Inference via Sampling (Contd)

Piyush Rai

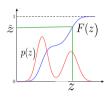
Topics in Probabilistic Modeling and Inference (CS698X)

March 2, 2019

• Inverse CDF method. Assume F(z) to be CDF of our distribution of interest p(z)

$$\hat{z} \sim \text{Uniform}(0,1)$$

$$z = F^{-1}(\hat{z})$$



• Inverse CDF method. Assume F(z) to be CDF of our distribution of interest p(z)

$$\hat{z} \sim \text{Uniform}(0,1)$$
 \hat{z}
 $z = F^{-1}(\hat{z})$

Reparametrization method (also used in VI - pathwise gradient methods), e.g.,

$$\hat{z} \sim \mathcal{N}(0,1) \Rightarrow z = \mu + \sigma \hat{z} \sim \mathcal{N}(\mu, \sigma^2)$$

• Inverse CDF method. Assume F(z) to be CDF of our distribution of interest p(z)

$$\hat{z} \sim \text{Uniform}(0,1)$$
 $z = F^{-1}(\hat{z})$

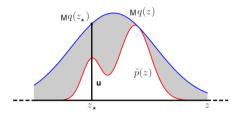
Reparametrization method (also used in VI - pathwise gradient methods), e.g.,

$$\hat{z} \sim \mathcal{N}(0,1) \Rightarrow z = \mu + \sigma \hat{z} \sim \mathcal{N}(\mu, \sigma^2)$$

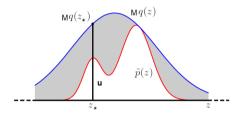
Note: The above are examples of the more general idea of transformation of distributions

$$p(z) = q(\hat{z}) \left| \frac{\partial \hat{z}}{\partial z} \right|$$

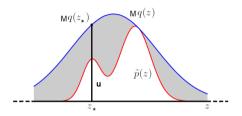
.. where $\left|\frac{\partial \hat{\mathbf{z}}}{\partial \mathbf{z}}\right|$ is the determinant of the Jacobian



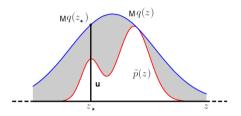
ullet Rejection Sampling: Sample from $p(z)=rac{ ilde{p}(z)}{Z_p}$ by sampling from q(z), s.t., $Mq(z)\geq ilde{p}(z)$



• Rejection Sampling: Sample from $p(z) = \frac{\tilde{p}(z)}{Z_p}$ by sampling from q(z), s.t., $Mq(z) \ge \tilde{p}(z)$ • $z_* \sim q(z)$ and $u \sim \text{Uniform}(0, Mq(z))$



- Rejection Sampling: Sample from $p(z) = \frac{\tilde{p}(z)}{Z_p}$ by sampling from q(z), s.t., $Mq(z) \geq \tilde{p}(z)$
 - $z_* \sim q(z)$ and $u \sim \mathsf{Uniform}(0, Mq(z))$
 - If $u \leq \tilde{p}(z_*)$, accept z_* else reject



- Rejection Sampling: Sample from $p(z) = \frac{\tilde{p}(z)}{Z_p}$ by sampling from q(z), s.t., $Mq(z) \geq \tilde{p}(z)$
 - ullet $z_* \sim q(z)$ and $u \sim \mathsf{Uniform}(0, Mq(z))$
 - If $u \leq \tilde{p}(z_*)$, accept z_* else reject
 - Repeat the above two steps until we have generated the desired number of samples

• Often we are interested in computing expectations of the form

$$\mathbb{E}[f] = \int f(z)p(z)dz$$

where f(z) is some function of a random variable $z \sim p(z)$

• Often we are interested in computing expectations of the form

$$\mathbb{E}[f] = \int f(z)p(z)dz$$

where f(z) is some function of a random variable $z \sim p(z)$

• A simple approximation scheme: Monte Carlo integration

• Often we are interested in computing expectations of the form

$$\mathbb{E}[f] = \int f(z)p(z)dz$$

where f(z) is some function of a random variable $z \sim p(z)$

- A simple approximation scheme: Monte Carlo integration
- Suppose we can generate L independent samples from p(z): $\{z^{(\ell)}\}_{\ell=1}^L \sim p(z)$

• Often we are interested in computing expectations of the form

$$\mathbb{E}[f] = \int f(z)p(z)dz$$

where f(z) is some function of a random variable $z \sim p(z)$

- A simple approximation scheme: Monte Carlo integration
- ullet Suppose we can generate L independent samples from $p(m{z})$: $\{m{z}^{(\ell)}\}_{\ell=1}^L \sim p(m{z})$
- Monte-Carlo approximation replaces the expectation by an empirical average

$$\hat{f} pprox rac{1}{L} \sum_{\ell=1}^{L} f(\mathbf{z}^{(\ell)})$$

• Often we are interested in computing expectations of the form

$$\mathbb{E}[f] = \int f(z)p(z)dz$$

where f(z) is some function of a random variable $z \sim p(z)$

- A simple approximation scheme: Monte Carlo integration
- ullet Suppose we can generate L independent samples from $p(m{z})$: $\{m{z}^{(\ell)}\}_{\ell=1}^L \sim p(m{z})$
- Monte-Carlo approximation replaces the expectation by an empirical average

$$\hat{f} pprox rac{1}{L} \sum_{\ell=1}^{L} f(\mathbf{z}^{(\ell)})$$

Since the samples are independent of each other, can show the following (exercise)

$$\mathbb{E}[\hat{f}] = \mathbb{E}[f]$$
 and $\operatorname{var}[\hat{f}] = \frac{1}{L}\operatorname{var}[f] = \frac{1}{L}\mathbb{E}[(f - \mathbb{E}[f])^2]$

• Often we are interested in computing expectations of the form

$$\mathbb{E}[f] = \int f(z)p(z)dz$$

where f(z) is some function of a random variable $z \sim p(z)$

- A simple approximation scheme: Monte Carlo integration
- Suppose we can generate L independent samples from p(z): $\{z^{(\ell)}\}_{\ell=1}^L \sim p(z)$
- Monte-Carlo approximation replaces the expectation by an empirical average

$$\hat{f} pprox rac{1}{L} \sum_{\ell=1}^{L} f(\mathbf{z}^{(\ell)})$$

Since the samples are independent of each other, can show the following (exercise)

$$\mathbb{E}[\hat{f}] = \mathbb{E}[f]$$
 and $\operatorname{var}[\hat{f}] = \frac{1}{L}\operatorname{var}[f] = \frac{1}{L}\mathbb{E}[(f - \mathbb{E}[f])^2]$

• Note that the variance in the estimate of expectation decreases as L increases

• Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- Importance Sampling is another way:

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$
- Additionally, suppose we can evaluate p(z) at any given z

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$
- Additionally, suppose we can evaluate p(z) at any given z
- Importance Sampling then approximates the original expectation as

$$\mathbb{E}[f] = \int f(z)p(z)dz$$

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$
- Additionally, suppose we can evaluate p(z) at any given z
- Importance Sampling then approximates the original expectation as

$$\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz$$

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$
- Additionally, suppose we can evaluate p(z) at any given z
- Importance Sampling then approximates the original expectation as

$$\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L}\sum_{\ell=1}^{L}f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}$$

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- ullet Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$
- Additionally, suppose we can evaluate p(z) at any given z
- Importance Sampling then approximates the original expectation as

$$\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L}\sum_{\ell=1}^{L}f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}$$

This is basically "weighted" Monte Carlo integration

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$
- Additionally, suppose we can evaluate p(z) at any given z
- Importance Sampling then approximates the original expectation as

$$\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L}\sum_{\ell=1}^{L}f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}$$

