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Recap: VI using Monte-Carlo based Gradients of ELBO

o VI = ELBO optimization. Requires ELBO gradients: V,L(¢) = V4Eq[log p(X,Z) — log q(Z|¢)]
o Looked at two approaches that optimize ELBO using its Monte-Carlo based gradients
o Black-box VI (a.k.a. score-function gradients): No model-specific gradient calculations required

Z;, ~ q(Z]p) s=1,...,5
s

1
Vol(q) ~ oD Vslogq(Zs|o)llogp(X,Zs) — log q(Zs|9)]
s=1
o Reparametrization trick (a.k.a. pathwise gradients)
Z = g(&9)

es ~ pe) s=1,...,§

& D [Valog p(X,g(cs,6) ~ Vi log asg(cs, )]

s=1

VsL(q)

Q

o Note: We can use minibatches of data (instead of all X) to compute the above gradients
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Automatic Differentiation Variational Inference (ADVI)

o Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables
o VI is also optimization. However, often the variables are constrained, e.g.,

o Gamma's shape and scale can only be non-negative

o Beta’s parameters can only be non-negative

o Dirichlet’s probability parameter sums to one

o If we can somehow transform our distributions to unconstrained ones, we can use AD for VI

T : supp(p(0)) — R

A, Prior
2 Posterior -
% 1 1‘:: 1 Approximation C T(G) 7 :
; | p(x,0) = (x, T71(¢)) | det 1 ()]
v : b -1 1 2 . :
ootz i . Transformed  Original Jacobian of
(a) Latent variable space (b) Real coordinate space density denSity inverse of T

o ADVI transforms the variables to real-valued and then does VI with Gaussian variational approx.

* Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Wrap-up), Inference via Sampling



Amortized Variational Inference
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Amortized Variational Inference

(]

Many latent variable models have one latent variable z, for each data point x,

©

VI finds the optimal ¢, for each g(z,|¢,)

o This can be expensive for large datasets (a similar issue which motivated SVI)

©

Also slow at test time: Given a new x,, finding ¢, requires iterative updates

o Update local ¢., update global A, and repeat until convergence

©

Amortized VI : Learn an “inference network” or “recognition model” to directly get ¢,, e.g.,

o A neural network to directly map x, to ¢,

q(2alén) ~ (24|n) where &, = NNy(xn)

(+]

The inference network params ¢ can be learned along with the other global vars

(+]

Popular in deep probabilistic models such as variational autoencoders, deep Gaussian Processes, etc
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Structured Variational Inference
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Structured Variational Inference

o Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,

o Removing the independence assumption of mean-field VI

o Learning more complex forms variational distributions
o To remove the mean-field assumption, various approaches exist

o Structured mean-field (Saul et al, 1996)

o Hierarchical VI (Ranganath et al, 2016): Variational params ¢1,...,¢u “tied” via a shared prior

alzr, .. zul6) = | [H q(zm¢m)] p($16)deb

o To learn more expressive variational approximations, various approaches exist, e.g.,

o Boosting or mixture of simpler distributions, e.g., q(z) = Zle pcqc(z|pc)

o Normalizing flows:" Turn a simple g(z) into a complex one via series of invertible transformations
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Other Divergence Measures
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Other Divergence Measures

(4]

VI minimizes KL(q||p) but other divergences can be minimized as well

o A general form of divergence is Renyi's a-divergence defined as

DE(p(x)lla(x)) = = log [ plx)"a(x)'

©

KL(p||q) is a special case with e — 1 (can verify using L'Hopital rule of taking limits)

©

An even more general form of divergece is f-Divergence

Drlp(lla(x)) = [ a(o)f <5§3> ix

Many recent inference algorithms are based on minimizing such divergences

©
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Variational Inference: Some Comments

©

Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference

o Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
o This + SVI gives excellent scalability

o Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success

o Note: Most of these ideas apply also to Variational EM

o Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g.,
Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models

o Still a very active area of research, especially for doing VI in complex models

o Models with discrete latent variables

o Reducing the variance in Monte-Carlo estimate of ELBO gradients
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Inference via Sampling

(Note that we have already seen Gibbs sampling)
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Sampling for Approximate Inference

o Some typical inference tasks

p(D10)p(®) _ _ p(D]0)p(0)
p(D) [ p(DIO)p(0)do

o Compute a difficult expectation of a random quantity w.r.t. a distribution (an integral), e.g.,

o Compute a (possibly intractable) posterior distribution: p(6|D) =

o The posterior predictive (an expectation w.r.t the posterior over 6)

p(D"|D) = /P(D"ew|9)P(9|D)d9 = Ep(op)[P(D""(0)]
o The marginal likelihood or “evidence” (an expectation over the prior)
p(D|m) = /P(D|9)P(9\m)d9 = Ep1m)[P(D]0)]
o The expected complete data log-likelihood needed for doing MLE/MAP in LVMs (recall EM)
Bxp-CLL = [ p(zl6, x)p(x. 216)dz = Epizjo0 p(x. 210)]
o The ELBO in variational inference ‘

