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Recap: VI using Monte-Carlo based Gradients of ELBO

VI = ELBO optimization. Requires ELBO gradients: ∇φL(φ) = ∇φEq[log p(X,Z)− log q(Z|φ)]

Looked at two approaches that optimize ELBO using its Monte-Carlo based gradients

Black-box VI (a.k.a. score-function gradients): No model-specific gradient calculations required

Zs ∼ q(Z|φ) s = 1, . . . , S

∇φL(q) ≈ 1

S

S∑
s=1

∇φ log q(Zs |φ)[log p(X,Zs)− log q(Zs |φ)]

Reparametrization trick (a.k.a. pathwise gradients)

Z = g(ε, φ)

εs ∼ p(ε) s = 1, . . . , S

∇φL(q) ≈ 1

S

S∑
s=1

[∇φ log p(X, g(εs , φ))−∇φ log qφ(g(εs , φ))]

Note: We can use minibatches of data (instead of all X) to compute the above gradients
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Automatic Differentiation Variational Inference (ADVI)

Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables

VI is also optimization. However, often the variables are constrained, e.g.,

Gamma’s shape and scale can only be non-negative

Beta’s parameters can only be non-negative

Dirichlet’s probability parameter sums to one

If we can somehow transform our distributions to unconstrained ones, we can use AD for VI

Original
 density

Transformed
    density

Jacobian of
inverse of T

ADVI transforms the variables to real-valued and then does VI with Gaussian variational approx.

∗Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)
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Amortized Variational Inference
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Amortized Variational Inference

Many latent variable models have one latent variable zn for each data point xn

VI finds the optimal φn for each q(zn|φn)

This can be expensive for large datasets (a similar issue which motivated SVI)

Also slow at test time: Given a new x∗, finding φ∗ requires iterative updates

Update local φ∗, update global λ, and repeat until convergence

Amortized VI : Learn an “inference network” or “recognition model” to directly get φn, e.g.,

A neural network to directly map xn to φn

q(zn|φn) ≈ q(zn|φ̂n) where φ̂n = NNφ(xn)

The inference network params φ can be learned along with the other global vars

Popular in deep probabilistic models such as variational autoencoders, deep Gaussian Processes, etc

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Variational Inference (Wrap-up), Inference via Sampling 5



Structured Variational Inference
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Structured Variational Inference

Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,

Removing the independence assumption of mean-field VI

Learning more complex forms variational distributions

To remove the mean-field assumption, various approaches exist

Structured mean-field (Saul et al, 1996)

Hierarchical VI (Ranganath et al, 2016): Variational params φ1, . . . , φM “tied” via a shared prior

q(z1, . . . , zM |θ) =

∫ [
M∏

m=1

q(zm|φm)

]
p(φ|θ)dφ

To learn more expressive variational approximations, various approaches exist, e.g.,

Boosting or mixture of simpler distributions, e.g., q(z) =
∑C

c=1 ρcqc(z |φc)

Normalizing flows:‘ Turn a simple q(z) into a complex one via series of invertible transformations
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Other Divergence Measures
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Other Divergence Measures

VI minimizes KL(q||p) but other divergences can be minimized as well

A general form of divergence is Renyi’s α-divergence defined as

DR
α (p(x)||q(x)) =

1

α− 1
log

∫
p(x)αq(x)1−αdx

KL(p||q) is a special case with α→ 1 (can verify using L’Hopital rule of taking limits)

An even more general form of divergece is f -Divergence

Df (p(x)||q(x)) =

∫
q(x)f

(
p(x)

q(x)

)
dx

Many recent inference algorithms are based on minimizing such divergences
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Variational Inference: Some Comments

Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference

Even mean-field for locally-conjugate models has many applications in lots of probabilistic models

This + SVI gives excellent scalability

Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success

Note: Most of these ideas apply also to Variational EM

Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g.,
Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models

Still a very active area of research, especially for doing VI in complex models

Models with discrete latent variables

Reducing the variance in Monte-Carlo estimate of ELBO gradients
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Inference via Sampling

(Note that we have already seen Gibbs sampling)
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Sampling for Approximate Inference

Some typical inference tasks

Compute a (possibly intractable) posterior distribution: p(θ|D) = p(D|θ)p(θ)
p(D)

= p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

Compute a difficult expectation of a random quantity w.r.t. a distribution (an integral), e.g.,

The posterior predictive (an expectation w.r.t the posterior over θ)

p(Dnew |D) =

∫
p(Dnew |θ)p(θ|D)dθ = Ep(θ|D)[p(Dnew |θ)]

The marginal likelihood or “evidence” (an expectation over the prior)

p(D|m) =

∫
p(D|θ)p(θ|m)dθ = Ep(θ|m)[p(D|θ)]

The expected complete data log-likelihood needed for doing MLE/MAP in LVMs (recall EM)

Exp-CLL =

∫
p(z |θ, x)p(x , z |θ)dz = Ep(z|θ,x)[p(x , z |θ)]

The ELBO in variational inference

L(q) = Eq [log p(x , z)]− Eq [log p(z)[

Sampling methods provide a general way to (approximately) solve these problems
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The Basic Idea

Can approximate any distribution using a set of randomly drawn samples from it

The samples can also be used for computing expectations (Monte-Carlo averaging)