- This is basically "weighted" Monte Carlo integration
 - $w_{\ell} = \frac{p(\mathbf{z}^{(\ell)})}{q(\mathbf{z}^{(\ell)})}$ denotes the importance weight of each sample $\mathbf{z}^{(\ell)}$

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$
- Additionally, suppose we can evaluate p(z) at any given z
- Importance Sampling then approximates the original expectation as

$$\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L}\sum_{\ell=1}^{L}f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}$$

- This is basically "weighted" Monte Carlo integration
 - $w_{\ell} = \frac{p(z^{(\ell)})}{c(z^{(\ell)})}$ denotes the importance weight of each sample $z^{(\ell)}$
- Works even when we can evaluate $p(z) = \frac{\tilde{p}(z)}{Z_z}$ only up to a prop. constant (PRML 11.1.4)

- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- ullet Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$
- Additionally, suppose we can evaluate p(z) at any given z
- Importance Sampling then approximates the original expectation as

$$\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L}\sum_{\ell=1}^{L}f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}$$

- This is basically "weighted" Monte Carlo integration
 - $w_\ell = \frac{p(\mathbf{z}^{(\ell)})}{q(\mathbf{z}^{(\ell)})}$ denotes the importance weight of each sample $\mathbf{z}^{(\ell)}$
- ullet Works even when we can evaluate $p(oldsymbol{z})=rac{ ilde{p}(oldsymbol{z})}{Z_p}$ only up to a prop. constant (PRML 11.1.4)
- Note: Monte Carlo and Importance Sampling are NOT sampling methods!

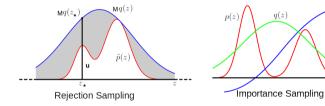
- Monte Carlo assumes we know how to generate samples from p(z). What if we don't know?
- Transformation methods can be one way to handle this situation
- Importance Sampling is another way: Generate from a "proposal" q(z), i.e., $\{z^{(\ell)}\}_{\ell=1}^L \sim q(z)$
- Additionally, suppose we can evaluate p(z) at any given z
- Importance Sampling then approximates the original expectation as

$$\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L}\sum_{\ell=1}^{L}f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}$$

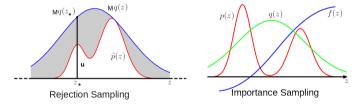
- This is basically "weighted" Monte Carlo integration
 - $w_{\ell} = \frac{p(\mathbf{z}^{(\ell)})}{p(\mathbf{z}^{(\ell)})}$ denotes the importance weight of each sample $\mathbf{z}^{(\ell)}$
- Works even when we can evaluate $p(z) = \frac{\tilde{p}(z)}{Z_z}$ only up to a prop. constant (PRML 11.1.4)
- Note: Monte Carlo and Importance Sampling are NOT sampling methods!
 - .. that is, not used for generating samples but only for computing expectations using samples

• Transformation based methods: Usually limited to drawing from standard distributions

- Transformation based methods: Usually limited to drawing from standard distributions
- Rejection Sampling and Importance Sampling: Require good proposal distributions

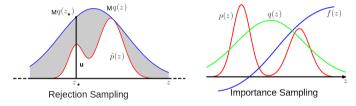


- Transformation based methods: Usually limited to drawing from standard distributions
- Rejection Sampling and Importance Sampling: Require good proposal distributions



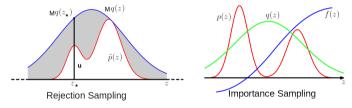
ullet Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)

- Transformation based methods: Usually limited to drawing from standard distributions
- Rejection Sampling and Importance Sampling: Require good proposal distributions



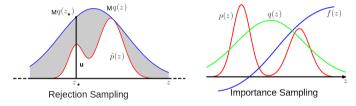
- Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)
 - In high dimensions, most of the mass of p(z) is concentrated in a tiny region of the z space

- Transformation based methods: Usually limited to drawing from standard distributions
- Rejection Sampling and Importance Sampling: Require good proposal distributions



- Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)
 - In high dimensions, most of the mass of p(z) is concentrated in a tiny region of the z space
 - Difficult to a priori know what those regions are, thus difficult to come up with good proposal dist.

- Transformation based methods: Usually limited to drawing from standard distributions
- Rejection Sampling and Importance Sampling: Require good proposal distributions



- ullet Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)
 - In high dimensions, most of the mass of p(z) is concentrated in a tiny region of the z space
 - Difficult to a priori know what those regions are, thus difficult to come up with good proposal dist.
- A solution to these: MCMC methods

Markov Chain Monte Carlo (MCMC)

• Goal: Generate samples from some target distribution $p(z) = \frac{\tilde{p}(z)}{Z}$, where z is high-dimensional

Markov Chain Monte Carlo (MCMC)

- Goal: Generate samples from some target distribution $p(z) = \frac{\tilde{p}(z)}{Z}$, where z is high-dimensional
- Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute $\tilde{p}(z)$)

- Goal: Generate samples from some target distribution $p(z) = \frac{\tilde{p}(z)}{Z}$, where z is high-dimensional
- Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute $\tilde{p}(z)$)
- Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

$$z^{(1)} \to z^{(2)} \to z^{(3)} \to \dots \to z^{(L-2)} \to z^{(L-1)} \to z^{(L)}$$
initial samples typically garbage after convergence, actual samples from $p(z)$

- Goal: Generate samples from some target distribution $p(z) = \frac{\tilde{p}(z)}{Z}$, where z is high-dimensional
- ullet Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute $ilde{p}(z)$)
- ullet Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

$$\underbrace{\mathbf{z}^{(1)} \to \mathbf{z}^{(2)} \to \mathbf{z}^{(3)} \to}_{\text{initial samples typically garbage}} \dots \to \underbrace{\mathbf{z}^{(L-2)} \to \mathbf{z}^{(L-1)} \to \mathbf{z}^{(L)}}_{\text{after convergence, actual samples from } p(\mathbf{z})}$$

ullet Given a current sample $oldsymbol{z}^{(\ell)}$ from the chain, MCMC generates the next sample $oldsymbol{z}^{(\ell+1)}$ as

- Goal: Generate samples from some target distribution $p(z) = \frac{\tilde{p}(z)}{Z}$, where z is high-dimensional
- ullet Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute $ilde{p}(z)$)
- ullet Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

$$\underbrace{\mathbf{z}^{(1)} \to \mathbf{z}^{(2)} \to \mathbf{z}^{(3)} \to}_{\text{initial samples typically garbage}} \dots \to \underbrace{\mathbf{z}^{(L-2)} \to \mathbf{z}^{(L-1)} \to \mathbf{z}^{(L)}}_{\text{after convergence, actual samples from } p(\mathbf{z})}$$

- ullet Given a current sample $oldsymbol{z}^{(\ell)}$ from the chain, MCMC generates the next sample $oldsymbol{z}^{(\ell+1)}$ as
 - Use a proposal distribution $q(z|z^{(\ell)})$ to generate a candidate sample z^*

- Goal: Generate samples from some target distribution $p(z) = \frac{\tilde{p}(z)}{Z}$, where z is high-dimensional
- Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute $\tilde{p}(z)$)
- Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

$$\underbrace{\mathbf{z}^{(1)} \to \mathbf{z}^{(2)} \to \mathbf{z}^{(3)} \to}_{\text{initial samples typically garbage}} \dots \to \underbrace{\mathbf{z}^{(L-2)} \to \mathbf{z}^{(L-1)} \to \mathbf{z}^{(L)}}_{\text{after convergence, actual samples from } p(\mathbf{z})}$$