L(q) = Eq[log p(x, z)] — Eq[log p(2)]

o Sampling methods provide a general way to (approximately) solve these problems
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The Basic ldea

o Can approximate any distribution using a set of randomly drawn samples from it

o The samples can also be used for computing expectations (Monte-Carlo averaging)
o Usually straightforward to generate samples if it is a simple/standard distribution

o The interesting bit: Even if the distribution is “difficult” (e.g., an intractable posterior), it is
often possible to generate random samples from such a distribution, as we will see..
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Empirical Distribution

o Sampling based approximation of a distribution can be represented using an empirical distribution
o Given L “points” z() ... z(D the empirical dis’zribution of these points is defined as
pL(A) = Z w640 (A)
=1
o Here wy,...,w, are weights that sum to 1, i.e., Zézl wy = 1 (for uniform weights, wy = 1/L)
o Here §,(A) denotes the Dirac distribution defined as

5,(A) 0 if z¢ A
2T if o ze A

o pu(A) is a discrete distribution with finite support z(!), ... z(5) (can think of it as a histogram)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Wrap-up), Inference via Sampling



Approximate Inference: VI vs Sampling-based

o VI approximates a posterior distribution p(Z|X) by another distribution g(Z|®)
Sampling uses S (typically large number) samples {Z,}2_; to approximate p(Z|X)

©

Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)

©

©

Also possible (though less common) to use VI in sampling algorithms (will talk about it later)

©

In terms of “comparison” between VI and sampling, a few things to be noted
o Convergence: VI only has local convergece, sampling (in theory) can give posterior (more on it later)
o Storage requirements: Sampling-based approximation requires more storage (why?)

o Prediction time cost (also related to storage requirement): Sampling always requires Monte-Carlo
averaging for posterior predictive; with VI, sometimes we can get closed form posterior predictive

o Sampling based posterior predictive: p(xx|X) & %255:1 p(xx|0s)p(0s|X)
o VI based posterior predictive: p(x«|X) & [ p(x«|0)q(6]¢)d0

o There is some work on “compressing” sampling-based approximations (e.g., see “Compact
approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and
“Bayesian Dark Knowledge” by Korattikara et al, 2015)
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Sampling: Some Basic Methods

o Most of these basic methods are based on the idea of transformation

o Given a sample x from an “easy” distribution p(x), transform it into a random sample z from a
“less easy” distribution p(z)

o Some popular examples of transformation methods
o Inverse CDF method
x ~ Unif(0,1) = z = Inv-CDF(,)(x) ~ p(z)
o Reparametrization method

x ~N(0,1) = z = p+ ox ~ N(i,0°)

o Box-Muller method: Given (xi, x2) from Unif(—1, +1), generate (z1, z;) from 2D Gaussian N(0, 1)

o Transformation Methods are simple but have limitations

o Mostly limited to standard distributions and/or distributions with very few variables
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Rejection Sampling

B(2)
ZP

o Want to sample from p(z) = . Suppose we can only evaluate the numerator p(z) at any z

o Suppose we have a proposal distribution g(z) that we can generate samples from, and

Mq(z) > p(z) Vz (where M > 0 is some const.)
o Basic idea: Generate samples from the proposal g(z) and accept/reject based on some condition

@ Sample an r.v. z, from q(z)

@ Sampling a uniform r.v. u ~ Unif[0, Mq(z.)]

ma(z,) Ma(z)

@ If u < p(z+) then accept z, else reject
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Rejection Sampling

o Why z ~ g(z) + accept/reject rule is equivalent to z ~ p(z)?

o Let's look at the pdf of z's that were accepted, i.e., p(z|accept)

p(z) p(z
p(accept|z) = /0 ﬁ(z)du = I\Zc(;(i)
p(z,accept) = q(z)p(accept|z) = ﬁl(\/IZ)

p(accept) /%dz = %
~ p(z,accept)  p(z)
p(z|accept) = “p(accept) Z = p(2)
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Sampling for Approximating Expectations

©

Suppose f(z) is function of a random variable z ~ p(z)

Wish to compute E[f] = E,,[f(2)] = [ (z)

©

©

Given L independent samples {z()}t_, from p(z), we can approximate the above as

E[f] =

~l=

L
Z f(z))  (Monte Carlo sampling)
=1

©

What if we can't generate samples from p(z)? Answer: Use Importance Sampling

o If we can generate L indep. samples {z(9}5_; from a different “proposal” distribution g(z) then

8111 = [ f(@pla)dz = [ #(2)22) ata)dz ~ %Z £0)2l2)

(=
o IS only requires that we can evaluate p(z) at any z (|n fact, with a smaII modification to the above,
IS works even when we can evaluate p(z) only up to a proportionality constant)

o Note: IS is NOT a sampling method (doesn't generate samples from a desired distribution; just a way
to approximate expectations)
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Limitations of Basic Sampling Methods

o Transformation based methods: Usually limited to drawing from standard distributions

o Rejection Sampling and Importance Sampling: Require good proposal distributions

(=) q2) /:)
/ﬁW\ |

Rejection Sampling Importance Sampling

Ma(z)

Mq(z,)

o Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)

o In high dimensions, most of the mass of p(z) is concentrated in a tiny region of the z space

o Difficult to a priori know what those regions are, thus difficult to come up with good proposal dist.

o A solution to these: MCMC methods
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