Variational Inference: Scalability and Recent Advances

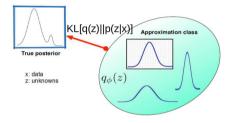
Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Feb 25, 2019

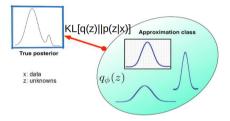
• Approximate an intractable posterior $p(\mathbf{Z}|\mathbf{X})$ by another distribution $q(\mathbf{Z}|\phi)$ by solving

$$\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})] \qquad \text{or equivalently} \qquad q^*(\mathbf{Z}) = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}[q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})]$$



• Approximate an intractable posterior $p(\mathbf{Z}|\mathbf{X})$ by another distribution $q(\mathbf{Z}|\phi)$ by solving

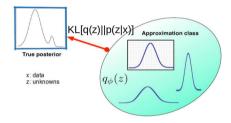
$$\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})] \qquad \text{or equivalently} \qquad q^*(\mathbf{Z}) = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}[q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})]$$



• Equivalent to finding q that maximizes the Evidence Lower Bound (ELBO)

• Approximate an intractable posterior $p(\mathbf{Z}|\mathbf{X})$ by another distribution $q(\mathbf{Z}|\phi)$ by solving

$$\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})] \qquad \text{or equivalently} \qquad q^*(\mathbf{Z}) = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}[q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})]$$

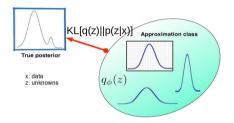


• Equivalent to finding q that maximizes the Evidence Lower Bound (ELBO)

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

• Approximate an intractable posterior $p(\mathbf{Z}|\mathbf{X})$ by another distribution $q(\mathbf{Z}|\phi)$ by solving

$$\phi^* = \arg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})] \qquad \text{or equivalently} \qquad q^*(\mathbf{Z}) = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}[q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})]$$



• Equivalent to finding q that maximizes the Evidence Lower Bound (ELBO)

$$\mathcal{L}(q) = \mathcal{L}(\phi) \quad = \quad \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

VI requires solving an **optimization problem** in general (but closed-form solution exists in some special cases, e.g., mean-field VI in locally-conjugate models)

• Mean-Field VI: Assume $q(\mathbf{Z}|\phi) = \prod_{j=1}^M q(\mathbf{Z}_j|\phi_j) = \prod_{j=1}^N q_j(\mathbf{Z}_j)$

- Mean-Field VI: Assume $q(\mathbf{Z}|\phi) = \prod_{j=1}^M q(\mathbf{Z}_j|\phi_j) = \prod_{j=1}^N q_j(\mathbf{Z}_j)$
- ullet For the optimal q_j , $\log q_j^*(\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\ln p(\mathbf{X},\mathbf{Z})] + \mathrm{const}$

- Mean-Field VI: Assume $q(\mathbf{Z}|\phi) = \prod_{j=1}^M q(\mathbf{Z}_j|\phi_j) = \prod_{j=1}^N q_j(\mathbf{Z}_j)$
- ullet For the optimal q_j , $\log q_i^*(\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \mathrm{const}$, and thus

$$q_j^*(\mathsf{Z}_j) = rac{\exp(\mathbb{E}_{i
eq j}[\ln p(\mathsf{X}, \mathsf{Z})])}{\int \exp(\mathbb{E}_{i
eq j}[\ln p(\mathsf{X}, \mathsf{Z})]) d\mathsf{Z}_j} \propto \exp(\mathbb{E}_{i
eq j}[\ln p(\mathsf{X}, \mathsf{Z})])$$

- Mean-Field VI: Assume $q(\mathbf{Z}|\phi) = \prod_{j=1}^M q(\mathbf{Z}_j|\phi_j) = \prod_{j=1}^N q_j(\mathbf{Z}_j)$
- ullet For the optimal q_j , $\log q_i^*(\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \mathrm{const}$, and thus

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i\neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i\neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) d\mathbf{Z}_j} \propto \exp(\mathbb{E}_{i\neq j}[\ln p(\mathbf{X}, \mathbf{Z})])$$

ullet We can also write $\log q_j^*(\mathsf{Z}_j) = \mathbb{E}_{i
eq j}[\log p(\mathsf{Z}_j|\mathsf{X},\mathsf{Z}_{-j})] + \mathsf{const}$

