given z

Importance Sampling then approximates the original expectation as

E[f ] =

∫
f (z)p(z)dz =

∫
f (z)

p(z)

q(z)
q(z)dz ≈ 1

L

L∑
`=1

f (z (`))
p(z (`))

q(z (`))

This is basically “weighted” Monte Carlo integration

w` = p(z(`))
q(z(`))

denotes the importance weight of each sample z (`)

Works even when we can evaluate p(z) = p̃(z)
Zp

only up to a prop. constant (PRML 11.1.4)

Note: Monte Carlo and Importance Sampling are NOT sampling methods!

.. that is, not used for generating samples but only for computing expectations using samples
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Limitations of Basic Sampling Methods

Transformation based methods: Usually limited to drawing from standard distributions

Rejection Sampling and Importance Sampling: Require good proposal distributions

Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)

In high dimensions, most of the mass of p(z) is concentrated in a tiny region of the z space

Difficult to a priori know what those regions are, thus difficult to come up with good proposal dist.

A solution to these: MCMC methods
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Markov Chain Monte Carlo (MCMC)

Goal: Generate samples from some target distribution p(z) = p̃(z)
Z , where z is high-dimensional

Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute p̃(z))

Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

z (1) → z (2) → z (3) →︸ ︷︷ ︸
initial samples typically garbage

. . .→ z (L−2) → z (L−1) → z (L)︸ ︷︷ ︸
after convergence, actual samples from p(z)

Given a current sample z (`) from the chain, MCMC generates the next sample z (`+1) as

Use a proposal distribution q(z |z (`)) to generate a candidate sample z∗

Accept/reject z∗ as the next sample based on an acceptance criterion (will see later)

If accepted, z (`+1) = z∗. If rejected, z (`+1) = z (`)

Note that in MCMC, the proposal distribution q(z |z (`)) depends on the previous sample (unlike
methods such as rejection sampling)
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MCMC: The Basic Scheme

MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)

But we usually require several samples to approximate p(z). How do we get those?

Start at an initial z (0). Using a prop. dist. q(z (`+1)|z (`)), run the chain long enough, say T1 steps

Discard the first (T1 − 1) samples (called “burn-in” samples) and take the last sample z (T1)

Continue from z (T1) up to T2 steps, discard intermediate samples, take the last sample z (T2)

This helps ensure that z(T1) and z(T2) are uncorrelated

Repeat the same for a total of S times

In the end, we have S i.i.d. samples from p(z), i.e., z (T1), z (T2), . . . , z (TS ) ∼ p(z)

Note: Good choices for T1 and Ti − Ti−1 are usually based on heuristics

Note: MCMC is an approximate method because we don’t usually know what T1 is “long enough”
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MCMC: Some Basic Theory

A first order Markov Chain assumes p(z (`+1)|z (1), . . . , z (`)) = p(z (`+1)|z (`))

A 1st order Markov Chain z (0), z (1), . . . , z (L) is a sequence of r.v.’s and is defined by

An initial state distribution p(z (0))

A Transition Function (TF): T`(z (`) → z (`+1)) = p(z (`+1)|z (`)).

TF defines a distribution over the values of next state given the value of the current state

Assuming a discrete state-space, the TF is defined by a K × K probability table

Homogeneous Markov Chain: The TF is the same for all `, i.e., T` = T
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MCMC: Some Basic Theory

Consider the following simple TF with K = 3 (want to sample from a multinoulli)

Consider the initial state distribution p(z (0)) = p(z
(0)
1 , z

(0)
2 , z

(0)
3 ) = [0.5, 0.2, 0.3]
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For the above T , any choice of p(z (0)) leads to multinoulli p(z)i with π = [0.2, 0.4, 0.4]

Such a p(z) is called the stationary/invariant distribution of this Markov Chain

A Markov Chain has a stationary distribution if T has the following properties
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MCMC: Some Basic Theory

A sufficient (but not necessary) condition: A Markov Chain with transition function T has
stationary distribution p(z) if T satisfies Detailed Balance

For any two states z and z ′, the Detailed Balanced condition is

p(z)T (z → z ′) = p(z ′)T (z ′ → z)

Integrating out (or summing over) both sides w.r.t. z ′ gives

p(z) =

∫
p(z ′)T (z ′ → z)dz ′

Therefore p(z) is a stationary distribution of this chain

Thus a Markov Chain with detailed balance will always converge to a stationary distribution
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Some MCMC Algorithms
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