- ullet Given a current sample $oldsymbol{z}^{(\ell)}$ from the chain, MCMC generates the next sample $oldsymbol{z}^{(\ell+1)}$ as
 - Use a proposal distribution $q(z|z^{(\ell)})$ to generate a candidate sample z^*
 - Accept/reject z^* as the next sample based on an acceptance criterion (will see later)

- Goal: Generate samples from some target distribution $p(z) = \frac{\tilde{p}(z)}{Z}$, where z is high-dimensional
- Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute $\tilde{p}(z)$)
- Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

$$\underbrace{\mathbf{z}^{(1)} \to \mathbf{z}^{(2)} \to \mathbf{z}^{(3)} \to}_{\text{initial samples typically garbage}} \dots \to \underbrace{\mathbf{z}^{(L-2)} \to \mathbf{z}^{(L-1)} \to \mathbf{z}^{(L)}}_{\text{after convergence, actual samples from } p(\mathbf{z})}$$

- ullet Given a current sample $oldsymbol{z}^{(\ell)}$ from the chain, MCMC generates the next sample $oldsymbol{z}^{(\ell+1)}$ as
 - Use a proposal distribution $q(z|z^{(\ell)})$ to generate a candidate sample z^*
 - Accept/reject z* as the next sample based on an acceptance criterion (will see later)
 - ullet If accepted, $oldsymbol{z}^{(\ell+1)} = oldsymbol{z}^*.$ If rejected, $oldsymbol{z}^{(\ell+1)} = oldsymbol{z}^{(\ell)}$

- Goal: Generate samples from some target distribution $p(z) = \frac{\tilde{p}(z)}{Z}$, where z is high-dimensional
- Assume we can evaluate p(z) at least up to a proportionality constant (i.e., can compute $\tilde{p}(z)$)
- ullet Basic idea: MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

$$\underbrace{\mathbf{z}^{(1)} \to \mathbf{z}^{(2)} \to \mathbf{z}^{(3)} \to}_{\text{initial samples typically garbage}} \dots \to \underbrace{\mathbf{z}^{(L-2)} \to \mathbf{z}^{(L-1)} \to \mathbf{z}^{(L)}}_{\text{after convergence, actual samples from } p(\mathbf{z})}$$

- ullet Given a current sample $oldsymbol{z}^{(\ell)}$ from the chain, MCMC generates the next sample $oldsymbol{z}^{(\ell+1)}$ as
 - Use a proposal distribution $q(z|z^{(\ell)})$ to generate a candidate sample z^*
 - Accept/reject z* as the next sample based on an acceptance criterion (will see later)
 - ullet If accepted, $oldsymbol{z}^{(\ell+1)} = oldsymbol{z}^*.$ If rejected, $oldsymbol{z}^{(\ell+1)} = oldsymbol{z}^{(\ell)}$
- Note that in MCMC, the proposal distribution $q(z|z^{(\ell)})$ depends on the previous sample (unlike methods such as rejection sampling)

• MCMC chain run infinitely long (i.e., post-convergence) will give ONE sample from the target p(z)

• But we usually require several samples to approximate p(z). How do we get those?

- But we usually require several samples to approximate p(z). How do we get those?
 - Start at an initial $z^{(0)}$. Using a prop. dist. $q(z^{(\ell+1)}|z^{(\ell)})$, run the chain long enough, say T_1 steps

- But we usually require several samples to approximate p(z). How do we get those?
 - Start at an initial $z^{(0)}$. Using a prop. dist. $q(z^{(\ell+1)}|z^{(\ell)})$, run the chain long enough, say T_1 steps
 - Discard the first $(T_1 1)$ samples (called "burn-in" samples) and take the last sample $z^{(T_1)}$

- But we usually require several samples to approximate p(z). How do we get those?
 - Start at an initial $z^{(0)}$. Using a prop. dist. $q(z^{(\ell+1)}|z^{(\ell)})$, run the chain long enough, say T_1 steps
 - Discard the first $(T_1 1)$ samples (called "burn-in" samples) and take the last sample $z^{(T_1)}$
 - Continue from $\mathbf{z}^{(T_1)}$ up to T_2 steps, discard intermediate samples, take the last sample $\mathbf{z}^{(T_2)}$

- But we usually require several samples to approximate p(z). How do we get those?
 - Start at an initial $z^{(0)}$. Using a prop. dist. $q(z^{(\ell+1)}|z^{(\ell)})$, run the chain long enough, say T_1 steps
 - \circ Discard the first (T_1-1) samples (called "burn-in" samples) and take the last sample $z^{(T_1)}$
 - ullet Continue from $oldsymbol{z}^{(T_1)}$ up to T_2 steps, discard intermediate samples, take the last sample $oldsymbol{z}^{(T_2)}$
 - This helps ensure that $z^{(T_1)}$ and $z^{(T_2)}$ are uncorrelated

- But we usually require several samples to approximate p(z). How do we get those?
 - Start at an initial $z^{(0)}$. Using a prop. dist. $q(z^{(\ell+1)}|z^{(\ell)})$, run the chain long enough, say T_1 steps
 - \circ Discard the first (T_1-1) samples (called "burn-in" samples) and take the last sample $z^{(T_1)}$
 - \circ Continue from $\mathbf{z}^{(T_1)}$ up to T_2 steps, discard intermediate samples, take the last sample $\mathbf{z}^{(T_2)}$
 - This helps ensure that $z^{(T_1)}$ and $z^{(T_2)}$ are uncorrelated
 - Repeat the same for a total of S times

- But we usually require several samples to approximate p(z). How do we get those?
 - Start at an initial $z^{(0)}$. Using a prop. dist. $q(z^{(\ell+1)}|z^{(\ell)})$, run the chain long enough, say T_1 steps
 - Discard the first $(T_1 1)$ samples (called "burn-in" samples) and take the last sample $z^{(T_1)}$
 - \circ Continue from $z^{(T_1)}$ up to T_2 steps, discard intermediate samples, take the last sample $z^{(T_2)}$
 - This helps ensure that $z^{(T_1)}$ and $z^{(T_2)}$ are uncorrelated
 - \bullet Repeat the same for a total of S times
 - In the end, we have S i.i.d. samples from p(z), i.e., $z^{(T_1)}, z^{(T_2)}, \dots, z^{(T_S)} \sim p(z)$

- But we usually require several samples to approximate p(z). How do we get those?
 - Start at an initial $z^{(0)}$. Using a prop. dist. $q(z^{(\ell+1)}|z^{(\ell)})$, run the chain long enough, say T_1 steps
 - Discard the first $(T_1 1)$ samples (called "burn-in" samples) and take the last sample $z^{(T_1)}$
 - \circ Continue from $\mathbf{z}^{(T_1)}$ up to T_2 steps, discard intermediate samples, take the last sample $\mathbf{z}^{(T_2)}$
 - ullet This helps ensure that $oldsymbol{z}^{(T_1)}$ and $oldsymbol{z}^{(T_2)}$ are uncorrelated
 - ullet Repeat the same for a total of S times
 - In the end, we have S i.i.d. samples from p(z), i.e., $z^{(T_1)}, z^{(T_2)}, \dots, z^{(T_S)} \sim p(z)$
 - ullet Note: Good choices for T_1 and T_i-T_{i-1} are usually based on heuristics

