Variational Inference: Scalability and Recent Advances

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

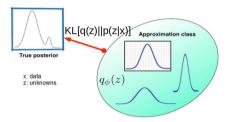
Feb 25, 2019

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

Recap: Variational Inference (VI)

• Approximate an intractable posterior $p(\mathbf{Z}|\mathbf{X})$ by another distribution $q(\mathbf{Z}|\phi)$ by solving

 $\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathsf{Z}) || p(\mathsf{Z} | \mathsf{X})] \qquad \text{or equivalently} \qquad q^*(\mathsf{Z}) = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}[q(\mathsf{Z}) || p(\mathsf{Z} | \mathsf{X})]$



• Equivalent to finding q that maximizes the Evidence Lower Bound (ELBO)

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

 VI requires solving an optimization problem in general (but closed-form solution exists in some special cases, e.g., mean-field VI in locally-conjugate models)

Recap: Mean-Field VI

• Mean-Field VI: Assume $q(\mathbf{Z}|\phi) = \prod_{j=1}^{M} q(\mathbf{Z}_j|\phi_j) = \prod_{j=1}^{N} q_j(\mathbf{Z}_j)$

• For the optimal q_j , log $q_j^*(\mathsf{Z}_j) = \mathbb{E}_{i
eq j}[\ln p(\mathsf{X},\mathsf{Z})] + \text{const}$, and thus

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) d\mathbf{Z}_j} \propto \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) \quad \forall j$$

• We can also write log $q_j^*(\mathsf{Z}_j) = \mathbb{E}_{i \neq j}[\log p(\mathsf{Z}_j | \mathsf{X}, \mathsf{Z}_{-j})] + \text{const}$

• For locally conjugate models, the CP $p(\mathbf{Z}_j | \mathbf{X}, \mathbf{Z}_{-j})$ is easy to find, and usually an exp-fam dist.

$$p(\mathbf{Z}_j | \mathbf{X}, \mathbf{Z}_{-j}) = h(\mathbf{Z}_j) \exp \left[\eta(\mathbf{X}, \mathbf{Z}_{-j})^\top \mathbf{Z}_j - A(\eta(\mathbf{X}, \mathbf{Z}_{-j})) \right]$$

• In such a case, each optimal mean-field distribution will be of the form

$$q_j^*(\mathsf{Z}_j) \propto h(\mathsf{Z}_j) \exp\left[\mathbb{E}_{i
eq j}[\eta(\mathsf{X},\mathsf{Z}_{-j})]^ op \mathsf{Z}_j
ight]$$

.. so its parameters $\phi_j = \mathbb{E}_{i \neq j}[\eta(\mathbf{X}, \mathbf{Z}_{-j})]$, i.e., expectation of the natural params of the CP

Recap: VI for Models with Local and Global Variables

• Assuming independence, data $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and local and global unknowns $\mathbf{Z}, \boldsymbol{\beta}$, their joint

$$p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\beta}) = p(\boldsymbol{\beta}) \prod_{n=1}^{N} p(\boldsymbol{x}_n | \boldsymbol{z}_n, \boldsymbol{\beta}) p(\boldsymbol{z}_n | \boldsymbol{\beta}) = p(\boldsymbol{\beta}) \prod_{n=1}^{N} p(\boldsymbol{x}_n, \boldsymbol{z}_n | \boldsymbol{\beta})$$

• Assume all the distributions in the above to be exp-family distributions

$$p(\boldsymbol{x}_n, \boldsymbol{z}_n | \boldsymbol{\beta}) = h(\boldsymbol{x}_n, \boldsymbol{z}_n) \exp \left[\boldsymbol{\beta}^\top t(\boldsymbol{x}_n, \boldsymbol{z}_n) - \boldsymbol{A}(\boldsymbol{\beta}) \right], p(\boldsymbol{\beta} | \boldsymbol{\alpha}) = h(\boldsymbol{\beta}) \exp \left[\boldsymbol{\alpha}^\top [\boldsymbol{\beta}, -\boldsymbol{A}(\boldsymbol{\beta})] - \boldsymbol{A}(\boldsymbol{\alpha}) \right]$$