- Mean-Field VI: Assume $q(\mathbf{Z}|\phi) = \prod_{j=1}^M q(\mathbf{Z}_j|\phi_j) = \prod_{j=1}^N q_j(\mathbf{Z}_j)$
- ullet For the optimal q_j , $\log q_i^*(\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \mathrm{const}$, and thus

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) d\mathbf{Z}_j} \propto \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) \qquad \forall j$$

- ullet We can also write $\log q_j^*(\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\log p(\mathbf{Z}_j|\mathbf{X},\mathbf{Z}_{-j})] + \mathrm{const}$
- For locally conjugate models, the CP $p(\mathbf{Z}_i|\mathbf{X},\mathbf{Z}_{-i})$ is easy to find, and usually an exp-fam dist.

$$p(\mathbf{Z}_j|\mathbf{X},\mathbf{Z}_{-j}) = h(\mathbf{Z}_j) \exp \left[\eta(\mathbf{X},\mathbf{Z}_{-j})^{\top} \mathbf{Z}_j - A(\eta(\mathbf{X},\mathbf{Z}_{-j})) \right]$$

- Mean-Field VI: Assume $q(\mathbf{Z}|\phi) = \prod_{j=1}^M q(\mathbf{Z}_j|\phi_j) = \prod_{j=1}^N q_j(\mathbf{Z}_j)$
- ullet For the optimal q_j , $\log q_i^*(\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \mathrm{const}$, and thus

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) d\mathbf{Z}_j} \propto \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) \qquad \forall j$$

- ullet We can also write $\log q_i^*(\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\log p(\mathbf{Z}_j | \mathbf{X}, \mathbf{Z}_{-j})] + \mathrm{const}$
- For locally conjugate models, the CP $p(\mathbf{Z}_i|\mathbf{X},\mathbf{Z}_{-i})$ is easy to find, and usually an exp-fam dist.

$$p(\mathbf{Z}_j|\mathbf{X},\mathbf{Z}_{-j}) = h(\mathbf{Z}_j) \exp \left[\eta(\mathbf{X},\mathbf{Z}_{-j})^{\top} \mathbf{Z}_j - A(\eta(\mathbf{X},\mathbf{Z}_{-j})) \right]$$

• In such a case, each optimal mean-field distribution will be of the form

$$q_j^*(\mathsf{Z}_j) \propto h(\mathsf{Z}_j) \exp\left[\mathbb{E}_{i
eq j}[\eta(\mathsf{X}, \mathsf{Z}_{-j})]^ op \mathsf{Z}_j
ight]$$

- Mean-Field VI: Assume $q(\mathbf{Z}|\phi) = \prod_{j=1}^M q(\mathbf{Z}_j|\phi_j) = \prod_{j=1}^N q_j(\mathbf{Z}_j)$
- ullet For the optimal q_j , $\log q_i^*(\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \mathrm{const}$, and thus

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) d\mathbf{Z}_j} \propto \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) \qquad \forall j$$

- ullet We can also write $\log q_i^*(\mathbf{Z}_j) = \mathbb{E}_{i
 eq j}[\log p(\mathbf{Z}_j | \mathbf{X}, \mathbf{Z}_{-j})] + \mathrm{const}$
- For locally conjugate models, the CP $p(\mathbf{Z}_j|\mathbf{X},\mathbf{Z}_{-j})$ is easy to find, and usually an exp-fam dist.

$$p(\mathbf{Z}_j|\mathbf{X},\mathbf{Z}_{-j}) = h(\mathbf{Z}_j) \exp \left[\eta(\mathbf{X},\mathbf{Z}_{-j})^{\top} \mathbf{Z}_j - A(\eta(\mathbf{X},\mathbf{Z}_{-j})) \right]$$

In such a case, each optimal mean-field distribution will be of the form

$$q_j^*(\mathsf{Z}_j) \propto h(\mathsf{Z}_j) \exp\left[\mathbb{E}_{i
eq j}[\eta(\mathsf{X}, \mathsf{Z}_{-j})]^ op \mathsf{Z}_j
ight]$$

.. so its parameters $\phi_j = \mathbb{E}_{i \neq j}[\eta(\mathbf{X}, \mathbf{Z}_{-j})]$, i.e., expectation of the natural params of the CP