- But we usually require several samples to approximate p(z). How do we get those?
 - Start at an initial $z^{(0)}$. Using a prop. dist. $q(z^{(\ell+1)}|z^{(\ell)})$, run the chain long enough, say T_1 steps
 - Discard the first $(T_1 1)$ samples (called "burn-in" samples) and take the last sample $z^{(T_1)}$
 - \circ Continue from $\mathbf{z}^{(T_1)}$ up to T_2 steps, discard intermediate samples, take the last sample $\mathbf{z}^{(T_2)}$
 - This helps ensure that $z^{(T_1)}$ and $z^{(T_2)}$ are uncorrelated
 - \bullet Repeat the same for a total of S times
 - In the end, we have S i.i.d. samples from p(z), i.e., $z^{(T_1)}, z^{(T_2)}, \dots, z^{(T_S)} \sim p(z)$
 - Note: Good choices for T_1 and $T_i T_{i-1}$ are usually based on heuristics
 - \bullet Note: MCMC is an approximate method because we don't usually know what T_1 is "long enough"

• A first order Markov Chain assumes $p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(\ell)})=p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)})$

- A first order Markov Chain assumes $p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(\ell)})=p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)})$
- A 1st order Markov Chain $z^{(0)}, z^{(1)}, \ldots, z^{(L)}$ is a sequence of r.v.'s and is defined by

- A first order Markov Chain assumes $p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(\ell)})=p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)})$
- A 1st order Markov Chain $z^{(0)}, z^{(1)}, \ldots, z^{(L)}$ is a sequence of r.v.'s and is defined by
 - An initial state distribution $p(z^{(0)})$

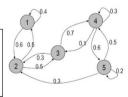
- A first order Markov Chain assumes $p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(\ell)})=p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)})$
- A 1st order Markov Chain $z^{(0)}, z^{(1)}, \ldots, z^{(L)}$ is a sequence of r.v.'s and is defined by
 - An initial state distribution $p(z^{(0)})$
 - A Transition Function (TF): $T_\ell(\mathbf{z}^{(\ell)} o \mathbf{z}^{(\ell+1)}) = p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)}).$

- A first order Markov Chain assumes $p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(\ell)}) = p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)})$
- A 1st order Markov Chain $z^{(0)}, z^{(1)}, \ldots, z^{(L)}$ is a sequence of r.v.'s and is defined by
 - An initial state distribution $p(z^{(0)})$
 - A Transition Function (TF): $T_{\ell}(\mathbf{z}^{(\ell)} \to \mathbf{z}^{(\ell+1)}) = p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)}).$
- TF defines a distribution over the values of next state given the value of the current state

- A first order Markov Chain assumes $p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(\ell)})=p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)})$
- A 1st order Markov Chain $z^{(0)}, z^{(1)}, \ldots, z^{(L)}$ is a sequence of r.v.'s and is defined by
 - An initial state distribution $p(z^{(0)})$
 - A Transition Function (TF): $T_{\ell}(z^{(\ell)} \to z^{(\ell+1)}) = p(z^{(\ell+1)}|z^{(\ell)})$.
- TF defines a distribution over the values of next state given the value of the current state
- ullet Assuming a discrete state-space, the TF is defined by a $K \times K$ probability table

Transition probabilities can be defined using a KxK table if **z** is a discrete r.v. with K possible values

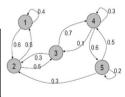
	1	2	3	4	5
1	0.4	0.6	0.0 0.5 0.0	0.0	0.0
2	0.5	0.0	0.5	0.0	0.0
3	0.0	0.3	0.0	0.7	0.0
4	0.0	0.0	0.1 0.0	0.3	0.6
5	0.0	0.3	0.0	0.5	0.2



- A first order Markov Chain assumes $p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(\ell)}) = p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)})$
- A 1st order Markov Chain $z^{(0)}, z^{(1)}, \ldots, z^{(L)}$ is a sequence of r.v.'s and is defined by
 - An initial state distribution $p(z^{(0)})$
 - A Transition Function (TF): $T_{\ell}(\mathbf{z}^{(\ell)} \to \mathbf{z}^{(\ell+1)}) = p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)})$.
- TF defines a distribution over the values of next state given the value of the current state
- ullet Assuming a discrete state-space, the TF is defined by a $K \times K$ probability table

Transition probabilities can be defined using a KxK table if \mathbf{z} is a discrete r.v. with K possible values

1	2	3	4	5
0.4	0.6	0.0	0.0	0.0
0.5	0.0	0.5	0.0	0.0
0.0	0.3	0.0	0.7	0.0
0.0	0.0	0.1	0.3	0.6
0.0	0.3	0.0	0.5	0.2
	0.4 0.5 0.0	0.4 0.6 0.5 0.0 0.0 0.3	0.4 0.6 0.0 0.5 0.0 0.5 0.0 0.3 0.0	1 2 3 4 0.4 0.6 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.3 0.0 0.7 0.0 0.0 0.1 0.3 0.0 0.3 0.0 0.5



• Homogeneous Markov Chain: The TF is the same for all ℓ , i.e., $T_\ell = T$

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

• Consider the following simple TF with K=3 (want to sample from a multinoulli)

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

• Consider the initial state distribution $p(\mathbf{z}^{(0)}) = p(z_1^{(0)}, z_2^{(0)}, z_3^{(0)}) = [0.5, 0.2, 0.3]$

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

- Consider the initial state distribution $p(z^{(0)}) = p(z_1^{(0)}, z_2^{(0)}, z_3^{(0)}) = [0.5, 0.2, 0.3]$
- Easy to see that $p(\mathbf{z}^{(0)}) \times T = [0.2, 0.6, 0.2] \Rightarrow$ distribution of $\mathbf{z}^{(1)}$

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

- Consider the initial state distribution $p(z^{(0)}) = p(z_1^{(0)}, z_2^{(0)}, z_3^{(0)}) = [0.5, 0.2, 0.3]$
- Easy to see that $p(z^{(0)}) \times T = [0.2, 0.6, 0.2] \Rightarrow$ distribution of $z^{(1)}$
- Also easy to see that, after a few (say m) iterations, $p(z^{(0)}) \times T^m = [0.2, 0.4, 0.4] = p(z)$ (say)

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

- Consider the initial state distribution $p(z^{(0)}) = p(z_1^{(0)}, z_2^{(0)}, z_3^{(0)}) = [0.5, 0.2, 0.3]$
- Easy to see that $p(z^{(0)}) \times T = [0.2, 0.6, 0.2] \Rightarrow$ distribution of $z^{(1)}$
- Also easy to see that, after a few (say m) iterations, $p(z^{(0)}) \times T^m = [0.2, 0.4, 0.4] = p(z)$ (say)
- For the above T, any choice of $p(z^{(0)})$ leads to multinoulli p(z) with $\pi = [0.2, 0.4, 0.4]$

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

- Consider the initial state distribution $p(z^{(0)}) = p(z_1^{(0)}, z_2^{(0)}, z_3^{(0)}) = [0.5, 0.2, 0.3]$
- Easy to see that $p(z^{(0)}) \times T = [0.2, 0.6, 0.2] \Rightarrow$ distribution of $z^{(1)}$
- Also easy to see that, after a few (say m) iterations, $p(z^{(0)}) \times T^m = [0.2, 0.4, 0.4] = p(z)$ (say)
- For the above T, any choice of $p(z^{(0)})$ leads to multinoulli p(z) with $\pi = [0.2, 0.4, 0.4]$
 - Such a p(z) is called the stationary/invariant distribution of this Markov Chain

