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Recap: Basic Sampling Methods
o Inverse CDF method. Assume F(z) to be CDF of our distribution of interest p(z)

£ ~ Uniform(0, 1)
z=F(2)
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Recap: Basic Sampling Methods
o Inverse CDF method. Assume F(z) to be CDF of our distribution of interest p(z)

£ ~ Uniform(0, 1)
z=F(2)

o Reparametrization method (also used in VI - pathwise gradient methods), e.g.,

5~ N(0,1)=z=p+02~N(u0o?)
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Recap: Basic Sampling Methods
o Inverse CDF method. Assume F(z) to be CDF of our distribution of interest p(z)

£ ~ Uniform(0, 1)
z=F(2)

o Reparametrization method (also used in VI - pathwise gradient methods), e.g.,
5~ N(0,1)=z=p+02~N(u0o?)
o Note: The above are examples of the more general idea of transformation of distributions
p(z) = a(2) |22

0z
.. Where ]%| is the determinant of the Jacobian
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Recap: Basic Sampling Methods

o Rejection Sampling: Sample from p(z) = ﬁz) by sampling from q(z), s.t., Mq(z) > p(z)
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Recap: Basic Sampling Methods

o Rejection Sampling: Sample from p(z) = ﬁz) by sampling from q(z), s.t., Mq(z) > p(z)

o z, ~ q(z) and u ~ Uniform(0, Mq(z))
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Recap: Basic Sampling Methods

o Rejection Sampling: Sample from p(z) = ﬁz) by sampling from g(z), s.t., Mqg(z)

o z, ~ q(z) and u ~ Uniform(0, Mq(z))

o If u < p(z), accept z. else reject
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Recap: Basic Sampling Methods

o Rejection Sampling: Sample from p(z) = ﬁz) by sampling from q(z), s.t., Mq(z) > p(z)

o z, ~ q(z) and u ~ Uniform(0, Mq(z))
o If u < p(z), accept z. else reject

o Repeat the above two steps until we have generated the desired number of samples
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Computing Expectations via Monte Carlo Sampling

o Often we are interested in computing expectations of the form

E[f] :/f(z)p(z)dz

where f(z) is some function of a random variable z ~ p(z)
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Computing Expectations via Monte Carlo Sampling

o Often we are interested in computing expectations of the form

E[f] = / f(z)p(z)dz
where f(z) is some function of a random variable z ~ p(z)

o A simple approximation scheme: Monte Carlo integration
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Computing Expectations via Monte Carlo Sampling

o Often we are interested in computing expectations of the form

E[f] = / f(z)p(z)dz
where f(z) is some function of a random variable z ~ p(z)
o A simple approximation scheme: Monte Carlo integration

o Suppose we can generate L independent samples from p(z): {z(V}_, ~ p(z)
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Computing Expectations via Monte Carlo Sampling

o Often we are interested in computing expectations of the form

E[f] = / f(z)p(z)dz
where f(z) is some function of a random variable z ~ p(z)
o A simple approximation scheme: Monte Carlo integration
o Suppose we can generate L independent samples from p(z): {z(V}_, ~ p(z)

o Monte-Carlo approximation replaces the expectation by an empirical average
L
~ 1
fr- f(z
LS A(29)
r=1
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Computing Expectations via Monte Carlo Sampling

o Often we are interested in computing expectations of the form

E[f] = / f(z)p(z)dz
where f(z) is some function of a random variable z ~ p(z)
o A simple approximation scheme: Monte Carlo integration
o Suppose we can generate L independent samples from p(z): {z(V}_, ~ p(z)

o Monte-Carlo approximation replaces the expectation by an empirical average

L

» 1

fr— f(z)
L£§:1 (z)

o Since the samples are independent of each other, can show the following (exercise)

E[f] =E[f] and var[f] = %var[f] = %E[(f — E[f])?]
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Computing Expectations via Monte Carlo Sampling

o Often we are interested in computing expectations of the form

E[f] = / f(z)p(z)dz
where f(z) is some function of a random variable z ~ p(z)
o A simple approximation scheme: Monte Carlo integration
o Suppose we can generate L independent samples from p(z): {z(V}_, ~ p(z)

o Monte-Carlo approximation replaces the expectation by an empirical average

L
2 1
~ = O
fr o ; f(z*))
o Since the samples are independent of each other, can show the following (exercise)

E[f] =E[f] and var[f] = %var[f] = %E[(f — E[f])?]

o Note that the variance in the estimate of expectation decreases as L increases
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Computing Expectations via Importance Sampling

o Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
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Computing Expectations via Importance Sampling

o Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?

o Transformation methods can be one way to handle this situation
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Computing Expectations via Importance Sampling

o Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
o Transformation methods can be one way to handle this situation

o Importance Sampling is another way:
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Computing Expectations via Importance Sampling

o Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
o Transformation methods can be one way to handle this situation

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)
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Computing Expectations via Importance Sampling

Monte Carlo assumes we know how to generate samples from p(z). What if we don’t know?

©

Transformation methods can be one way to handle this situation

©

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)

o Additionally, suppose we can evaluate p(z) at any given z
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Computing Expectations via Importance Sampling

Monte Carlo assumes we know how to generate samples from p(z). What if we don’t know?

©

Transformation methods can be one way to handle this situation

©

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)
o Additionally, suppose we can evaluate p(z) at any given z

o Importance Sampling then approximates the original expectation as

E[f] = / F(2)p(2)dz
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Computing Expectations via Importance Sampling

o Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?

Transformation methods can be one way to handle this situation

©

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)
o Additionally, suppose we can evaluate p(z) at any given z

o Importance Sampling then approximates the original expectation as

E[f] = / F(2)p(z / £(2)22) 4(2)dz
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Computing Expectations via Importance Sampling

o Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?

