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Recap: Variational Inference (VI)

Approximate an intractable posterior p(Z|X) by another distribution q(Z|φ) by solving

φ∗ = arg min
φ

KL[qφ(Z)||p(Z|X)] or equivalently q∗(Z) = arg min
q∈Q

KL[q(Z)||p(Z|X)]

Equivalent to finding q that maximizes the Evidence Lower Bound (ELBO)

L(q) = L(φ) = Eq[log p(X,Z)]− Eq[log q(Z)] = Eq[log p(X|Z)]−KL(q(Z)||p(Z))

VI requires solving an optimization problem in general (but closed-form solution exists in some
special cases, e.g., mean-field VI in locally-conjugate models)
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Recap: Mean-Field VI

Mean-Field VI: Assume q(Z|φ) =
∏M

j=1 q(Zj |φj) =
∏N

j=1 qj(Zj)

For the optimal qj , log q∗j (Zj) = Ei 6=j [ln p(X,Z)] + const, and thus

q∗j (Zj) =
exp(Ei 6=j [ln p(X,Z)])∫

exp(Ei 6=j [ln p(X,Z)])dZj
∝ exp(Ei 6=j [ln p(X,Z)]) ∀j

We can also write log q∗j (Zj) = Ei 6=j [log p(Zj |X,Z−j)] + const

For locally conjugate models, the CP p(Zj |X,Z−j) is easy to find, and usually an exp-fam dist.

p(Zj |X,Z−j) = h(Zj) exp
[
η(X,Z−j)

>Zj − A(η(X,Z−j))
]

In such a case, each optimal mean-field distribution will be of the form

q∗j (Zj) ∝ h(Zj) exp
[
Ei 6=j [η(X,Z−j)]>Zj

]
.. so its parameters φj = Ei 6=j [η(X,Z−j)], i.e., expectation of the natural params of the CP
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Recap: VI for Models with Local and Global Variables

Assuming independence, data X = {x1, . . . , xN}, and local and global unknowns Z,β, their joint

p(X,Z,β) = p(β)
N∏

n=1

p(xn|zn,β)p(zn|β) = p(β)
N∏

n=1

p(xn, zn|β)

Assume all the distributions in the above to be exp-family distributions

p(xn, zn|β) = h(xn, zn) exp
[
β>t(xn, zn)− A(β)

]
, p(β|α) = h(β) exp

[
α>[β,−A(β)]− A(α)

]
Also assuming p(xn|zn) and p(zn) to be conjugate, CPs for zn and β are also exp-fam

p(zn|xn,β) ∝ h(zn) exp
[
η(xn,β)>zn

]
p(β|X,Z) ∝ h(β) exp

[
[α1 +

N∑
n=1

t(xn, zn), α2 + N]>[β,−A(β)]

]
Assuming q(β,Z) = q(β|λ)

∏N
n=1 q(zn|φn), the optimal local and global var. params

φn = Eλ [η(xn,β)] ∀n, and λ =

[
α1 +

N∑
n=1

Eφn [t(xn, zn)], α2 + N

]>
= Eφ[α̂]

Note: Each update of global var. params requires waiting for all updates of local var. params
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Advances in Variational Inference
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Plan

SVI - Stochastic Variational Inference (we’ll mainly focus on SVI for locally-conjugate models)

VI/SVI for non-conjugate models

Model-specific tricks to handle non-conjugacy

Black-Box Variational Inference (BBVI)

Reparametrization Trick based VI

Automatic Differentiation VI (ADVI) via Unconstrained Optimization

Amortized Variational Inference

Structured Variational Inference

Other divergences (recall that VI finds optimal q by minimizing the KL divergence KL(q||p))
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Stochastic Variational Inference
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Stochastic Variational Inference (SVI)

An “online” algorithm† to speed-up VI for LVMs with local and global variables

We saw the mean-field VI updates (q(β,Z) = q(β|λ)
∏N

n=1 q(zn|φn)) for such models

φn = Eλ [η(xn,β)] ∀n and λ =

[
α1 +

N∑
n=1

Eφn [t(xn, zn)], α2 + N

]>
= Eφ[α̂(X,Z)]

SVI makes the global params λ updates more efficient (note that λ depends on all φn’s)

SVI works with minibatches of data as follows (assuming minibatch size = 1)

1 Initialize λ randomly as λ(0) and set current iteration number as i = 1

2 Set the learning rate (decaying as) as εi = (i + 1)−κ where κ ∈ (0.5, 1]

3 Choose a data point n randomly, i.e., n ∼ Uniform(1, . . . ,N)

4 Compute local var. param φn for data point xn as φn = Eλ(i−1) [η(xn,β)]

5 Update λ as λ(i) = (1− εi )λ(i−1) + εiλn where λn = [α1 + Eφn [t(xn, zn)], α2 + 1]> = Eφn [α̂(xn, zn)]

6 Set i = i + 1. If ELBO not converged, go to Step 2

†Stochastic Variational Inference (Hoffman et al, 2013)
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What is SVI Doing?