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

- Consider the initial state distribution $p(z^{(0)}) = p(z_1^{(0)}, z_2^{(0)}, z_3^{(0)}) = [0.5, 0.2, 0.3]$
- Easy to see that $p(z^{(0)}) \times T = [0.2, 0.6, 0.2] \Rightarrow$ distribution of $z^{(1)}$
- Also easy to see that, after a few (say m) iterations, $p(z^{(0)}) \times T^m = [0.2, 0.4, 0.4] = p(z)$ (say)
- For the above T, any choice of $p(z^{(0)})$ leads to multinoulli p(z) with $\pi = [0.2, 0.4, 0.4]$
 - Such a p(z) is called the stationary/invariant distribution of this Markov Chain
- A Markov Chain has a stationary distribution if T has the following properties

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

- Consider the initial state distribution $p(z^{(0)}) = p(z_1^{(0)}, z_2^{(0)}, z_3^{(0)}) = [0.5, 0.2, 0.3]$
- Easy to see that $p(z^{(0)}) \times T = [0.2, 0.6, 0.2] \Rightarrow$ distribution of $z^{(1)}$
- Also easy to see that, after a few (say m) iterations, $p(z^{(0)}) \times T^m = [0.2, 0.4, 0.4] = p(z)$ (say)
- For the above T, any choice of $p(z^{(0)})$ leads to multinoulli p(z) with $\pi = [0.2, 0.4, 0.4]$
 - Such a p(z) is called the stationary/invariant distribution of this Markov Chain
- A Markov Chain has a stationary distribution if T has the following properties
 - Irreducibility: T's graph is connected (ensures reachability from anywhere to anywhere)

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

- Consider the initial state distribution $p(z^{(0)}) = p(z_1^{(0)}, z_2^{(0)}, z_3^{(0)}) = [0.5, 0.2, 0.3]$
- Easy to see that $p(z^{(0)}) \times T = [0.2, 0.6, 0.2] \Rightarrow$ distribution of $z^{(1)}$
- Also easy to see that, after a few (say m) iterations, $p(z^{(0)}) \times T^m = [0.2, 0.4, 0.4] = p(z)$ (say)
- For the above T, any choice of $p(z^{(0)})$ leads to multinoulli p(z) with $\pi = [0.2, 0.4, 0.4]$
 - Such a p(z) is called the stationary/invariant distribution of this Markov Chain
- A Markov Chain has a stationary distribution if T has the following properties
 - Irreducibility: T's graph is connected (ensures reachability from anywhere to anywhere)
 - \bullet Aperiodicity: T's graph has no cycles (ensures that the chain isn't trapped in cycles)

- A sufficient (but not necessary) condition: A Markov Chain with transition function T has stationary distribution p(z) if T satisfies Detailed Balance
- \bullet For any two states z and z', the Detailed Balanced condition is

$$p(z)T(z \rightarrow z') = p(z')T(z' \rightarrow z)$$

- A sufficient (but not necessary) condition: A Markov Chain with transition function T has stationary distribution p(z) if T satisfies Detailed Balance
- ullet For any two states z and z', the Detailed Balanced condition is

$$p(z)T(z \rightarrow z') = p(z')T(z' \rightarrow z)$$

• Integrating out (or summing over) both sides w.r.t. z' gives

$$p(z) = \int p(z')T(z' \to z)dz'$$

- A sufficient (but not necessary) condition: A Markov Chain with transition function T has stationary distribution p(z) if T satisfies Detailed Balance
- ullet For any two states z and z', the Detailed Balanced condition is

$$\rho(z)T(z \to z') = \rho(z')T(z' \to z)$$

• Integrating out (or summing over) both sides w.r.t. z' gives

$$p(z) = \int p(z')T(z' \to z)dz'$$

• Therefore p(z) is a stationary distribution of this chain

- A sufficient (but not necessary) condition: A Markov Chain with transition function T has stationary distribution p(z) if T satisfies Detailed Balance
- ullet For any two states z and z', the Detailed Balanced condition is

$$\rho(z)T(z \to z') = \rho(z')T(z' \to z)$$

• Integrating out (or summing over) both sides w.r.t. z' gives

$$p(z) = \int p(z')T(z' \to z)dz'$$

- Therefore p(z) is a stationary distribution of this chain
- Thus a Markov Chain with detailed balance will always converge to a stationary distribution

Some MCMC Algorithms

• Suppose we wish to generate samples from a distribution $p(z) = rac{ ilde{p}(z)}{Z_p}$

- ullet Suppose we wish to generate samples from a distribution $p(oldsymbol{z})=rac{ ilde{p}(oldsymbol{z})}{Z_{
 ho}}$
- Assume a proposal distribution $q(\mathbf{z}|\mathbf{z}^{(\tau)})$, e.g., $\mathcal{N}(\mathbf{z}|\mathbf{z}^{(\tau)},\sigma^2\mathbf{I}_D)$

- ullet Suppose we wish to generate samples from a distribution $p(oldsymbol{z})=rac{ ilde{p}(oldsymbol{z})}{Z_{
 ho}}$
- Assume a proposal distribution $q(\mathbf{z}|\mathbf{z}^{(\tau)})$, e.g., $\mathcal{N}(\mathbf{z}|\mathbf{z}^{(\tau)}, \sigma^2\mathbf{I}_D)$
- ullet In each step, draw $oldsymbol{z}^* \sim q(oldsymbol{z} | oldsymbol{z}^{(au)})$

- ullet Suppose we wish to generate samples from a distribution $p(oldsymbol{z}) = rac{ ilde{
 ho}(oldsymbol{z})}{Z_{
 ho}}$
- Assume a proposal distribution $q(z|z^{(\tau)})$, e.g., $\mathcal{N}(z|z^{(\tau)}, \sigma^2 \mathbf{I}_D)$
- ullet In each step, draw $oldsymbol{z}^* \sim q(oldsymbol{z}|oldsymbol{z}^{(au)})$ and accept $oldsymbol{z}^*$ with probability

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(\tau)}) = \min\left(1, \frac{\tilde{\boldsymbol{p}}(\boldsymbol{z}^*)q(\boldsymbol{z}^{(\tau)}|\boldsymbol{z}^*)}{\tilde{\boldsymbol{p}}(\boldsymbol{z}^{(\tau)})q(\boldsymbol{z}^*|\boldsymbol{z}^{(\tau)})}\right)$$

- ullet Suppose we wish to generate samples from a distribution $p(oldsymbol{z}) = rac{ ilde{
 ho}(oldsymbol{z})}{Z_{
 ho}}$
- Assume a proposal distribution $q(z|z^{(\tau)})$, e.g., $\mathcal{N}(z|z^{(\tau)}, \sigma^2 \mathbf{I}_D)$
- ullet In each step, draw $oldsymbol{z}^* \sim q(oldsymbol{z}|oldsymbol{z}^{(au)})$ and accept $oldsymbol{z}^*$ with probability

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(\tau)}) = \min\left(1, \frac{\tilde{\boldsymbol{p}}(\boldsymbol{z}^*)q(\boldsymbol{z}^{(\tau)}|\boldsymbol{z}^*)}{\tilde{\boldsymbol{p}}(\boldsymbol{z}^{(\tau)})q(\boldsymbol{z}^*|\boldsymbol{z}^{(\tau)})}\right)$$

• The acceptance probability makes intuitive sense

- ullet Suppose we wish to generate samples from a distribution $p(oldsymbol{z}) = rac{ ilde{
 ho}(oldsymbol{z})}{Z_{
 ho}}$
- Assume a proposal distribution $q(z|z^{(\tau)})$, e.g., $\mathcal{N}(z|z^{(\tau)}, \sigma^2 \mathbf{I}_D)$
- ullet In each step, draw $oldsymbol{z}^* \sim q(oldsymbol{z}|oldsymbol{z}^{(au)})$ and accept $oldsymbol{z}^*$ with probability