Transformation methods can be one way to handle this situation

©

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)
o Additionally, suppose we can evaluate p(z) at any given z

o Importance Sampling then approximates the original expectation as

L 2(0)
E[f] = / f(2)p(z / ()22 a(2)dz ~% F(20) qum;
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Computing Expectations via Importance Sampling

o Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?

Transformation methods can be one way to handle this situation

©

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)
o Additionally, suppose we can evaluate p(z) at any given z

o Importance Sampling then approximates the original expectation as

L
E[f] = / F(2)p(2)dz = / f(z)zg %Z z(z
—1

o This is basically “weighted” Monte Carlo integration

O]

~—

=
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Computing Expectations via Importance Sampling

Monte Carlo assumes we know how to generate samples from p(z). What if we don’t know?

©

Transformation methods can be one way to handle this situation

©

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)
o Additionally, suppose we can evaluate p(z) at any given z

o Importance Sampling then approximates the original expectation as

E[f] :/f(Z)p /f q(z)dz ~ %Z z(f q(z(f))

o This is basically “weighted” Monte Carlo integration

() . .
o wp = Zg(‘); denotes the importance weight of each sample z(¥
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Computing Expectations via Importance Sampling

Monte Carlo assumes we know how to generate samples from p(z). What if we don’t know?

©

Transformation methods can be one way to handle this situation

©

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)
o Additionally, suppose we can evaluate p(z) at any given z

o Importance Sampling then approximates the original expectation as

E[f] :/f(Z)p /f q(z)dz ~ %Z z(f q(z(f))

o This is basically “weighted” Monte Carlo integration

() . .
o wp = Zg(‘); denotes the importance weight of each sample z(¥

Works even when we can evaluate p(z) = p( ) only up to a prop. constant (PRML 11.1.4)

©
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Computing Expectations via Importance Sampling

Monte Carlo assumes we know how to generate samples from p(z). What if we don’t know?

©

Transformation methods can be one way to handle this situation

©

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)
o Additionally, suppose we can evaluate p(z) at any given z

o Importance Sampling then approximates the original expectation as

E[f] :/f(Z)p /f q(z)dz ~ %Z z(f q(z(f))

o This is basically “weighted” Monte Carlo integration

() . .
o wp = Zg(‘); denotes the importance weight of each sample z(¥

Works even when we can evaluate p(z) = p( ) only up to a prop. constant (PRML 11.1.4)

©

©

Note: Monte Carlo and Importance Sampllng are NOT sampling methods!
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Computing Expectations via Importance Sampling

Monte Carlo assumes we know how to generate samples from p(z). What if we don’t know?

©

Transformation methods can be one way to handle this situation

©

o Importance Sampling is another way: Generate from a “proposal’ q(z), i.e., {20}, ~ q(z)
o Additionally, suppose we can evaluate p(z) at any given z

o Importance Sampling then approximates the original expectation as

E[f] :/f(Z)p /f q(z)dz ~ %Z z(f q(z(f))

o This is basically “weighted” Monte Carlo integration

() . .
o wp = Zg(‘); denotes the importance weight of each sample z(¥

Works even when we can evaluate p(z) = p( ) only up to a prop. constant (PRML 11.1.4)

©

©

Note: Monte Carlo and Importance Sampllng are NOT sampling methods!
o .. that is, not used for generating samples but only for computing expectations using samples
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Limitations of Basic Sampling Methods

o Transformation based methods: Usually limited to drawing from standard distributions
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Limitations of Basic Sampling Methods

o Transformation based methods: Usually limited to drawing from standard distributions

o Rejection Sampling and Importance Sampling: Require good proposal distributions

(=) q2) /:)
/ﬁW\ |

Rejection Sampling Importance Sampling

Ma(z)

Mq(z,)
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Limitations of Basic Sampling Methods

o Transformation based methods: Usually limited to drawing from standard distributions

o Rejection Sampling and Importance Sampling: Require good proposal distributions

(=) q2) /:)
/ﬁW\ |

Rejection Sampling Importance Sampling

Ma(z)

Mq(z,)

o Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)
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Limitations of Basic Sampling Methods

o Transformation based methods: Usually limited to drawing from standard distributions

o Rejection Sampling and Importance Sampling: Require good proposal distributions

(=) q2) /:)
/ﬁW\ |

Rejection Sampling Importance Sampling

Ma(z)

Mq(z,)

o Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)

o In high dimensions, most of the mass of p(z) is concentrated in a tiny region of the z space
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Limitations of Basic Sampling Methods

o Transformation based methods: Usually limited to drawing from standard distributions

o Rejection Sampling and Importance Sampling: Require good proposal distributions

(=) q2) /:)
/ﬁW\ |

Rejection Sampling Importance Sampling

Ma(z)

Mq(z,)

o Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)

o In high dimensions, most of the mass of p(z) is concentrated in a tiny region of the z space

o Difficult to a priori know what those regions are, thus difficult to come up with good proposal dist.
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Limitations of Basic Sampling Methods

o Transformation based methods: Usually limited to drawing from standard distributions

o Rejection Sampling and Importance Sampling: Require good proposal distributions

(=) q2) /:)
/ﬁW\ |

Rejection Sampling Importance Sampling

Ma(z)

Mq(z,)

o Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)

o In high dimensions, most of the mass of p(z) is concentrated in a tiny region of the z space

o Difficult to a priori know what those regions are, thus difficult to come up with good proposal dist.