• Also assuming $p(\mathbf{x}_n | \mathbf{z}_n)$ and $p(\mathbf{z}_n)$ to be conjugate, CPs for \mathbf{z}_n and β are also exp-fam

$$p(\boldsymbol{z}_n | \boldsymbol{x}_n, \boldsymbol{\beta}) \propto h(\boldsymbol{z}_n) \exp\left[\eta(\boldsymbol{x}_n, \boldsymbol{\beta})^\top \boldsymbol{z}_n\right]$$
$$p(\boldsymbol{\beta} | \boldsymbol{X}, \boldsymbol{Z}) \propto h(\boldsymbol{\beta}) \exp\left[\left[\alpha_1 + \sum_{n=1}^N t(\boldsymbol{x}_n, \boldsymbol{z}_n), \alpha_2 + N\right]^\top [\boldsymbol{\beta}, -A(\boldsymbol{\beta})]\right]$$

• Assuming $q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^{N} q(\mathbf{z}_n | \phi_n)$, the optimal local and global var. params

$$\phi_n = \mathbb{E}_{\lambda} [\eta(\mathbf{x}_n, \boldsymbol{\beta})] \quad \forall n, \text{ and } \lambda = \left| \alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right| = \mathbb{E}_{\phi} [\hat{\alpha}]$$

• Note: Each update of global var. params requires waiting for all updates of local var. params

Advances in Variational Inference

• SVI - Stochastic Variational Inference (we'll mainly focus on SVI for locally-conjugate models)

- VI/SVI for non-conjugate models
 - Model-specific tricks to handle non-conjugacy
 - Black-Box Variational Inference (BBVI)
 - Reparametrization Trick based VI
 - Automatic Differentiation VI (ADVI) via Unconstrained Optimization
- Amortized Variational Inference
- Structured Variational Inference
- Other divergences (recall that VI finds optimal q by minimizing the KL divergence KL(q||p))

Stochastic Variational Inference

Stochastic Variational Inference (SVI)

- $\, \bullet \,$ An "online" algorithm † to speed-up VI for LVMs with local and global variables
- We saw the mean-field VI updates $(q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^{N} q(\mathbf{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} [\eta(\mathbf{x}_n, \boldsymbol{\beta})] \quad \forall n \text{ and } \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^\top = \mathbb{E}_{\phi} [\hat{\alpha}(\mathbf{X}, \mathbf{Z})]$$

• SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)

- SVI works with minibatches of data as follows (assuming minibatch size = 1)
 - (1) Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1
 - ② Set the learning rate (decaying as) as $\epsilon_i = (i+1)^{-\kappa}$ where $\kappa \in (0.5,1]$
 - (3) Choose a data point n randomly, i.e., $n \sim {\sf Uniform}(1,\ldots,N)$
 - **(4)** Compute local var. param ϕ_n for data point \mathbf{x}_n as $\phi_n = \mathbb{E}_{\lambda^{(i-1)}} [\eta(\mathbf{x}_n, \boldsymbol{\beta})]$
 - $\text{ Ipdate } \lambda \text{ as } \lambda^{(i)} = (1 \epsilon_i)\lambda^{(i-1)} + \epsilon_i\lambda_n \text{ where } \lambda_n = [\alpha_1 + \mathbb{E}_{\phi_n}[t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + 1]^\top = \mathbb{E}_{\phi_n}[\hat{\alpha}(\mathbf{x}_n, \mathbf{z}_n)]$
 - **(6)** Set i = i + 1. If ELBO not converged, go to Step 2

[†] Stochastic Variational Inference (Hoffman et al, 2013)

What is SVI Doing?

SVI updates the global var params λ using stochastic optimization of the ELBO[†]
Instead of usual gradient of ELBO w.r.t. λ, SVI uses the natural gradient

 $\,\circ\,$ Denoting the double derivative of the log-partition function of CP of eta as A''

Usual gradient: $\nabla_{\lambda} \text{ELBO} = A''(\lambda)(\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda)$ (exercise) Natural gradient: $g(\lambda) = A''(\lambda)^{-1} \times \nabla_{\lambda} \text{ELBO} = \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda$

• Note: $A''(\lambda)$ is cov. of suff-stats of CP of β and $A''(\lambda)^{-1}$ is the Fisher information matrix

- Using the natural gradient has some nice advantages
 - Nat. gradient based updates of λ have simple form + easy to compute (no need to compute $A''(\lambda)$)

$$\lambda^{(i)} = \lambda^{(i-1)} + \epsilon_i g(\lambda)|_{\lambda^{(i-1)}} = (1 - \epsilon_i)\lambda^{(i-1)} + \epsilon_i \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] \quad (\text{assuming full batch})$$