SVI updates the global var params λ using stochastic optimization of the ELBO†

Instead of usual gradient of ELBO w.r.t. λ, SVI uses the natural gradient

Denoting the double derivative of the log-partition function of CP of β as A′′

Usual gradient: ∇λELBO = A′′(λ)(Eφ[α̂(X,Z)]− λ) (exercise)

Natural gradient: g(λ) = A′′(λ)
−1 ×∇λELBO = Eφ[α̂(X,Z)]− λ

Note: A′′(λ) is cov. of suff-stats of CP of β and A′′(λ)
−1

is the Fisher information matrix

Using the natural gradient has some nice advantages

Nat. gradient based updates of λ have simple form + easy to compute (no need to compute A′′(λ))

λ(i) = λ(i−1) + εig(λ)|λ(i−1) = (1− εi )λ(i−1) + εiEφ[α̂(X,Z)] (assuming full batch)

Natural gradients are more intuitive/meaningful: Euclidean distance isn’t often meaningful when used
to compute distance between parameters of probability distributions, e.g., q(β|λ) and q(β|λ′)

†Stochastic Variational Inference (Hoffman et al, 2013)
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SVI: Some Comments

Often operates on minibatches: For iteration i minibatch Bi , update λ as follows

λ̂ =
1

|Bi |
∑
n∈Bi

λn

λ(i) = (1− εi )λ(i−1) + εi λ̂

Decaying learning rate is necessary for convergence (need
∑

i εi =∞ and
∑

i ε
2
i <∞)

SVI successfully used on many large-scale problems (document topic modeling, citation network
analysis, etc). Often has much faster convergence (and better results) as compared to batch VI

SVI vs Batch VI on a nonparametric Bayesian Topic Model
                 (Hierarchical Dirichlet Process)

Learning rate (κ parameter) and minibatch size is also important (see Hoffman et al for details)
†Stochastic Variational Inference (Hoffman et al, 2013)
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VI for Non-conjugate Models
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Some Model-Specific Tricks

ELBO L(q) = Eq[log p(X,Z)]− Eq[log q(Z)] requires computing expectations w.r.t. var. dist. q

The ELBO and its derivatives can be difficult to compute for non-conjugate models

A common approach is to replace each difficult terms by a tight lower bound. Some examples:

Assuming q(a, b) =
∏

i q(ai )q(bi ), the expectation below can be replaced by a lower bound

Eq

[
log
∑
i

aibi

]
= Eq

[
log
∑
i

pi
aibi
pi

]
≥ Eq

[ ∑
i

pi log
aibi
pi︸ ︷︷ ︸

via Jensen’s inequality

]
=
∑
i

piEq[log ai + log bi ]−
∑
i

pi log pi

where pi is a variable (depends on ai and bi ) that we need to optimize. Expectations above easy to compute

For models with logistic likelihood, we use the following (trick by Jaakkola and Jordan, 2000)

−Eq[log(1 + exp(−ynw>xn))] ≥ log σ(ξn) + Eq

[
1

2
(ynw>xn − ξn)− λ(ξn)(w>xnx>n w − ξ2

n)

]
where ξn is a variable to be optimized and λ(ξn) = 1

2ξn
[σ(ξn)− 0.5] . Expectations above easy to compute
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Black-box Variational Inference (BBVI)

Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo

Uses the following identity for the ELBO’s derivative

∇φL(q) = ∇φEq[log p(X,Z)− log q(Z|φ)]

= Eq[∇φ log q(Z|φ)(log p(X,Z)− log q(Z|φ))] (proof on next slide)

Thus ELBO gradient can be written solely in terms of expectation of gradient of log q(Z|φ)

Required gradients don’t depend on the model. Only on the chosen variational distribution

That’s why this approach is called “black-box”

Given S samples {Zs}Ss=1 from q(Z|φ), we can get (noisy) gradient ∇φL(q) as follows