o A solution to these: MCMC methods
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Markov Chain Monte Carlo (MCMC)

o Goal: Generate samples from some target distribution p(z) = ’5(22), where z is high-dimensional
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Markov Chain Monte Carlo (MCMC)

o Goal: Generate samples from some target distribution p(z) = ’5(22), where z is high-dimensional

o Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute 5(z))
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Markov Chain Monte Carlo (MCMC)

o Goal: Generate samples from some target distribution p(z) = ’5(22), where z is high-dimensional

o Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute 5(z))

o Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

zZM 520 40 2(t72) 5 2171y Z(L)

initial samples typically garbage after convergence, actual samples from p(z)
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Markov Chain Monte Carlo (MCMC)

Goal: Generate samples from some target distribution p(z) = ’5(22), where z is high-dimensional

©

o Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute 5(z))

o Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)
zZM 520 40 2(t72) 5 2171y Z(L)
initial samples typically garbage after convergence, actual samples from p(z)

o Given a current sample z(©) from the chain, MCMC generates the next sample z(¢+1) as

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Inference via Sampling (Contd)



Markov Chain Monte Carlo (MCMC)

Goal: Generate samples from some target distribution p(z) = ’5(22), where z is high-dimensional

©

o Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute 5(z))

o Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)
zZM 520 40 2(t72) 5 2171y Z(L)
initial samples typically garbage after convergence, actual samples from p(z)

o Given a current sample z(©) from the chain, MCMC generates the next sample z(¢+1) as

o Use a proposal distribution q(z|z(e)) to generate a candidate sample z*
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Markov Chain Monte Carlo (MCMC)

Goal: Generate samples from some target distribution p(z) = ’5(22), where z is high-dimensional

©

o Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute 5(z))

o Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)
zZM 520 40 2(t72) 5 2171y Z(L)
initial samples typically garbage after convergence, actual samples from p(z)

o Given a current sample z(©) from the chain, MCMC generates the next sample z(¢+1) as

o Use a proposal distribution q(z|z(e)) to generate a candidate sample z*

o Accept/reject z* as the next sample based on an acceptance criterion (will see later)
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Markov Chain Monte Carlo (MCMC)

Goal: Generate samples from some target distribution p(z) = ’5(22), where z is high-dimensional

©

o Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute 5(z))

o Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)
zZM 520 40 2(t72) 5 2171y Z(L)
initial samples typically garbage after convergence, actual samples from p(z)

o Given a current sample z(©) from the chain, MCMC generates the next sample z(¢+1) as

o Use a proposal distribution q(z|z(e)) to generate a candidate sample z*

o Accept/reject z* as the next sample based on an acceptance criterion (will see later)

o If accepted, 2+ = z*. If rejected, z2(+Y) = 2(9)
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Markov Chain Monte Carlo (MCMC)

Goal: Generate samples from some target distribution p(z) = ’5(22), where z is high-dimensional

©

o Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute 5(z))

o Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)
zZM 520 40 2(t72) 5 2171y Z(L)
initial samples typically garbage after convergence, actual samples from p(z)

o Given a current sample z(©) from the chain, MCMC generates the next sample z(¢+1) as

o Use a proposal distribution q(z|z(e)) to generate a candidate sample z*

o Accept/reject z* as the next sample based on an acceptance criterion (will see later)

o If accepted, 2+ = z*. If rejected, z2(+Y) = 2(9)

o Note that in MCMC, the proposal distribution g(z|z(*)) depends on the previous sample (unlike
methods such as rejection sampling)
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MCMC: The Basic Scheme

o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)

77
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MCMC: The Basic Scheme

o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)
=9

o But we usually require several samples to approximate p(z). How do we get those?
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MCMC: The Basic Scheme

o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)
=

o But we usually require several samples to approximate p(z). How do we get those?

o Start at an initial z2(®. Using a prop. dist. q(z(“1)|z(2)), run the chain long enough, say T steps
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MCMC: The Basic Scheme
o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)
Z 7

o But we usually require several samples to approximate p(z). How do we get those?

o Start at an initial z2(®. Using a prop. dist. q(z(“1)|z(2)), run the chain long enough, say T steps

o Discard the first (71 — 1) samples (called “burn-in" samples) and take the last sample z(™)
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MCMC: The Basic Scheme

o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)
=

o But we usually require several samples to approximate p(z). How do we get those?

o Start at an initial z2(®. Using a prop. dist. q(z(“1)|z(2)), run the chain long enough, say T steps
o Discard the first (71 — 1) samples (called “burn-in" samples) and take the last sample z(™)

o Continue from z(™) up to T» steps, discard intermediate samples, take the last sample 2(T2)
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MCMC: The Basic Scheme

o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)

o But we usually require several samples to approximate p(z). How do we get those?

o Start at an initial z2(®. Using a prop. dist. q(z(“1)|z(2)), run the chain long enough, say T steps
o Discard the first (71 — 1) samples (called “burn-in" samples) and take the last sample z(™)

o Continue from z(™) up to T» steps, discard intermediate samples, take the last sample 2(T2)

o This helps ensure that 2(T) and 2(") are uncorrelated
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MCMC: The Basic Scheme

o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)

o But we usually require several samples to approximate p(z). How do we get those?

©

Start at an initial z(®. Using a prop. dist. q(z(“1)|z(2)), run the chain long enough, say T steps

Discard the first (71 — 1) samples (called “burn-in” samples) and take the last sample z(™)

©

Continue from z(™) up to T» steps, discard intermediate samples, take the last sample z(T2)

o This helps ensure that 2(T) and 2(") are uncorrelated

©

Repeat the same for a total of S times
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MCMC: The Basic Scheme

o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)

o But we usually require several samples to approximate p(z). How do we get those?

o Start at an initial z2(®. Using a prop. dist. q(z(“1)|z(2)), run the chain long enough, say T steps

o Discard the first (71 — 1) samples (called “burn-in" samples) and take the last sample z(™)

o Continue from z(™) up to T» steps, discard intermediate samples, take the last sample 2(T2)

o This helps ensure that 2(T) and 2(") are uncorrelated

©

Repeat the same for a total of S times

©

In the end, we have S i.i.d. samples from p(z), i.e., 20 272 Z(Ts) o p(z)
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MCMC: The Basic Scheme

o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)

o But we usually require several samples to approximate p(z). How do we get those?