• Natural gradients are more intuitive/meaningful: Euclidean distance isn't often meaningful when used to compute distance between parameters of probability distributions, e.g., $q(\beta|\lambda)$ and $q(\beta|\lambda')$

[†] Stochastic Variational Inference (Hoffman et al, 2013)

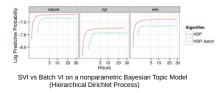
SVI: Some Comments

• Often operates on minibatches: For iteration *i* minibatch \mathcal{B}_i , update λ as follows

$$egin{array}{rcl} \hat{\lambda} & = & rac{1}{|\mathcal{B}_i|}\sum_{n\in\mathcal{B}_i}\lambda_n \ \lambda^{(i)} & = & (1-\epsilon_i)\lambda^{(i-1)}+\epsilon_i eta \end{array}$$

• Decaying learning rate is necessary for convergence (need $\sum_i \epsilon_i = \infty$ and $\sum_i \epsilon_i^2 < \infty$)

 SVI successfully used on many large-scale problems (document topic modeling, citation network analysis, etc). Often has much faster convergence (and better results) as compared to batch VI



• Learning rate (κ parameter) and minibatch size is also important (see Hoffman et al for details)

[†]Stochastic Variational Inference (Hoffman et al, 2013)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

Variational Inference: Scalability and Recent Advances

VI for Non-conjugate Models

Some Model-Specific Tricks

• ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q

- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
 Assuming q(a, b) = ∏_i q(a_i)q(b_i), the expectation below can be replaced by a lower bound

$$\mathbb{E}_{q}\left[\log\sum_{i}a_{i}b_{i}\right] = \mathbb{E}_{q}\left[\log\sum_{i}p_{i}\frac{a_{i}b_{i}}{p_{i}}\right] \geq \mathbb{E}_{q}\left[\sum_{i}p_{i}\log\frac{a_{i}b_{i}}{p_{i}}\right] = \sum_{i}p_{i}\mathbb{E}_{q}[\log a_{i} + \log b_{i}] - \sum_{i}p_{i}\log p_{i}$$

where p_i is a variable (depends on a_i and b_i) that we need to optimize. Expectations above easy to compute • For models with logistic likelihood, we use the following (trick by Jaakkola and Jordan, 2000)

$$-\mathbb{E}_q[\log(1+\exp(-y_n\boldsymbol{w}^{\top}\boldsymbol{x}_n))] \geq \log\sigma(\xi_n) + \mathbb{E}_q\left[\frac{1}{2}(y_n\boldsymbol{w}^{\top}\boldsymbol{x}_n - \xi_n) - \lambda(\xi_n)(\boldsymbol{w}^{\top}\boldsymbol{x}_n\boldsymbol{x}_n^{\top}\boldsymbol{w} - \xi_n^2)\right]$$

where ξ_n is a variable to be optimized and $\lambda(\xi_n) = \frac{1}{2\xi_n}[\sigma(\xi_n) - 0.5]$. Expectations above easy to compute

Black-box Variational Inference (BBVI)

- Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
- Uses the following identity for the ELBO's derivative

$$\begin{aligned} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \mathbb{E}_{q}[\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)] \\ &= \mathbb{E}_{q}[\nabla_{\phi} \log q(\mathbf{Z}|\phi)(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \quad (\text{proof on next slide}) \end{aligned}$$

• Thus ELBO gradient can be written solely in terms of expectation of gradient of $\log q(\mathbf{Z}|\phi)$

- Required gradients don't depend on the model. Only on the chosen variational distribution
- That's why this approach is called "black-box"
- Given S samples $\{\mathbf{Z}_s\}_{s=1}^S$ from $q(\mathbf{Z}|\phi)$, we can get (noisy) gradient $\nabla_{\phi}\mathcal{L}(q)$ as follows

$$abla_{\phi}\mathcal{L}(q)pproxrac{1}{S}\sum_{s=1}^{S}
abla_{\phi}\log q(\mathsf{Z}_{s}|\phi)(\log p(\mathsf{X},\mathsf{Z}_{s})-\log q(\mathsf{Z}_{s}|\phi))$$

• Above is also called the "score function" based gradient (also REINFORCE method)

^{*} Black Box Variational Inference - Ranganath et al (2014)

Proof of BBVI Identity

• The ELBO gradient can be written as

$$\begin{aligned} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi)[(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ &= \mathbb{E}_{q} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi)[(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{aligned}$$