• Assuming independence, data $\mathbf{X} = \{x_1, \dots, x_N\}$, and local and global unknowns $\mathbf{Z}, \boldsymbol{\beta}$, their joint

$$p(\mathbf{X}, \mathbf{Z}, oldsymbol{eta}) = p(oldsymbol{eta}) \prod_{n=1}^{N} p(\mathbf{x}_n | \mathbf{z}_n, oldsymbol{eta}) p(\mathbf{z}_n | oldsymbol{eta})$$

• Assuming independence, data $\mathbf{X} = \{x_1, \dots, x_N\}$, and local and global unknowns $\mathbf{Z}, \boldsymbol{\beta}$, their joint

$$p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\beta}) = p(\boldsymbol{\beta}) \prod_{n=1}^{N} p(\boldsymbol{x}_{n} | \boldsymbol{z}_{n}, \boldsymbol{\beta}) p(\boldsymbol{z}_{n} | \boldsymbol{\beta}) = p(\boldsymbol{\beta}) \prod_{n=1}^{N} p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} | \boldsymbol{\beta})$$

• Assuming independence, data $\mathbf{X} = \{x_1, \dots, x_N\}$, and local and global unknowns $\mathbf{Z}, \boldsymbol{\beta}$, their joint

$$p(\mathbf{X},\mathbf{Z},\beta) = p(\beta) \prod_{n=1}^{N} p(x_n|\mathbf{z}_n,\beta) p(\mathbf{z}_n|\beta) = p(\beta) \prod_{n=1}^{N} p(x_n,\mathbf{z}_n|\beta)$$

Assume all the distributions in the above to be exp-family distributions

$$p(x_n, z_n | \beta) = h(x_n, z_n) \exp \left[\beta^\top t(x_n, z_n) - A(\beta) \right], p(\beta | \alpha) = h(\beta) \exp \left[\alpha^\top [\beta, -A(\beta)] - A(\alpha) \right]$$

• Assuming independence, data $\mathbf{X} = \{x_1, \dots, x_N\}$, and local and global unknowns $\mathbf{Z}, \boldsymbol{\beta}$, their joint

$$p(\mathbf{X},\mathbf{Z},\beta) = p(\beta) \prod_{n=1}^{N} p(x_n|\mathbf{z}_n,\beta) p(\mathbf{z}_n|\beta) = p(\beta) \prod_{n=1}^{N} p(x_n,\mathbf{z}_n|\beta)$$

Assume all the distributions in the above to be exp-family distributions

$$p(x_n, z_n | \beta) = h(x_n, z_n) \exp \left[\beta^\top t(x_n, z_n) - A(\beta) \right], p(\beta | \alpha) = h(\beta) \exp \left[\alpha^\top [\beta, -A(\beta)] - A(\alpha) \right]$$

• Also assuming $p(x_n|z_n)$ and $p(z_n)$ to be conjugate, CPs for z_n and β are also exp-fam

$$p(z_n|x_n,\beta) \propto h(z_n) \exp \left[\eta(x_n,\beta)^\top z_n\right]$$

• Assuming independence, data $\mathbf{X} = \{x_1, \dots, x_N\}$, and local and global unknowns $\mathbf{Z}, \boldsymbol{\beta}$, their joint

$$p(\mathbf{X},\mathbf{Z},\beta) = p(\beta) \prod_{n=1}^{N} p(x_n|\mathbf{z}_n,\beta) p(\mathbf{z}_n|\beta) = p(\beta) \prod_{n=1}^{N} p(x_n,\mathbf{z}_n|\beta)$$

Assume all the distributions in the above to be exp-family distributions

$$p(x_n, z_n | \beta) = h(x_n, z_n) \exp \left[\beta^\top t(x_n, z_n) - A(\beta) \right], p(\beta | \alpha) = h(\beta) \exp \left[\alpha^\top [\beta, -A(\beta)] - A(\alpha) \right]$$

• Also assuming $p(x_n|z_n)$ and $p(z_n)$ to be conjugate, CPs for z_n and β are also exp-fam

$$p(\mathbf{z}_n|\mathbf{x}_n,\boldsymbol{\beta}) \propto h(\mathbf{z}_n) \exp\left[\eta(\mathbf{x}_n,\boldsymbol{\beta})^{\top}\mathbf{z}_n\right]$$

$$p(\boldsymbol{\beta}|\mathbf{X},\mathbf{Z}) \propto h(\boldsymbol{\beta}) \exp\left[\left[\alpha_1 + \sum_{n=1}^{N} t(\mathbf{x}_n,\mathbf{z}_n), \alpha_2 + N\right]^{\top}[\boldsymbol{\beta}, -A(\boldsymbol{\beta})]\right]$$