©

Start at an initial z(®. Using a prop. dist. q(z(“1)|z(2)), run the chain long enough, say T steps

o Discard the first (71 — 1) samples (called “burn-in" samples) and take the last sample z(™)

©

Continue from z(™) up to T» steps, discard intermediate samples, take the last sample z(T2)

o This helps ensure that 2(T) and 2(") are uncorrelated

©

Repeat the same for a total of S times

©

In the end, we have S i.i.d. samples from p(z), i.e., 20 272 Z(Ts) o p(z)

©

Note: Good choices for T1 and T; — T;_1 are usually based on heuristics
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MCMC: The Basic Scheme

o MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)

o But we usually require several samples to approximate p(z). How do we get those?

o Start at an initial z2(®. Using a prop. dist. q(z(“1)|z(2)), run the chain long enough, say T steps
o Discard the first (71 — 1) samples (called “burn-in" samples) and take the last sample z(™)
o Continue from z(™) up to T» steps, discard intermediate samples, take the last sample 2(T2)
o This helps ensure that 2(T) and 2(") are uncorrelated
o Repeat the same for a total of S times
o In the end, we have S i.i.d. samples from p(z), i.e., 2T Z(T2) o 2(Ts) p(z)
o Note: Good choices for T1 and T; — T;_1 are usually based on heuristics
o Note: MCMC is an approximate method because we don't usually know what T; is “long enough”
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o A first order Markov Chain assumes p(z(‘*1)|z(1) ... 2(0)) = p(z(“+1)|2(9))
«4O0>» «F>r «E» «E)» = DA
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MCMC: Some Basic Theory

o A first order Markov Chain assumes p(z(**1D|z() ... z(0) = p(z(t41)|2(0)

o A 1st order Markov Chain z(®, z(1) . z(1) is a sequence of r.v.'s and is defined by
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MCMC: Some Basic Theory

o A first order Markov Chain assumes p(z(**1D|z() ... z(0) = p(z(t41)|2(0)

o A 1st order Markov Chain z(®, z(1) . z(1) is a sequence of r.v.'s and is defined by

o An initial state distribution p(z(®)
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MCMC: Some Basic Theory

o A first order Markov Chain assumes p(z(**1D|z() ... z(0) = p(z(t41)|2(0)

o A 1st order Markov Chain z(®, z(1) . z(1) is a sequence of r.v.'s and is defined by

o An initial state distribution p(z(®)
o A Transition Function (TF): T¢(z(9 — z2**9) = p(z“+1|219).
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MCMC: Some Basic Theory

o A first order Markov Chain assumes p(z(‘*1|z(1) . 2(0) = p(z(¢+1)|z(9))

o A 1st order Markov Chain z(®, z(1) . z(1) is a sequence of r.v.'s and is defined by

o An initial state distribution p(z(®)
o A Transition Function (TF): T¢(z(9 — z2**9) = p(z“+1|219).

o TF defines a distribution over the values of next state given the value of the current state
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MCMC: Some Basic Theory

o A first order Markov Chain assumes p(z(‘*1|z(1) . 2(0) = p(z(¢+1)|z(9))

o A 1st order Markov Chain z(®, z(1) . z(1) is a sequence of r.v.'s and is defined by

o An initial state distribution p(z(®)
o A Transition Function (TF): T¢(z(9 — z2**9) = p(z“+1|219).

o TF defines a distribution over the values of next state given the value of the current state

o Assuming a discrete state-space, the TF is defined by a K x K probability table

Y N3
N N 1 2 3 4 s G> ) .C.D
Transition probabilities {04 0.6 00 00 00 TCEN/AN
can be defined using a 205 00 05 00 00| [059 & - P los i
KxK table if z is a discrete 3|00 03 0.0 07 00 /\/ °3 P g -
rv. with K possible values 400 00 01 03 06 g Ry
5(00 0.3 00 05 02
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MCMC: Some Basic Theory

o A first order Markov Chain assumes p(z(‘*1|z(1) . 2(0) = p(z(¢+1)|z(9))

o A 1st order Markov Chain z(®, z(1) . z(1) is a sequence of r.v.'s and is defined by
o An initial state distribution p(z(®)
o A Transition Function (TF): Te(Z(Z) — z(“l)) = p( (e+1) |z )

o TF defines a distribution over the values of next state given the value of the current state

o Assuming a discrete state-space, the TF is defined by a K x K probability table

Transition probabilities 1
can be defined using a 2
KxK table if z is a discrete 3
r.v. with K possible values 4

)

1 2 3

04 0.6 00
0.5 0.0 05
0.0 03 0.0
0.0 0.0 0.1

5100 0.3 0.0

4
0.0
0.0
0.7
0.3
0.5

5 G\
\
0.0 |

0.0 05 0p y =

; /o 03
0.0 G} i
0.6 T
0.2

o Homogeneous Markov Chain: The TF is the same for all £, i.e.,, T, =T
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MCMC: Some Basic Theory

o Consider the following simple TF with K = 3 (want to sample from a multinoulli)