∇φL(q) ≈ 1

S

S∑
s=1

∇φ log q(Zs |φ)(log p(X,Zs)− log q(Zs |φ))

Above is also called the “score function” based gradient (also REINFORCE method)

∗Black Box Variational Inference - Ranganath et al (2014)
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Proof of BBVI Identity

The ELBO gradient can be written as

∇φL(q) = ∇φ

∫
(log p(X,Z)− log q(Z|φ))q(Z|φ)dZ

=

∫
∇φ[(log p(X,Z)− log q(Z|φ))q(Z|φ)]dZ (∇ and

∫
interchangeable; dominated convergence theorem)

=

∫
∇φ[(log p(X,Z)− log q(Z|φ))]q(Z|φ) +∇φq(Z|φ)[(log p(X,Z)− log q(Z|φ))]dZ

= Eq [−∇φ log q(Z|φ)] +

∫
∇φq(Z|φ)[(log p(X,Z)− log q(Z|φ))]dZ

Note that Eq[∇φ log q(Z|φ)] = Eq

[
∇φq(Z|φ)
q(Z|φ)

]
=
∫
∇φq(Z|φ)dZ = ∇φ

∫
q(Z|φ)dZ = ∇φ1 = 0

Also note that ∇φq(Z|φ) = ∇φ[log q(Z|φ)]q(Z|φ), using which

∫
∇φq(Z|φ)[(log p(X,Z)− log q(Z|φ))]dZ =

∫
∇φ log q(Z|φ)[(log p(X,Z)− log q(Z|φ))]q(Z|φ)dZ

= Eq [∇φ log q(Z|φ)(log p(X,Z)− log q(Z|φ))]

Therefore ∇φL(q) = Eq[∇φ log q(Z|φ)(log p(X,Z)− log q(Z|φ))]
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Benefits of BBVI

Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

∇φL(q) ≈ 1

S

S∑
s=1

∇φ log q(Zs |φ)(log p(X,Zs)− log q(Zs |φ))

Enables applying VB inference for a wide variety of probabilistic models

Can also work with small minibatches of data rather than full data

BBVI has very few requirements

Should be able to sample from q(Z|φ)

Should be able to compute ∇φ log q(Z|φ) (automatic differentiation methods exist!)

Should be able to evaluate p(X,Z) and log q(Z|φ)

Some tricks needed to control the variance in the Monte Carlo estimate of the ELBO gradient (if
interested in the details, please refer to the BBVI paper)
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Reparametrization Trick

Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)

In general, suppose we want to compute ELBO’s gradient ∇φEqφ(Z)[log p(X,Z)− log qφ(Z)]

Assume a deterministic transformation Z = g(ε, φ) with ε ∼ p(ε), and p(ε) doesn’t depend on φ

With this reparametrization, the ELBO’s gradient can be written as

∇φEp(ε)[log p(X, g(ε, φ))− log qφ(g(ε, φ))] = Ep(ε)∇φ[log p(X, g(ε, φ))− log qφ(g(ε, φ))]

LHS true due to Law of Unconscious Statistician

Could interchange expect. and grad. on RHS since p(ε) doesn’t depend on φ

Given S i.i.d. random samples {εs}Ss=1 from p(ε), we can compute a Monte-Carlo approx, so

∇φEqφ(Z)[log p(X,Z)− log qφ(Z)]≈ 1

S

S∑
s=1

[∇φ log p(X, g(εs , φ))−∇φ log qφ(g(εs , φ))]

Such gradients are called pathwise gradients (we took a “path” from ε to Z)

∗Autoencoding Variational Bayes - Kingma and Welling (2013)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Variational Inference: Scalability and Recent Advances 16



Reparametrization Trick: An Example

Suppose our variational distribution is qφ(w) = N (w |µ,Σ), so φ = {µ,Σ}

Suppose our ELBO has a difficult term Eq[f (w)] (due to the expectation being intractable)

We are actually interested in its gradient ∇φEq[f (w)]. Let’s use the reparametrization trick

Reparametrize w as w = µ+ Lv where L = chol(Σ) and v ∼ N (0, I), and write

∇µ,LEN (w |µ,Σ)[f (w)] = ∇µ,LEN (v |0,I)[f (µ+ Lv)] = EN (v |0,I)[∇µ,Lf (µ+ Lv)]

Now easy to take derivatives w.r.t. variational params µ,L using Monte Carlo sampling