• Assuming independence, data $\mathbf{X} = \{x_1, \dots, x_N\}$, and local and global unknowns $\mathbf{Z}, \boldsymbol{\beta}$, their joint

$$p(\mathbf{X},\mathbf{Z},\beta) = p(\beta) \prod_{n=1}^{N} p(x_n|\mathbf{z}_n,\beta) p(\mathbf{z}_n|\beta) = p(\beta) \prod_{n=1}^{N} p(x_n,\mathbf{z}_n|\beta)$$

Assume all the distributions in the above to be exp-family distributions

$$p(\mathbf{x}_n, \mathbf{z}_n | \boldsymbol{\beta}) = h(\mathbf{x}_n, \mathbf{z}_n) \exp \left[\boldsymbol{\beta}^\top t(\mathbf{x}_n, \mathbf{z}_n) - A(\boldsymbol{\beta}) \right], p(\boldsymbol{\beta} | \boldsymbol{\alpha}) = h(\boldsymbol{\beta}) \exp \left[\boldsymbol{\alpha}^\top [\boldsymbol{\beta}, -A(\boldsymbol{\beta})] - A(\boldsymbol{\alpha}) \right]$$

• Also assuming $p(x_n|z_n)$ and $p(z_n)$ to be conjugate, CPs for z_n and β are also exp-fam

$$p(\mathbf{z}_{n}|\mathbf{x}_{n},\boldsymbol{\beta}) \propto h(\mathbf{z}_{n}) \exp \left[\eta(\mathbf{x}_{n},\boldsymbol{\beta})^{\top} \mathbf{z}_{n}\right]$$

$$p(\boldsymbol{\beta}|\mathbf{X},\mathbf{Z}) \propto h(\boldsymbol{\beta}) \exp \left[\left[\alpha_{1} + \sum_{n=1}^{N} t(\mathbf{x}_{n},\mathbf{z}_{n}), \alpha_{2} + N\right]^{\top} [\boldsymbol{\beta}, -A(\boldsymbol{\beta})]\right]$$

• Assuming $q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^{N} q(\mathbf{z}_n|\phi_n)$, the optimal local and global var. params

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n$$

• Assuming independence, data $\mathbf{X} = \{x_1, \dots, x_N\}$, and local and global unknowns $\mathbf{Z}, \boldsymbol{\beta}$, their joint

$$p(\mathbf{X},\mathbf{Z},\beta) = p(\beta) \prod_{n=1}^{N} p(x_n|\mathbf{z}_n,\beta) p(\mathbf{z}_n|\beta) = p(\beta) \prod_{n=1}^{N} p(x_n,\mathbf{z}_n|\beta)$$

Assume all the distributions in the above to be exp-family distributions

$$p(\mathbf{x}_n, \mathbf{z}_n | \boldsymbol{\beta}) = h(\mathbf{x}_n, \mathbf{z}_n) \exp \left[\boldsymbol{\beta}^\top t(\mathbf{x}_n, \mathbf{z}_n) - A(\boldsymbol{\beta}) \right], p(\boldsymbol{\beta} | \boldsymbol{\alpha}) = h(\boldsymbol{\beta}) \exp \left[\boldsymbol{\alpha}^\top [\boldsymbol{\beta}, -A(\boldsymbol{\beta})] - A(\boldsymbol{\alpha}) \right]$$

ullet Also assuming $p(x_n|z_n)$ and $p(z_n)$ to be conjugate, CPs for z_n and eta are also exp-fam

$$p(\mathbf{z}_{n}|\mathbf{x}_{n},\boldsymbol{\beta}) \propto h(\mathbf{z}_{n}) \exp \left[\eta(\mathbf{x}_{n},\boldsymbol{\beta})^{\top} \mathbf{z}_{n}\right]$$

$$p(\boldsymbol{\beta}|\mathbf{X},\mathbf{Z}) \propto h(\boldsymbol{\beta}) \exp \left[\left[\alpha_{1} + \sum_{n=1}^{N} t(\mathbf{x}_{n},\mathbf{z}_{n}), \alpha_{2} + N\right]^{\top} [\boldsymbol{\beta}, -A(\boldsymbol{\beta})]\right]$$