0
0 0.1 09

T \
06 04 0 @ \ /\
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MCMC: Some Basic Theory

o Consider the following simple TF with K = 3 (want to sample from a multinoulli)

ol
N
N

L
0 1 0 . //@1\\09
T=|0 01 09 / NERN
06 04 0 @ 04 \®

06

o Consider the initial state distribution p(z(®)) = p(z{o),zz(o), z§0)) =[0.5,0.2,0.3]
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MCMC: Some Basic Theory

o Consider the following simple TF with K = 3 (want to sample from a multinoulli)

ol
N
/

0 1 0 . //@1\\09
T=|0 01 09 / NERN
06 04 0 @ 04 \®

06

o Consider the initial state distribution p(z(®)) = p(z{o),zz(o), z§0)) =[0.5,0.2,0.3]
o Easy to see that p(z(?) x T =[0.2,0.6,0.2] = distribution of z(*)
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MCMC: Some Basic Theory

o Consider the following simple TF with K = 3 (want to sample from a multinoulli)

ol
N
/

0 1 0 . //@1\\09
T=|0 01 09 / NERN
06 04 0 @ 04 \®

06

o Consider the initial state distribution p(z(®)) = p(z{o),zz(o), z§0)) =[0.5,0.2,0.3]
o Easy to see that p(z(?) x T =[0.2,0.6,0.2] = distribution of z(*)
o Also easy to see that, after a few (say m) iterations, p(z(?)) x T™ =[0.2,0.4,0.4] = p(z) (say)
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MCMC: Some Basic Theory

o Consider the following simple TF with K = 3 (want to sample from a multinoulli)

ol
N
/

0 1 0 . //@1\\09
T=|0 01 09 / NERN
06 04 0 @ 04 \®

06

Consider the initial state distribution p(z(®)) = p(z{o),zz(o), z§0)) =[0.5,0.2,0.3]

©

o Easy to see that p(z(?) x T =[0.2,0.6,0.2] = distribution of z(*)

©

Also easy to see that, after a few (say m) iterations, p(z(?)) x T™ =[0.2,0.4,0.4] = p(z) (say)

©

For the above T, any choice of p(z(?)) leads to multinoulli p(z)i with 7 = [0.2,0.4,0.4]
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MCMC: Some Basic Theory

o Consider the following simple TF with K = 3 (want to sample from a multinoulli)

ol
N
/

0 1 0 . //@1\\09
T=|0 01 09 / NERN
06 04 0 @ 04 \®

06

Consider the initial state distribution p(z(®)) = p(z{o),zz(o), z§0)) =[0.5,0.2,0.3]

©

o Easy to see that p(z(?) x T =[0.2,0.6,0.2] = distribution of z(*)

©

Also easy to see that, after a few (say m) iterations, p(z(?)) x T™ =[0.2,0.4,0.4] = p(z) (say)

©

For the above T, any choice of p(z(?)) leads to multinoulli p(z)i with 7 = [0.2,0.4,0.4]

o Such a p(z) is called the stationary/invariant distribution of this Markov Chain
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MCMC: Some Basic Theory

o Consider the following simple TF with K = 3 (want to sample from a multinoulli)

ol
N
/

0 1 0 . //@1\\09
T=|0 01 09 / NERN
06 04 0 @ 04 \®

06

Consider the initial state distribution p(z(®)) = p(z{o),zz(o), z§0)) =[0.5,0.2,0.3]

©

o Easy to see that p(z(?) x T =[0.2,0.6,0.2] = distribution of z(*)
Also easy to see that, after a few (say m) iterations, p(z(?)) x T™ =[0.2,0.4,0.4] = p(z) (say)

©

©

For the above T, any choice of p(z(?)) leads to multinoulli p(z)i with 7 = [0.2,0.4,0.4]
o Such a p(z) is called the stationary/invariant distribution of this Markov Chain

o A Markov Chain has a stationary distribution if T has the following properties
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MCMC: Some Basic Theory

o Consider the following simple TF with K = 3 (want to sample from a multinoulli)

ol
N
/

0 1 0 . //@1\\09
T=|0 01 09 / NERN
06 04 0 @ 04 \®

06

Consider the initial state distribution p(z(®)) = p(z{o),zz(o), z§0)) =[0.5,0.2,0.3]

©

o Easy to see that p(z(?) x T =[0.2,0.6,0.2] = distribution of z(*)

©

©

o Such a p(z) is called the stationary/invariant distribution of this Markov Chain

o A Markov Chain has a stationary distribution if T has the following properties

o lIrreducibility: T's graph is connected (ensures reachability from anywhere to anywhere)
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MCMC: Some Basic Theory

o Consider the following simple TF with K = 3 (want to sample from a multinoulli)

0 1 0 . //@1\\09
T=|0 01 09 / NERN
06 04 0 @ 04 \®

06

Consider the initial state distribution p(z(®)) = p(z{o),zz(o), z§0)) =[0.5,0.2,0.3]

©

o Easy to see that p(z(?) x T =[0.2,0.6,0.2] = distribution of z(*)
Also easy to see that, after a few (say m) iterations, p(z(?)) x T™ =[0.2,0.4,0.4] = p(z) (say)

©

©

For the above T, any choice of p(z(?)) leads to multinoulli p(z)i with 7 = [0.2,0.4,0.4]
o Such a p(z) is called the stationary/invariant distribution of this Markov Chain

o A Markov Chain has a stationary distribution if T has the following properties

o lIrreducibility: T's graph is connected (ensures reachability from anywhere to anywhere)

o Aperiodicity: T's graph has no cycles (ensures that the chain isn't trapped in cycles)
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MCMC: Some Basic Theory

o A sufficient (but not necessary) condition: A Markov Chain with transition function T has
stationary distribution p(z) if T satisfies Detailed Balance

o For any two states z and Z’, the Detailed Balanced condition is

p(2)T(z — 2') = p(2)T(Z — 2)
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MCMC: Some Basic Theory

o A sufficient (but not necessary) condition: A Markov Chain with transition function T has
stationary distribution p(z) if T satisfies Detailed Balance

o For any two states z and Z’, the Detailed Balanced condition is

p(2)T(z — 2') = p(2)T(Z — 2)

o Integrating out (or summing over) both sides w.r.t. z’ gives

p(z) = /p(z’)T(z’ — z)dZ
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o A sufficient (but not necessary) condition: A Markov Chain with transition function T has
stationary distribution p(z) if T satisfies Detailed Balance

o For any two states z and Z’, the Detailed Balanced condition is

p(2)T(z — 2') = p(2)T(Z — 2)

o Integrating out (or summing over) both sides w.r.t. z’ gives

p(z) = /p(z’)T(z’ — z)dZ

o Therefore p(z) is a stationary distribution of this chain
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MCMC: Some Basic Theory

o A sufficient (but not necessary) condition: A Markov Chain with transition function T has
stationary distribution p(z) if T satisfies Detailed Balance