• Note that $\mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi 1 = 0$

• Also note that $abla_{\phi} q(\mathbf{Z}|\phi) =
abla_{\phi} [\log q(\mathbf{Z}|\phi)] q(\mathbf{Z}|\phi)$, using which

$$\int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} = \int \nabla_{\phi} \log q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) d\mathbf{Z}$$
$$= \mathbb{E}_q [\nabla_{\phi} \log q(\mathbf{Z}|\phi) (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))]$$

• Therefore $\nabla_{\phi} \mathcal{L}(q) = \mathbb{E}_q[\nabla_{\phi} \log q(\mathbf{Z}|\phi)(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))]$

Benefits of BBVI

Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

$$abla_{\phi}\mathcal{L}(q)pproxrac{1}{S}\sum_{s=1}^{S}
abla_{\phi}\log q(\mathbf{Z}_{s}|\phi)(\log p(\mathbf{X},\mathbf{Z}_{s})-\log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Can also work with small minibatches of data rather than full data
- BBVI has very few requirements
 - Should be able to sample from $q(\mathbf{Z}|\phi)$
 - Should be able to compute $\nabla_{\phi} \log q(\mathbf{Z}|\phi)$ (automatic differentiation methods exist!)
 - Should be able to evaluate $p(\mathbf{X}, \mathbf{Z})$ and $\log q(\mathbf{Z}|\phi)$
- Some tricks needed to control the variance in the Monte Carlo estimate of the ELBO gradient (if interested in the details, please refer to the BBVI paper)

Reparametrization Trick

Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)
In general, suppose we want to compute ELBO's gradient ∇_φE_{q_φ(Z)}[log p(X, Z) - log q_φ(Z)]
Assume a deterministic transformation Z = g(ε, φ) with ε ~ p(ε), and p(ε) doesn't depend on φ
With this reparametrization, the ELBO's gradient can be written as

 $\nabla_{\phi} \mathbb{E}_{p(\epsilon)}[\log p(\mathsf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))] = \mathbb{E}_{p(\epsilon)} \nabla_{\phi}[\log p(\mathsf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))]$

• LHS true due to Law of Unconscious Statistician

- $\, \circ \,$ Could interchange expect. and grad. on RHS since $p(\epsilon)$ doesn't depend on ϕ
- Given S i.i.d. random samples $\{\epsilon_s\}_{s=1}^{S}$ from $p(\epsilon)$, we can compute a Monte-Carlo approx, so

$$abla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X},\mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] pprox rac{1}{S} \sum_{s=1}^{S} [
abla_{\phi} \log p(\mathsf{X}, g(\epsilon_{s}, \phi)) -
abla_{\phi} \log q_{\phi}(g(\epsilon_{s}, \phi))]$$

• Such gradients are called pathwise gradients (we took a "path" from ϵ to Z)

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

Reparametrization Trick: An Example

- Suppose our variational distribution is $q_{\phi}(w) = \mathcal{N}(w|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\boldsymbol{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi} \mathbb{E}_q[f(\boldsymbol{w})]$. Let's use the reparametrization trick

• Reparametrize \boldsymbol{w} as $\boldsymbol{w} = \mu + \boldsymbol{L}\boldsymbol{v}$ where $\boldsymbol{L} = \mathsf{chol}(\boldsymbol{\Sigma})$ and $\boldsymbol{v} \sim \mathcal{N}(0, \boldsymbol{I})$, and write

$$\nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] = \nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathsf{I})}[f(\mu+\mathsf{L}\boldsymbol{v})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathsf{I})}[\nabla_{\mu,\mathsf{L}}f(\mu+\mathsf{L}\boldsymbol{v})]$$

Now easy to take derivatives w.r.t. variational params μ, L using Monte Carlo sampling
In practice, even one random sample v_s ~ N(v|0, I) suffices*. So the above gradients will be

$$\begin{aligned} \nabla_{\mu} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] &= \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\boldsymbol{I})}[\nabla_{\mu}f(\mu+\boldsymbol{L}\boldsymbol{v})] \approx \nabla_{\mu}f(\mu+\boldsymbol{L}\boldsymbol{v}_{s}) \\ \nabla_{\mathsf{L}} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] &= \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\boldsymbol{I})}[\nabla_{\mathsf{L}}f(\mu+\boldsymbol{L}\boldsymbol{v})] \approx \nabla_{\mathsf{L}}f(\mu+\boldsymbol{L}\boldsymbol{v}_{s}) \end{aligned}$$