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(\tau)}) = \min\left(1, \frac{\tilde{\boldsymbol{p}}(\boldsymbol{z}^*)q(\boldsymbol{z}^{(\tau)}|\boldsymbol{z}^*)}{\tilde{\boldsymbol{p}}(\boldsymbol{z}^{(\tau)})q(\boldsymbol{z}^*|\boldsymbol{z}^{(\tau)})}\right)$$

- The acceptance probability makes intuitive sense
 - ullet It favors accepting z^* if $ilde{p}(z^*)$ has a higher value than $ilde{p}(z^{(au)})$

- ullet Suppose we wish to generate samples from a distribution $p(oldsymbol{z}) = rac{ ilde{
 ho}(oldsymbol{z})}{Z_{
 ho}}$
- Assume a proposal distribution $q(z|z^{(\tau)})$, e.g., $\mathcal{N}(z|z^{(\tau)}, \sigma^2 \mathbf{I}_D)$
- ullet In each step, draw $oldsymbol{z}^* \sim q(oldsymbol{z}|oldsymbol{z}^{(au)})$ and accept $oldsymbol{z}^*$ with probability

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(\tau)}) = \min\left(1, \frac{\frac{\tilde{\boldsymbol{p}}(\boldsymbol{z}^*)q(\boldsymbol{z}^{(\tau)}|\boldsymbol{z}^*)}{\tilde{\boldsymbol{p}}(\boldsymbol{z}^{(\tau)})q(\boldsymbol{z}^*|\boldsymbol{z}^{(\tau)})}\right)$$

- The acceptance probability makes intuitive sense
 - ullet It favors accepting $oldsymbol{z}^*$ if $ilde{p}(oldsymbol{z}^*)$ has a higher value than $ilde{p}(oldsymbol{z}^{(au)})$
 - Unfavors z^* if the proposal distribution q unduly favors its generation (i.e., if $q(z^*|z^{(\tau)})$ is large)

- ullet Suppose we wish to generate samples from a distribution $p(oldsymbol{z}) = rac{ ilde{
 ho}(oldsymbol{z})}{Z_{
 ho}}$
- Assume a proposal distribution $q(z|z^{(\tau)})$, e.g., $\mathcal{N}(z|z^{(\tau)}, \sigma^2 \mathbf{I}_D)$
- ullet In each step, draw $oldsymbol{z}^* \sim q(oldsymbol{z}|oldsymbol{z}^{(au)})$ and accept $oldsymbol{z}^*$ with probability

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(\tau)}) = \min\left(1, \frac{\frac{\tilde{\boldsymbol{p}}(\boldsymbol{z}^*)q(\boldsymbol{z}^{(\tau)}|\boldsymbol{z}^*)}{\tilde{\boldsymbol{p}}(\boldsymbol{z}^{(\tau)})q(\boldsymbol{z}^*|\boldsymbol{z}^{(\tau)})}\right)$$

- The acceptance probability makes intuitive sense
 - It favors accepting z^* if $\tilde{p}(z^*)$ has a higher value than $\tilde{p}(z^{(\tau)})$
 - Unfavors z^* if the proposal distribution q unduly favors its generation (i.e., if $q(z^*|z^{(\tau)})$ is large)
 - Favors z^* if we can "reverse" to $z^{(\tau)}$ from z^* (i.e., if $q(z^{(\tau)}|z^*)$ is large). Needed for good "mixing"

- Suppose we wish to generate samples from a distribution $p(\pmb{z}) = rac{ ilde{p}(\pmb{z})}{Z_p}$
- Assume a proposal distribution $q(z|z^{(\tau)})$, e.g., $\mathcal{N}(z|z^{(\tau)}, \sigma^2 \mathbf{I}_D)$
- ullet In each step, draw $oldsymbol{z}^* \sim q(oldsymbol{z}|oldsymbol{z}^{(au)})$ and accept $oldsymbol{z}^*$ with probability

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(\tau)}) = \min\left(1, \frac{\tilde{\boldsymbol{p}}(\boldsymbol{z}^*)q(\boldsymbol{z}^{(\tau)}|\boldsymbol{z}^*)}{\tilde{\boldsymbol{p}}(\boldsymbol{z}^{(\tau)})q(\boldsymbol{z}^*|\boldsymbol{z}^{(\tau)})}\right)$$

- The acceptance probability makes intuitive sense
 - It favors accepting z^* if $\widetilde{p}(z^*)$ has a higher value than $\widetilde{p}(z^{(au)})$
 - Unfavors z^* if the proposal distribution q unduly favors its generation (i.e., if $q(z^*|z^{(\tau)})$ is large)
 - Favors z^* if we can "reverse" to $z^{(\tau)}$ from z^* (i.e., if $q(z^{(\tau)}|z^*)$ is large). Needed for good "mixing"
- ullet Transition function of this Markov Chain: $T(z^{(au)} o z^*) = A(z^*, z^{(au)}) q(z^*|z^{(au)})$

- Suppose we wish to generate samples from a distribution $p(z) = \frac{\tilde{p}(z)}{z}$
- Assume a proposal distribution $q(\mathbf{z}|\mathbf{z}^{(\tau)})$, e.g., $\mathcal{N}(\mathbf{z}|\mathbf{z}^{(\tau)}, \sigma^2\mathbf{I}_{\Omega})$
- In each step, draw $z^* \sim q(z|z^{(\tau)})$ and accept z^* with probability

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(\tau)}) = \min\left(1, \frac{\frac{\tilde{\boldsymbol{p}}(\boldsymbol{z}^*)q(\boldsymbol{z}^{(\tau)}|\boldsymbol{z}^*)}{\tilde{\boldsymbol{p}}(\boldsymbol{z}^{(\tau)})q(\boldsymbol{z}^*|\boldsymbol{z}^{(\tau)})}\right)$$

- The acceptance probability makes intuitive sense
 - It favors accepting z^* if $\tilde{p}(z^*)$ has a higher value than $\tilde{p}(z^{(\tau)})$
 - Unfavors z^* if the proposal distribution q unduly favors its generation (i.e., if $q(z^*|z^{(\tau)})$ is large)
 - Favors z^* if we can "reverse" to $z^{(\tau)}$ from z^* (i.e., if $q(z^{(\tau)}|z^*)$ is large). Needed for good "mixing"
- ullet Transition function of this Markov Chain: $T(z^{(au)} o z^*) = A(z^*, z^{(au)}) q(z^*|z^{(au)})$
- Exercise: Show that $T(z \to z^{(\tau)})$ satisfies the detailed balance property

$$T(z \rightarrow z^{(\tau)})p(z) = T(z^{(\tau)} \rightarrow z)p(z^{(\tau)})$$

The MH Sampling Algorithm

- Initialize $z^{(0)}$ randomly
- For $\ell = 0, \ldots, L-1$
 - ullet Sample $oldsymbol{z}^* \sim q(oldsymbol{z}^*|oldsymbol{z}^{(\ell)})$ and $u \sim \mathsf{Unif}(0,1)$
 - $\qquad \qquad \text{o If } u < A(\pmb{z}^*, \pmb{z}^{(\ell)}) = \min\left(1, \frac{\tilde{p}(\pmb{z}^*)q(\pmb{z}^{(\ell)}|\pmb{z}^*)}{\tilde{p}(\pmb{z}^{(\ell)})q(\pmb{z}^*|\pmb{z}^{(\ell)})}\right)$

$$z^{(\ell+1)}=z^*$$
 (meaning: accepting with probability $A(z^*,z^{(\ell)})$)

else

$$\pmb{z}^{(\ell+1)} = \pmb{z}^{(\ell)}$$

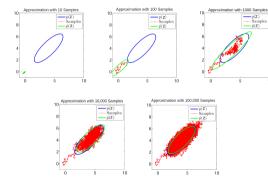
Target
$$p(z) = \mathcal{N}\left(\begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} 1 & 0.8\\0.8 & 1 \end{bmatrix}\right)$$
, Proposal $q(z^{(t)}|z^{(t-1)}) = \mathcal{N}\left(z^{(t-1)}, \begin{bmatrix} 0.01 & 0\\0 & 0.01 \end{bmatrix}\right)$