In practice, even one random sample v s ∼ N (v |0, I) suffices∗. So the above gradients will be

∇µEN (w|µ,Σ)[f (w)] = EN (v|0,I)[∇µf (µ+ Lv)] ≈ ∇µf (µ+ Lv s)

∇LEN (w|µ,Σ)[f (w)] = EN (v|0,I)[∇Lf (µ+ Lv)] ≈ ∇Lf (µ+ Lv s)

.. the above just requires being able to take derivatives of f (w) w.r.t. w
Note: Std. reparam. trick assumes differentiability but recent work on removing this limitation

∗Autoencoding Variational Bayes - Kingma and Welling (2013)
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Reparametrization Trick: Some Comments

Standard Reparametrization Trick assumes the model to be differentiable

∇φEqφ(Z)[log p(X,Z)− log qφ(Z)] = Ep(ε)[∇φ log p(X, g(ε, φ))−∇φ log qφ(g(ε, φ))]

Note that this wasn’t the case with BBVI

Thus rep. trick often isn’t applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)

Recent work on continuous approximation of discrete variables†

The transformation function g may be difficult to find for general distributions

Recent work on generalized reparametrizations∗

Also, the transformation function g needs to be invertible (difficult/expensive)

Recent work on implicit reparametrized gradients#

Also assume that we can directly draw samples from p(ε). If we can’t then rep. trick isn’t valid@

Very active area of research in VI right now!
†Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), ∗ The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients

(Figurnov et al, 2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)
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Automatic Differentiation Variational Inference (ADVI)

Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables

These derivatives is all what we need to optimize the function (in our case, ELBO)

VI is also optimization. However, often the variables are constrained, e.g.,

Gamma’s shape and scale can only be non-negative

Beta’s parameters can only be non-negative

Dirichlet’s probability parameter sums to one

If we can somehow transform our distributions to unconstrained ones, we can use AD for VI

Original
 density

Transformed
    density

Jacobian of
inverse of T

∗Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)
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Amortized Variational Inference
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Amortized Variational Inference

Many latent variable models have one latent variable zn for each data point xn

VI finds the optimal φn for each q(zn|φn)

This can be expensive for large datasets (a similar issue which motivated SVI)

Also slow at test time: Given a new x∗, finding φ∗ requires iterative updates

Update local φ∗, update global λ, and repeat until convergence

Amortized VI : Learn an “inference network” or “recognition model” to directly get φn, e.g.,

A neural network to directly map xn to φn

q(zn|φn) ≈ q(zn|φ̂n) where φ̂n = NNφ(xn)

The inference network params φ can be learned along with the other global vars

Popular in deep probabilistic models such as variational autoencoders, deep Gaussian Processes, etc
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Structured Variational Inference
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Structured Variational Inference

Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,

Removing the independence assumption of mean-field VI

Learning more complex forms variational distributions

To remove the mean-field assumption, various approaches exist

Structured mean-field (Saul et al, 1996)

Hierarchical VI (Ranganath et al, 2016): Variational params φ1, . . . , φM “tied” via a shared prior

q(z1, . . . , zM |θ) =

∫ [ M∏
m=1

q(zm|φm)

]
p(φ|θ)dφ

To learn more expressive variational approximations, various approaches exist, e.g.,

Boosting or mixture of simpler distributions, e.g., q(z) =
∑C

c=1 ρcqc(z |φc)

Normalizing flows:‘ Turn a simple q(z) into a complex one via series of invertible transformations
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Other Divergence Measures
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Other Divergence Measures

VI minimizes KL(q||p) but other divergences can be minimized as well

A general form of divergence is Renyi’s α-divergence defined as

DR
α (p(x)||q(x)) =

1

α− 1
log

∫
p(x)αq(x)1−αdx

KL(p||q) is a special case with α→ 1 (can verify using L’Hopital rule of taking limits)

An even more general form of divergece is f -Divergence

Df (p(x)||q(x)) =

∫
q(x)f

(
p(x)

q(x)

)
dx

Many recent inference algorithms are based on minimizing such divergences
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Variational Inference: Some Comments

Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference

Even mean-field for locally-conjugate models has many applications in lots of probabilistic models

This + SVI gives excellent scalability

Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success

Note: Most of these ideas apply also to Variational EM

Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g.,
Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models

Still a very active area of research, especially for doing VI in complex models

Models with discrete latent variables

Reducing the variance in Monte-Carlo estimate of ELBO gradients

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Variational Inference: Scalability and Recent Advances 26