(4]

For any two states z and z’, the Detailed Balanced condition is

p(2)T(z — 2') = p(2)T(Z — 2)

©

Integrating out (or summing over) both sides w.r.t. z’ gives

p(z) = /p(z’)T(z’ — z)dZ

o Therefore p(z) is a stationary distribution of this chain

(+]

Thus a Markov Chain with detailed balance will always converge to a stationary distribution
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Some MCMC Algorithms
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

B(2)

o Suppose we wish to generate samples from a distribution p(z) = &
>
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

B(2)

o Suppose we wish to generate samples from a distribution p(z) = &
>

o Assume a proposal distribution g(z|z(")), e.g., N'(z|z(), o%1p)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Inference via Sampling (Contd)



Metropolis-Hastings (MH) Sampling (Hastings, 1970)

B(2)

o Suppose we wish to generate samples from a distribution p(z) = &
>

o Assume a proposal distribution g(z|z(")), e.g., N'(z|z(), o%1p)

o In each step, draw z* ~ g(z|z("))
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

B(2)

o Suppose we wish to generate samples from a distribution p(z) = &
>

o Assume a proposal distribution g(z|z(")), e.g., N'(z|z(), o%1p)
o In each step, draw z* ~ q(z|z{")) and accept z* with probability

RN - CO LTS
Ae =) =i (1 )
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

B(2)

o Suppose we wish to generate samples from a distribution p(z) = &
>

o Assume a proposal distribution g(z|z(")), e.g., N'(z|z(), o%1p)
o In each step, draw z* ~ q(z|z{")) and accept z* with probability

RN - CO LTS
Ae =) =i (1 L)

o The acceptance probability makes intuitive sense
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

B(2)

o Suppose we wish to generate samples from a distribution p(z) = &
>

o Assume a proposal distribution g(z|z(")), e.g., N'(z|z(), o%1p)
o In each step, draw z* ~ q(z|z{")) and accept z* with probability

RN - CO LTS
Ae =) =i (1 L)

o The acceptance probability makes intuitive sense

o It favors accepting z* if p(z*) has a higher value than ﬁ(z(T))
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

_ B(2)
ZP

o Suppose we wish to generate samples from a distribution p(z)
o Assume a proposal distribution g(z|z(")), e.g., N'(z|z(), o%1p)
o In each step, draw z* ~ q(z|z{")) and accept z* with probability

RN - CO LTS
Ae =) =i (1 L)

o The acceptance probability makes intuitive sense

o It favors accepting z* if p(z*) has a higher value than ﬁ(z(T))

o Unfavors z* if the proposal distribution g unduly favors its generation (i.e., if q(z*\z(f)) is large)
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

_ B(2)
ZP

o Suppose we wish to generate samples from a distribution p(z)
o Assume a proposal distribution g(z|z(")), e.g., N'(z|z(), o%1p)
o In each step, draw z* ~ q(z|z{")) and accept z* with probability

RN - CO LTS
Ae =) =i (1 L)

o The acceptance probability makes intuitive sense

o It favors accepting z* if p(z*) has a higher value than ﬁ(z(T))
o Unfavors z* if the proposal distribution g unduly favors its generation (i.e., if q(z*\z(f)) is large)

o Favors z* if we can “reverse” to z{™) from z* (i.e., if q(2\™)|z*) is large). Needed for good “mixing”
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

_ B(2)
ZP

o Suppose we wish to generate samples from a distribution p(z)
o Assume a proposal distribution g(z|z(")), e.g., N'(z|z(), o%1p)
o In each step, draw z* ~ q(z|z{")) and accept z* with probability

RN - CO LTS
Ae =) =i (1 L)

The acceptance probability makes intuitive sense

©

o It favors accepting z* if p(z*) has a higher value than ﬁ(z(T))
o Unfavors z* if the proposal distribution g unduly favors its generation (i.e., if q(z*\z(f)) is large)

o Favors z* if we can “reverse” to z{™) from z* (i.e., if q(2\™)|z*) is large). Needed for good “mixing”

o Transition function of this Markov Chain: T(z(") — z*) = A(z*, 2(7)q(z*|z(")
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Metropolis-Hastings (MH) Sampling (Hastings, 1970)

_ B(2)
ZP

o Suppose we wish to generate samples from a distribution p(z)
o Assume a proposal distribution g(z|z(")), e.g., N'(z|z(), o%1p)
o In each step, draw z* ~ q(z|z{")) and accept z* with probability

RN - CO LTS
Ae =) =i (1 L)

The acceptance probability makes intuitive sense

©

o It favors accepting z* if p(z*) has a higher value than ﬁ(z(T))
o Unfavors z* if the proposal distribution g unduly favors its generation (i.e., if q(z*\z(f)) is large)

o Favors z* if we can “reverse” to z{™) from z* (i.e., if q(2\™)|z*) is large). Needed for good “mixing”
o Transition function of this Markov Chain: T(z(") — z*) = A(z*, 2(7)q(z*|z(")
o Exercise: Show that T(z — z(T)) satisfies the detailed balance property
T(z = 2)p(z) = T(z) = 2)p(z")
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The MH Sampling Algorithm

o Initialize z(® randomly
o For{=0,...,L-1

o Sample z* ~ g(z*|2")) and u ~ Unif(0, 1)

o If u< A(z*, 2 )—mm(l %)

LD _

z (meaning: accepting with probability A(z", z(e)))

else

LD 50
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MH Sampling in Action: A Toy Example..