Target
$$p(\mathbf{z}) = \mathcal{N}\left(\begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} 1 & 0.8\\0.8 & 1 \end{bmatrix}\right)$$
, Proposal $q(\mathbf{z}^{(t)}|\mathbf{z}^{(t-1)}) = \mathcal{N}\left(\mathbf{z}^{(t-1)}, \begin{bmatrix} 0.01 & 0\\0 & 0.01 \end{bmatrix}\right)$

Target
$$p(z) = \mathcal{N}\left(\begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} 1 & 0.8\\0.8 & 1 \end{bmatrix}\right)$$
, Proposal $q(z^{(t)}|z^{(t-1)}) = \mathcal{N}\left(z^{(t-1)}, \begin{bmatrix} 0.01 & 0\\0 & 0.01 \end{bmatrix}\right)$

Target
$$p(z) = \mathcal{N}\left(\begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} 1 & 0.8\\0.8 & 1 \end{bmatrix}\right)$$
, Proposal $q(z^{(t)}|z^{(t-1)}) = \mathcal{N}\left(z^{(t-1)}, \begin{bmatrix} 0.01 & 0\\0 & 0.01 \end{bmatrix}\right)$

$$\text{Target } p(\pmb{z}) = \mathcal{N}\left(\begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} 1 & 0.8\\0.8 & 1 \end{bmatrix}\right), \text{ Proposal } q(\pmb{z}^{(t)}|\pmb{z}^{(t-1)}) = \mathcal{N}\left(\pmb{z}^{(t-1)}, \begin{bmatrix} 0.01 & 0\\0 & 0.01 \end{bmatrix}\right)$$



• If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

$$A(\pmb{z}^*, \pmb{z}^{(au)}) = \min\left(1, rac{ ilde{p}(\pmb{z}^*)}{ ilde{p}(\pmb{z}^{(au)})}
ight)$$

• If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

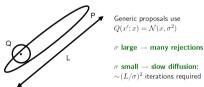
$$A(\pmb{z}^*, \pmb{z}^{(au)}) = \min\left(1, rac{ ilde{p}(\pmb{z}^*)}{ ilde{p}(\pmb{z}^{(au)})}
ight)$$

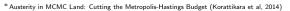
Some limitations of MH sampling

• If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

$$A(\pmb{z}^*, \pmb{z}^{(au)}) = \min\left(1, rac{ ilde{p}(\pmb{z}^*)}{ ilde{p}(\pmb{z}^{(au)})}
ight)$$

- Some limitations of MH sampling
 - ullet MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal

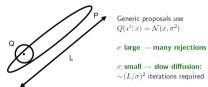




• If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

$$A(\pmb{z}^*, \pmb{z}^{(au)}) = \min\left(1, rac{ ilde{p}(\pmb{z}^*)}{ ilde{p}(\pmb{z}^{(au)})}
ight)$$

- Some limitations of MH sampling
 - ullet MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal

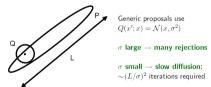


Computing acceptance probability can be expensive

• If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

$$A(\pmb{z}^*, \pmb{z}^{(au)}) = \min\left(1, rac{ ilde{p}(\pmb{z}^*)}{ ilde{p}(\pmb{z}^{(au)})}
ight)$$

- Some limitations of MH sampling
 - ullet MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal



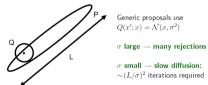
• Computing acceptance probability can be expensive: When $p(z) = \frac{\tilde{p}(z)}{Z_p}$ represents a posterior distribution of some model, \tilde{p} is the unnormalized posterior that depends on all the data

^{*} Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014)

• If proposal distrib. is symmetric, we get Metropolis Sampling algorithm (Metropolis, 1953) with

$$A(\pmb{z}^*, \pmb{z}^{(au)}) = \min\left(1, rac{ ilde{p}(\pmb{z}^*)}{ ilde{p}(\pmb{z}^{(au)})}
ight)$$

- Some limitations of MH sampling
 - ullet MH can have a very slow convergence. Figure below: P is the target dist., Q is the proposal



• Computing acceptance probability can be expensive: When $p(z) = \frac{\tilde{p}(z)}{Z_p}$ represents a posterior distribution of some model, \tilde{p} is the unnormalized posterior that depends on all the data (note: a lot of recent work on speeding up this step using subsets of data*)

^{*} Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014)

• Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$

- Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$
- However, suppose we can't sample from p(z) but can sample from each conditional $p(z_i|z_{-i})$

- Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$
- However, suppose we can't sample from p(z) but can sample from each conditional $p(z_i|z_{-i})$
 - Can we done easily if we have a locally conjugate model

- Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$
- ullet However, suppose we can't sample from p(z) but can sample from each conditional $p(z_i|z_{-i})$
 - Can we done easily if we have a locally conjugate model
- ullet For Gibbs sampling, the proposal is the conditional distribution $p(z_i|oldsymbol{z}_{-i})$

- Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$
- However, suppose we can't sample from p(z) but can sample from each conditional $p(z_i|z_{-i})$
 - Can we done easily if we have a locally conjugate model
- For Gibbs sampling, the proposal is the conditional distribution $p(z_i|\mathbf{z}_{-i})$
- Gibbs sampling samples from these conditionals in a cyclic order

- Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$
- However, suppose we can't sample from p(z) but can sample from each conditional $p(z_i|z_{-i})$
 - Can we done easily if we have a locally conjugate model
- For Gibbs sampling, the proposal is the conditional distribution $p(z_i|z_{-i})$
- Gibbs sampling samples from these conditionals in a cyclic order
- ullet Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. =1

- Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$
- However, suppose we can't sample from p(z) but can sample from each conditional $p(z_i|z_{-i})$
 - Can we done easily if we have a locally conjugate model
- ullet For Gibbs sampling, the proposal is the conditional distribution $p(z_i|m{z}_{-i})$
- Gibbs sampling samples from these conditionals in a cyclic order
- ullet Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. = 1

$$A(\mathbf{z}^*, \mathbf{z}) = \frac{p(\mathbf{z}^*)q(\mathbf{z}|\mathbf{z}^*)}{p(\mathbf{z})q(\mathbf{z}^*|\mathbf{z})}$$

- Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$
- However, suppose we can't sample from p(z) but can sample from each conditional $p(z_i|z_{-i})$
 - Can we done easily if we have a locally conjugate model
- For Gibbs sampling, the proposal is the conditional distribution $p(z_i|\mathbf{z}_{-i})$
- Gibbs sampling samples from these conditionals in a cyclic order
- ullet Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. =1

$$A(z^*,z) = \frac{p(z^*)q(z|z^*)}{p(z)q(z^*|z)} = \frac{p(z_i^*|z_{-i}^*)p(z_{-i}^*)p(z_i|z_{-i}^*)}{p(z_i|z_{-i})p(z_{-i}^*)p(z_i^*|z_{-i}^*)}$$