Usually straightforward to generate samples if it is a simple/standard distribution

The interesting bit: Even if the distribution is “difficult” (e.g., an intractable posterior), it is
often possible to generate random samples from such a distribution, as we will see..
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Empirical Distribution

Sampling based approximation of a distribution can be represented using an empirical distribution

Given L “points” z (1), . . . , z (L), the empirical distribution of these points is defined as

pL(A) =
L∑
`=1

w`δz (`) (A)

Here w1, . . . ,wL are weights that sum to 1, i.e.,
∑L
`=1 w` = 1 (for uniform weights, w` = 1/L)

Here δz(A) denotes the Dirac distribution defined as

δz(A) =

{
0 if z /∈ A

1 if z ∈ A

pL(A) is a discrete distribution with finite support z (1), . . . , z (L) (can think of it as a histogram)
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Approximate Inference: VI vs Sampling-based

VI approximates a posterior distribution p(Z|X) by another distribution q(Z|φ)

Sampling uses S (typically large number) samples {Zs}Ss=1 to approximate p(Z|X)

Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)

Also possible (though less common) to use VI in sampling algorithms (will talk about it later)

In terms of “comparison” between VI and sampling, a few things to be noted

Convergence: VI only has local convergece, sampling (in theory) can give posterior (more on it later)

Storage requirements: Sampling-based approximation requires more storage (why?)

Prediction time cost (also related to storage requirement): Sampling always requires Monte-Carlo
averaging for posterior predictive; with VI, sometimes we can get closed form posterior predictive

Sampling based posterior predictive: p(x∗|X) ≈ 1
S

∑S
s=1 p(x∗|θs)p(θs |X)

VI based posterior predictive: p(x∗|X) ≈
∫
p(x∗|θ)q(θ|φ)dθ

There is some work on “compressing” sampling-based approximations (e.g., see “Compact
approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and
“Bayesian Dark Knowledge” by Korattikara et al, 2015)
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Sampling: Some Basic Methods

Most of these basic methods are based on the idea of transformation

Given a sample x from an “easy” distribution p(x), transform it into a random sample z from a
“less easy” distribution p(z)

Some popular examples of transformation methods

Inverse CDF method
x ∼ Unif(0, 1)⇒ z = Inv-CDFp(z)(x) ∼ p(z)

Reparametrization method

x ∼ N (0, 1)⇒ z = µ+ σx ∼ N (µ, σ2)

Box-Muller method: Given (x1, x2) from Unif(−1,+1), generate (z1, z2) from 2D Gaussian N (0, I)

Transformation Methods are simple but have limitations

Mostly limited to standard distributions and/or distributions with very few variables
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Rejection Sampling

Want to sample from p(z) = p̃(z)
Zp

. Suppose we can only evaluate the numerator p̃(z) at any z

Suppose we have a proposal distribution q(z) that we can generate samples from, and

Mq(z) ≥ p̃(z) ∀z (where M > 0 is some const.)

Basic idea: Generate samples from the proposal q(z) and accept/reject based on some condition

1 Sample an r.v. z∗ from q(z)

2 Sampling a uniform r.v. u ∼ Unif[0,Mq(z∗)]

3 If u ≤ p̃(z∗) then accept z∗ else reject
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Rejection Sampling

Why z ∼ q(z) + accept/reject rule is equivalent to z ∼ p(z)?

Let’s look at the pdf of z ’s that were accepted, i.e., p(z |accept)

p(accept|z) =

∫ p̃(z)

0

1

Mq(z)
du =

p̃(z)

Mq(z)

p(z, accept) = q(z)p(accept|z) =
p̃(z)

M

p(accept) =

∫
p̃(z)

M
dz =

Zp

M

p(z|accept) =
p(z, accept)

p(accept)
=

p̃(z)

Zp
= p(z)
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Sampling for Approximating Expectations

Suppose f (z) is function of a random variable z ∼ p(z)

Wish to compute E[f ] = Ep(z)[f (z)] =
∫
f (z)p(z)dz

Given L independent samples {z (`)}L`=1 from p(z), we can approximate the above as

E[f ] ≈ 1

L

L∑
`=1

f (z (`)) (Monte Carlo sampling)

What if we can’t generate samples from p(z)? Answer: Use Importance Sampling

If we can generate L indep. samples {z (`)}L`=1 from a different “proposal” distribution q(z) then

E[f ] =

∫
f (z)p(z)dz =

∫
f (z)

p(z)

q(z)
q(z)dz ≈ 1

L

L∑
`=1

f (z (`))
p(z (`))

q(z (`))

IS only requires that we can evaluate p(z) at any z (in fact, with a small modification to the above,
IS works even when we can evaluate p(z) only up to a proportionality constant)

Note: IS is NOT a sampling method (doesn’t generate samples from a desired distribution; just a way
to approximate expectations)
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Limitations of Basic Sampling Methods

Transformation based methods: Usually limited to drawing from standard distributions

Rejection Sampling and Importance Sampling: Require good proposal distributions

Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)

In high dimensions, most of the mass of p(z) is concentrated in a tiny region of the z space

Difficult to a priori know what those regions are, thus difficult to come up with good proposal dist.

A solution to these: MCMC methods
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