Target p(z) = N <{ﬂ , [0:.[8 018}), Proposal q(z(!|z(t=1)) = A/ <z(f1)7 [
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MH Sampling in Action: A Toy Example..

Target p(z) = N ([ﬂ ; [0:.[8 Ois}), Proposal q(z(!]z(t=1)) = A/ <z(f1)7 [
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MH Sampling in Action: A Toy Example..

Target p(z) = N ({ﬂ , [0:.[8 Oiﬂ), Proposal q(z(!|z(t=1)) = A/ <z( -
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MH Sampling: Some Comments

o If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

et 53)

* Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014)
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MH Sampling: Some Comments

o If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with
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o Some limitations of MH sampling

* Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014)
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MH Sampling: Some Comments

o If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

A(z*,2()) = min <1, ﬁﬁ((;(;)))

o Some limitations of MH sampling

o MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal

P Generic proposals use

Qa':z) = N(z,0%)
o large — many rejections

o small slow diffusion:
~(L/c)? iterations required

* Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014)
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MH Sampling: Some Comments

o If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

A(z*,2()) = min <1, ﬁﬁ((;(;)))

o Some limitations of MH sampling

o MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal

P Generic proposals use

Qa':z) = N(z,0%)
o large — many rejections

o small slow diffusion:
~(L/c)? iterations required

o Computing acceptance probability can be expensive

* Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014)
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MH Sampling: Some Comments

o If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

A(z*,2()) = min <1, ﬁﬁ((;(;)))

o Some limitations of MH sampling

o MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal

P Generic proposals use

Qa':z) = N(z,0%)
o large — many rejections
o small slow diffusion:

~(L/c)? iterations required

o Computing acceptance probability can be expensive: When p(z) = % represents a posterior

distribution of some model, p is the unnormalized posterior that depends on all the data

* Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014)
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MH Sampling: Some Comments

o If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

A(z*,2()) = min <1, ﬁﬁ((;(;)))

o Some limitations of MH sampling

o MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal

P Generic proposals use

Qa':z) = N(z,0%)
o large — many rejections
o small slow diffusion:
~(L/c)? iterations required
. " — _ B2 -
o Computing acceptance probability can be expensive: When p(z) = Z, represents a posterior

distribution of some model, 5 is the unnormalized posterior that depends on all the data (note: a lot
of recent work on speeding up this step using subsets of data™)

* Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014)
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Gibbs Sampling (Geman & Geman, 1984)

o Suppose we wish to sample from a joint distribution p(z) where z = (2, zo, . ..
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Gibbs Sampling (Geman & Geman, 1984)

o Suppose we wish to sample from a joint distribution p(z) where z = (z1, z2, ..., zm)

o However, suppose we can't sample from p(z) but can sample from each conditional p(z|z_;)
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o Suppose we wish to sample from a joint distribution p(z) where z = (z1, z2, ..., zm)
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Gibbs Sampling (Geman & Geman, 1984)

o Suppose we wish to sample from a joint distribution p(z) where z = (z1, z2, ..., zm)
o However, suppose we can't sample from p(z) but can sample from each conditional p(z|z_;)

o Can we done easily if we have a locally conjugate model

o For Gibbs sampling, the proposal is the conditional distribution p(z;|z—;)
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Gibbs Sampling (Geman & Geman, 1984)

o Suppose we wish to sample from a joint distribution p(z) where z = (z1, z2, ..., zm)
o However, suppose we can't sample from p(z) but can sample from each conditional p(z|z_;)

o Can we done easily if we have a locally conjugate model

©

For Gibbs sampling, the proposal is the conditional distribution p(z|z_;)

o Gibbs sampling samples from these conditionals in a cyclic order
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Gibbs Sampling (Geman & Geman, 1984)

o Suppose we wish to sample from a joint distribution p(z) where z = (z1, z2, ..., zm)
o However, suppose we can't sample from p(z) but can sample from each conditional p(z|z_;)

o Can we done easily if we have a locally conjugate model

©

For Gibbs sampling, the proposal is the conditional distribution p(z|z_;)

o Gibbs sampling samples from these conditionals in a cyclic order

©

Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. = 1
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Gibbs Sampling (Geman & Geman, 1984)

o Suppose we wish to sample from a joint distribution p(z) where z = (z1, z2, ..., zm)
o However, suppose we can't sample from p(z) but can sample from each conditional p(z|z_;)

o Can we done easily if we have a locally conjugate model

©

For Gibbs sampling, the proposal is the conditional distribution p(z|z_;)

o Gibbs sampling samples from these conditionals in a cyclic order

©

Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. = 1

. p(z*)q(z|z*)
A2 = ezl

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Inference via Sampling (Contd)