Suppose we wish to generate samples from a distribution p(z) = p̃(z)
Zp

Assume a proposal distribution q(z |z (τ)), e.g., N (z |z (τ), σ2ID)

In each step, draw z∗ ∼ q(z |z (τ)) and accept z∗ with probability

A(z∗, z (τ)) = min

(
1,

p̃(z∗)q(z (τ)|z∗)
p̃(z (τ))q(z∗|z (τ))

)
The acceptance probability makes intuitive sense

It favors accepting z∗ if p̃(z∗) has a higher value than p̃(z (τ))

Unfavors z∗ if the proposal distribution q unduly favors its generation (i.e., if q(z∗|z (τ)) is large)

Favors z∗ if we can “reverse” to z (τ) from z∗ (i.e., if q(z (τ)|z∗) is large). Needed for good “mixing”

Transition function of this Markov Chain: T (z (τ) → z∗) = A(z∗, z (τ))q(z∗|z (τ))

Exercise: Show that T (z → z (τ)) satisfies the detailed balance property

T (z → z (τ))p(z) = T (z (τ) → z)p(z (τ))
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The MH Sampling Algorithm

Initialize z (0) randomly

For ` = 0, . . . , L− 1

Sample z∗ ∼ q(z∗|z (`)) and u ∼ Unif(0, 1)

If u < A(z∗, z (`)) = min
(

1, p̃(z∗)q(z(`)|z∗)
p̃(z(`))q(z∗|z(`))

)
z (`+1) = z∗ (meaning: accepting with probability A(z∗, z (`)))

else
z (`+1) = z (`)
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MH Sampling in Action: A Toy Example..

Target p(z) = N
([

4
4

]
,

[
1 0.8

0.8 1

])
, Proposal q(z (t)|z (t−1)) = N

(
z (t−1),

[
0.01 0

0 0.01

])
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MH Sampling: Some Comments

If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

A(z∗, z (τ)) = min

(
1,

p̃(z∗)
p̃(z (τ))

)

Some limitations of MH sampling

MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal

Computing acceptance probability can be expensive: When p(z) = p̃(z)
Zp

represents a posterior

distribution of some model, p̃ is the unnormalized posterior that depends on all the data (note: a lot
of recent work on speeding up this step using subsets of data∗)

∗Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014)
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Gibbs Sampling (Geman & Geman, 1984)

Suppose we wish to sample from a joint distribution p(z) where z = (z1, z2, . . . , zM)

However, suppose we can’t sample from p(z) but can sample from each conditional p(zi |z−i )

Can we done easily if we have a locally conjugate model

For Gibbs sampling, the proposal is the conditional distribution p(zi |z−i )

Gibbs sampling samples from these conditionals in a cyclic order

Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. = 1

A(z∗, z) =
p(z∗)q(z |z∗)
p(z)q(z∗|z)

=
p(z∗i |z∗−i )p(z∗−i )p(zi |z∗−i )
p(zi |z−i )p(z−i )p(z∗i |z−i )

= 1

where we use the fact that z∗−i = z−i
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Gibbs Sampling: Sketch of the Algorithm

M: Total number of variables, T : number of Gibbs sampling steps

Note: When sampling each variable from its conditional posterior, we use the most recent values of all
other variables (this is akin to a co-ordinate ascent like procedure)

Note: Order of updating the variables usually doesn’t matter (but see “Scan Order in Gibbs Sampling: Models in
Which it Matters and Bounds on How Much” from NIPS 2016)
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Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D
Gaussian, conditionals will simply be 1-D Gaussians)
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Gibbs Sampling: Some Comments

One of the most popular MCMC algorithm

Very easy to derive and implement for locally conjugate models

Many variations exist, e.g.,

Blocked Gibbs: sample multiple variables jointly (sometimes possible)

Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.
Also called “collapsed” Gibbs sampling

MH within Gibbs

Instead of sampling from the conditionals, an alternative is to use the mode of the conditional.

Called the “Iterative Conditional Mode” (ICM) algorithm (doesn’t give the posterior though)
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Next Class

Using posterior’s gradient info in sampling algorithms

Online MCMC algorithms

Recent advances in MCMC

Some other practical issues
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