- Suppose we wish to sample from a joint distribution p(z) where $z=(z_1,z_2,\ldots,z_M)$
- However, suppose we can't sample from p(z) but can sample from each conditional $p(z_i|z_{-i})$
 - Can we done easily if we have a locally conjugate model
- For Gibbs sampling, the proposal is the conditional distribution $p(z_i|\mathbf{z}_{-i})$
- Gibbs sampling samples from these conditionals in a cyclic order
- ullet Gibbs sampling is equivalent to Metropolis Hastings sampling with acceptance prob. =1

$$A(z^*, z) = \frac{p(z^*)q(z|z^*)}{p(z)q(z^*|z)} = \frac{p(z_i^*|z_{-i}^*)p(z_{-i}^*)p(z_i|z_{-i}^*)}{p(z_i|z_{-i})p(z_{-i})p(z_i^*|z_{-i})} = 1$$

where we use the fact that $\mathbf{z}_{-i}^* = \mathbf{z}_{-i}$

Gibbs Sampling: Sketch of the Algorithm

M: Total number of variables, T: number of Gibbs sampling steps

- 1. Initialize $\{z_i : i = 1, ..., M\}$
- 2. For $\tau = 1, ..., T$:
 - Sample $z_1^{(\tau+1)} \sim p(z_1|z_2^{(\tau)}, z_3^{(\tau)}, \dots, z_M^{(\tau)}).$
 - Sample $z_2^{(\tau+1)} \sim p(z_2|z_1^{(\tau+1)}, z_2^{(\tau)}, \dots, z_M^{(\tau)})$.
 - . Sample $z_i^{(\tau+1)} \sim p(z_j|z_1^{(\tau+1)}, \dots, z_{i-1}^{(\tau+1)}, z_{i+1}^{(\tau)}, \dots, z_M^{(\tau)}).$
 - :
 Sample $z_M^{(\tau+1)} \sim p(z_M | z_1^{(\tau+1)}, z_2^{(\tau+1)}, \dots, z_{M-1}^{(\tau+1)}).$

Gibbs Sampling: Sketch of the Algorithm

M: Total number of variables, T: number of Gibbs sampling steps

```
\begin{split} &1. \text{ Initialize } \{z_i: i=1,\dots,M\} \\ &2. \text{ For } \tau=1,\dots,T \colon \\ &-\text{ Sample } z_1^{(\tau+1)} \sim p(z_1|z_2^{(\tau)},z_3^{(\tau)},\dots,z_M^{(\tau)}). \\ &-\text{ Sample } z_2^{(\tau+1)} \sim p(z_2|z_1^{(\tau+1)},z_3^{(\tau)},\dots,z_M^{(\tau)}). \\ &\vdots \\ &-\text{ Sample } z_j^{(\tau+1)} \sim p(z_j|z_1^{(\tau+1)},\dots,z_{j-1}^{(\tau+1)},z_{j+1}^{(\tau)},\dots,z_M^{(\tau)}). \\ &\vdots \\ &-\text{ Sample } z_M^{(\tau+1)} \sim p(z_M|z_1^{(\tau+1)},z_2^{(\tau+1)},\dots,z_{M-1}^{(\tau+1)}). \end{split}
```

Note: When sampling each variable from its conditional posterior, we use the most recent values of all other variables (this is akin to a co-ordinate ascent like procedure)

Gibbs Sampling: Sketch of the Algorithm

M: Total number of variables, T: number of Gibbs sampling steps

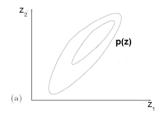
```
\begin{split} &1. \text{ Initialize } \{z_i: i=1,\dots,M\} \\ &2. \text{ For } \tau=1,\dots,T \colon \\ &-\text{ Sample } z_1^{(\tau+1)} \sim p(z_1|z_2^{(\tau)},z_3^{(\tau)},\dots,z_M^{(\tau)}). \\ &-\text{ Sample } z_2^{(\tau+1)} \sim p(z_2|z_1^{(\tau+1)},z_3^{(\tau)},\dots,z_M^{(\tau)}). \\ &\vdots \\ &-\text{ Sample } z_j^{(\tau+1)} \sim p(z_j|z_1^{(\tau+1)},\dots,z_{j-1}^{(\tau+1)},z_{j+1}^{(\tau)},\dots,z_M^{(\tau)}). \\ &\vdots \\ &-\text{ Sample } z_M^{(\tau+1)} \sim p(z_M|z_1^{(\tau+1)},z_2^{(\tau+1)},\dots,z_{M-1}^{(\tau+1)}). \end{split}
```

Note: When sampling each variable from its conditional posterior, we use the most recent values of all other variables (this is akin to a co-ordinate ascent like procedure)

Note: Order of updating the variables usually doesn't matter (but see "Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much" from NIPS 2016)

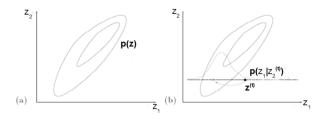
Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D Gaussian, conditionals will simply be 1-D Gaussians)



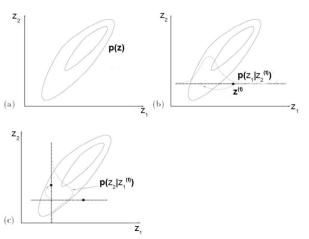
Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D Gaussian, conditionals will simply be 1-D Gaussians)



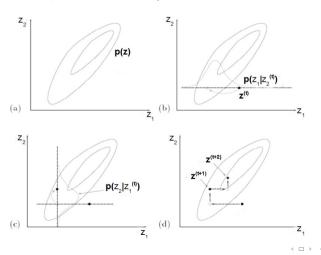
Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D Gaussian, conditionals will simply be 1-D Gaussians)



Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians (recall that if the joint distribution is a 2-D Gaussian, conditionals will simply be 1-D Gaussians)



One of the most popular MCMC algorithm

- One of the most popular MCMC algorithm
- Very easy to derive and implement for locally conjugate models

- One of the most popular MCMC algorithm
- Very easy to derive and implement for locally conjugate models
- Many variations exist, e.g.,

- One of the most popular MCMC algorithm
- Very easy to derive and implement for locally conjugate models
- Many variations exist, e.g.,
 - Blocked Gibbs: sample multiple variables jointly (sometimes possible)

- One of the most popular MCMC algorithm
- Very easy to derive and implement for locally conjugate models
- Many variations exist, e.g.,
 - Blocked Gibbs: sample multiple variables jointly (sometimes possible)
 - Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.
 Also called "collapsed" Gibbs sampling

- One of the most popular MCMC algorithm
- Very easy to derive and implement for locally conjugate models
- Many variations exist, e.g.,
 - Blocked Gibbs: sample multiple variables jointly (sometimes possible)
 - Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.
 Also called "collapsed" Gibbs sampling
 - MH within Gibbs

- One of the most popular MCMC algorithm
- Very easy to derive and implement for locally conjugate models
- Many variations exist, e.g.,
 - Blocked Gibbs: sample multiple variables jointly (sometimes possible)
 - Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.
 Also called "collapsed" Gibbs sampling
 - MH within Gibbs
- Instead of sampling from the conditionals, an alternative is to use the mode of the conditional.

- One of the most popular MCMC algorithm
- Very easy to derive and implement for locally conjugate models
- Many variations exist, e.g.,
 - Blocked Gibbs: sample multiple variables jointly (sometimes possible)
 - Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded variables while sampling.
 Also called "collapsed" Gibbs sampling
 - MH within Gibbs
- Instead of sampling from the conditionals, an alternative is to use the mode of the conditional.
 - Called the "Iterative Conditional Mode" (ICM) algorithm (doesn't give the posterior though)

Next Class

- Using posterior's gradient info in sampling algorithms
- Online MCMC algorithms
- Recent advances in MCMC
- Some other practical issues