.. the above just requires being able to take derivatives of $f(\boldsymbol{w})$ w.r.t. \boldsymbol{w}

• Note: Std. reparam. trick assumes differentiability but recent work on removing this limitation

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

Reparametrization Trick: Some Comments

• Standard Reparametrization Trick assumes the model to be differentiable

 $\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X},\mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X},g(\epsilon,\phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon,\phi))]$

• Note that this wasn't the case with BBVI

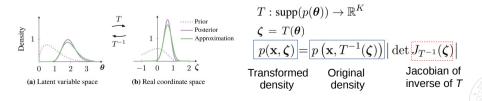
- Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)
 - Recent work on continuous approximation of discrete variables[†]
- The transformation function g may be difficult to find for general distributions
 - Recent work on generalized reparametrizations*
- Also, the transformation function g needs to be invertible (difficult/expensive)
 - $\, \circ \,$ Recent work on implicit reparametrized gradients $^{\#}$
- Also assume that we can directly draw samples from $p(\epsilon)$. If we can't then rep. trick isn't valid[®]
- Very active area of research in VI right now!

[†]Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), [#] Implicit Reparameterization Gradients (Figurnov et al, 2018), [@] Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)

Automatic Differentiation Variational Inference (ADVI)

- Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables
- These derivatives is all what we need to optimize the function (in our case, ELBO)
- VI is also optimization. However, often the variables are constrained, e.g.,
 - Gamma's shape and scale can only be non-negative
 - Beta's parameters can only be non-negative
 - Dirichlet's probability parameter sums to one

• If we can somehow transform our distributions to unconstrained ones, we can use AD for VI



* Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)

Amortized Variational Inference

Amortized Variational Inference

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(\boldsymbol{z}_n | \phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- ullet Also slow at test time: Given a new ${m x}_*$, finding ϕ_* requires iterative updates
 - $\,\circ\,$ Update local $\phi_*,$ update global $\lambda,$ and repeat until convergence
- Amortized VI : Learn an "inference network" or "recognition model" to directly get ϕ_n , e.g.,
 - A neural network to directly map \boldsymbol{x}_n to ϕ_n

$$q(\boldsymbol{z}_n|\phi_n) pprox q(\boldsymbol{z}_n|\hat{\phi}_n)$$
 where $\hat{\phi}_n = \mathsf{NN}_{\phi}(\boldsymbol{x}_n)$

- ${\, \bullet \,}$ The inference network params ϕ can be learned along with the other global vars
- Popular in deep probabilistic models such as variational autoencoders, deep Gaussian Processes, etc

Structured Variational Inference

Structured Variational Inference

- Here "structured" may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions
- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)
 - Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M "tied" via a shared prior

$$q(\pmb{z}_1,\ldots,\pmb{z}_M| heta) = \int \left[\prod_{m=1}^M q(\pmb{z}_m|\phi_m)
ight] \pmb{p}(\pmb{\phi}|m{ heta}) d\pmb{\phi}$$

- To learn more expressive variational approximations, various approaches exist, e.g.,
 - Boosting or mixture of simpler distributions, e.g., $q(z) = \sum_{c=1}^{C} \rho_c q_c(z|\phi_c)$
 - Normalizing flows: 'Turn a simple q(z) into a complex one via series of invertible transformations

Other Divergence Measures

• VI minimizes KL(q||p) but other divergences can be minimized as well

 $\,$ A general form of divergence is Renyi's $\alpha\text{-divergence}$ defined as

$$D^R_lpha(p(oldsymbol{x})||q(oldsymbol{x})) = rac{1}{lpha-1}\log\int p(oldsymbol{x})^lpha q(oldsymbol{x})^{1-lpha}doldsymbol{x}$$

• $\mathit{KL}(p||q)$ is a special case with lpha o 1 (can verify using L'Hopital rule of taking limits)

• An even more general form of divergece is *f*-Divergence

$$D_f(p(\mathbf{x})||q(\mathbf{x})) = \int q(\mathbf{x}) f\left(rac{p(\mathbf{x})}{q(\mathbf{x})}
ight) d\mathbf{x}$$

Many recent inference algorithms are based on minimizing such divergences

Variational Inference: Some Comments

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability
- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success
- Note: Most of these ideas apply also to Variational EM
- Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g., Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models
- Still a very active area of research, especially for doing VI in complex models
 - Models with discrete latent variables
 - Reducing the variance in Monte-Carlo estimate of ELBO gradients