Gibbs Sampling (Geman & Geman, 1984)

o Suppose we wish to sample from a joint distribution p(z) where z = (z1, z2, ..., zm)
o However, suppose we can't sample from p(z) but can sample from each conditional p(z|z_;)

o Can we done easily if we have a locally conjugate model

©

For Gibbs sampling, the proposal is the conditional distribution p(z|z_;)

o Gibbs sampling samples from these conditionals in a cyclic order

©

Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. = 1

Az, 2) p(z9)q(zlz*) _ plzilz2;)p(22)p(zi|2))
p(z)a(z*|z)  p(zilz-i)p(z-i)p(z|2-i)
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Gibbs Sampling (Geman & Geman, 1984)

o Suppose we wish to sample from a joint distribution p(z) where z = (z1, z2, ..., zm)
o However, suppose we can't sample from p(z) but can sample from each conditional p(z|z_;)

o Can we done easily if we have a locally conjugate model

©

For Gibbs sampling, the proposal is the conditional distribution p(z|z_;)

o Gibbs sampling samples from these conditionals in a cyclic order

©

Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. = 1

L plealelz) Pz ez Jptalz)
A2 = ez 2) ~ ez etz etz )

where we use the fact that z* ;, = z_;
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Gibbs Sampling: Sketch of the Algorithm

M: Total number of variables, T: number of Gibbs sampling steps

1. Initialize {z; : i =1,..., M}

2. Forr=1,....T:
~ Sample {7~ p(aa|57 A7),
— Sumple s plea Do),
4 . (7+1) o (T4+1) (T+1) _(7) ()
= Sample 257 "~ p(zgle T S ESURECESTEERE M
4 ) 1 - 1 1 1
- Sample 3_&? )~ P[_3M|3(1T+ ) 3;§T+ ) .:f,:,fl)],
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Gibbs Sampling: Sketch of the Algorithm

M: Total number of variables, T: number of Gibbs sampling steps

1. Initialize {z; : i =1,..., M}

2. Fort=1,.... T:
. (7+1) ’ (T) T (7))
— Sample z; ) plzilzs Tzg T s .:M) )
“ (T+1) ( (T T) (T)y
- Sample 25 "~ p(za |27V 20 ”"M)»“
. P e Pl ) (T+1) _(7) AT
- Sample 2, ~plzilzr e j—1 il M)
. (T+1) p (T+1) T+1) (T+1)
— Sample 277 ~ p(za |27 2 P iy B

Note: When sampling each variable from its conditional posterior, we use the most recent values of all
other variables (this is akin to a co-ordinate ascent like procedure)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Inference via Sampling (Contd)



Gibbs Sampling: Sketch of the Algorithm

M: Total number of variables, T: number of Gibbs sampling steps
1. Initialize {z; : i =1,..., M}
2. Fort=1,.... T:

- L+l
Sample z;

., (1
Sample z;

- Zg s
. S NP Y (T+1) () ()

- Sample 2, ~plziley L Zii1 22412 i)
7 A+l A+l _(T+1) ATL)

— Sample 2, ~ p(zar|zg c2a 2l )

Note: When sampling each variable from its conditional posterior, we use the most recent values of all
other variables (this is akin to a co-ordinate ascent like procedure)

Note: Order of updating the variables usually doesn’'t matter (but see “Scan Order in Gibbs Sampling: Models in
Which it Matters and Bounds on How Much” from NIPS 2016)
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Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D
Gaussian, conditionals will simply be 1-D Gaussians)

ZZ

P(2)
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Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D
Gaussian, conditionals will simply be 1-D Gaussians)

Z, Z

P(2)

PG, 2
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Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D
Gaussian, conditionals will simply be 1-D Gaussians)

Z, Z

P(2)

P

20

P(z,lz,")

—fse ¥ L
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Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D
Gaussian, conditionals will simply be 1-D Gaussians)

z Z

2 2
P(@)
®
. PERTY
20
1 (1
z ; 2 1
Z, 2
Z(t+2)
211
P(z,1z,") Y L}
1
Y 0 S A, L -
« (d 2
z 1
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Gibbs Sampling: Some Comments

o One of the most popular MCMC algorithm
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Gibbs Sampling: Some Comments

o One of the most popular MCMC algorithm

o Very easy to derive and implement for locally conjugate models
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Gibbs Sampling: Some Comments

o One of the most popular MCMC algorithm
o Very easy to derive and implement for locally conjugate models

o Many variations exist, e.g.,
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o Very easy to derive and implement for locally conjugate models
o Many variations exist, e.g.,

o Blocked Gibbs: sample multiple variables jointly (sometimes possible)
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Gibbs Sampling: Some Comments

o One of the most popular MCMC algorithm
o Very easy to derive and implement for locally conjugate models
o Many variations exist, e.g.,

o Blocked Gibbs: sample multiple variables jointly (sometimes possible)

o Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.
Also called “collapsed” Gibbs sampling
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Gibbs Sampling: Some Comments

o One of the most popular MCMC algorithm
o Very easy to derive and implement for locally conjugate models
o Many variations exist, e.g.,

o Blocked Gibbs: sample multiple variables jointly (sometimes possible)

o Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.
Also called “collapsed” Gibbs sampling

o MH within Gibbs
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Gibbs Sampling: Some Comments

o One of the most popular MCMC algorithm
o Very easy to derive and implement for locally conjugate models
o Many variations exist, e.g.,

o Blocked Gibbs: sample multiple variables jointly (sometimes possible)

o Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.

Also called “collapsed” Gibbs sampling
o MH within Gibbs

o Instead of sampling from the conditionals, an alternative is to use the mode of the conditional.
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Gibbs Sampling: Some Comments

o One of the most popular MCMC algorithm
o Very easy to derive and implement for locally conjugate models
o Many variations exist, e.g.,

o Blocked Gibbs: sample multiple variables jointly (sometimes possible)

o Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.

Also called “collapsed” Gibbs sampling
o MH within Gibbs

o Instead of sampling from the conditionals, an alternative is to use the mode of the conditional.

o Called the “Iterative Conditional Mode” (ICM) algorithm (doesn't give the posterior though)
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o Using posterior's gradient info in sampling algorithms

o Online MCMC algorithms
o Recent advances in MCMC

o Some other practical issues
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