• Assuming $q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^{N} q(\mathbf{z}_n|\phi_n)$, the optimal local and global var. params

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n, \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\alpha}]$$

• Assuming independence, data $\mathbf{X} = \{x_1, \dots, x_N\}$, and local and global unknowns $\mathbf{Z}, \boldsymbol{\beta}$, their joint

$$p(\mathbf{X},\mathbf{Z},\beta) = p(\beta) \prod_{n=1}^{N} p(x_n|\mathbf{z}_n,\beta) p(\mathbf{z}_n|\beta) = p(\beta) \prod_{n=1}^{N} p(x_n,\mathbf{z}_n|\beta)$$

Assume all the distributions in the above to be exp-family distributions

$$p(x_n, z_n | \beta) = h(x_n, z_n) \exp \left[\beta^\top t(x_n, z_n) - A(\beta) \right], p(\beta | \alpha) = h(\beta) \exp \left[\alpha^\top [\beta, -A(\beta)] - A(\alpha) \right]$$

• Also assuming $p(x_n|z_n)$ and $p(z_n)$ to be conjugate, CPs for z_n and β are also exp-fam

$$p(\mathbf{z}_{n}|\mathbf{x}_{n},\boldsymbol{\beta}) \propto h(\mathbf{z}_{n}) \exp \left[\eta(\mathbf{x}_{n},\boldsymbol{\beta})^{\top} \mathbf{z}_{n}\right]$$

$$p(\boldsymbol{\beta}|\mathbf{X},\mathbf{Z}) \propto h(\boldsymbol{\beta}) \exp \left[\left[\alpha_{1} + \sum_{n=1}^{N} t(\mathbf{x}_{n},\mathbf{z}_{n}), \alpha_{2} + N\right]^{\top} [\boldsymbol{\beta}, -A(\boldsymbol{\beta})]\right]$$

• Assuming $q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^{N} q(\mathbf{z}_n|\phi_n)$, the optimal local and global var. params

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \qquad \forall n, \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\alpha}]$$

Note: Each update of global var. params requires waiting for all updates of local var. params

Advances in Variational Inference

• SVI - Stochastic Variational Inference (we'll mainly focus on SVI for locally-conjugate models)

- SVI Stochastic Variational Inference (we'll mainly focus on SVI for locally-conjugate models)
- VI/SVI for non-conjugate models
 - Model-specific tricks to handle non-conjugacy
 - Black-Box Variational Inference (BBVI)
 - Reparametrization Trick based VI
 - Automatic Differentiation VI (ADVI) via Unconstrained Optimization

- SVI Stochastic Variational Inference (we'll mainly focus on SVI for locally-conjugate models)
- VI/SVI for non-conjugate models
 - Model-specific tricks to handle non-conjugacy
 - Black-Box Variational Inference (BBVI)
 - Reparametrization Trick based VI
 - Automatic Differentiation VI (ADVI) via Unconstrained Optimization
- Amortized Variational Inference

- SVI Stochastic Variational Inference (we'll mainly focus on SVI for locally-conjugate models)
- VI/SVI for non-conjugate models
 - Model-specific tricks to handle non-conjugacy
 - Black-Box Variational Inference (BBVI)
 - Reparametrization Trick based VI
 - Automatic Differentiation VI (ADVI) via Unconstrained Optimization
- Amortized Variational Inference
- Structured Variational Inference

- SVI Stochastic Variational Inference (we'll mainly focus on SVI for locally-conjugate models)
- VI/SVI for non-conjugate models
 - Model-specific tricks to handle non-conjugacy
 - Black-Box Variational Inference (BBVI)
 - Reparametrization Trick based VI
 - Automatic Differentiation VI (ADVI) via Unconstrained Optimization
- Amortized Variational Inference
- Structured Variational Inference
- ullet Other divergences (recall that VI finds optimal q by minimizing the KL divergence $\mathit{KL}(q||p))$

• An "online" algorithm[†] to speed-up VI for LVMs with local and global variables

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- We saw the mean-field VI updates $(q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^{N} q(\mathbf{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- We saw the mean-field VI updates $(q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^{N} q(\mathbf{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

ullet SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- We saw the mean-field VI updates $(q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^N q(\mathbf{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- ullet SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)
- ullet SVI works with minibatches of data as follows (assuming minibatch size =1)

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- We saw the mean-field VI updates $(q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^N q(\mathbf{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)
- ullet SVI works with minibatches of data as follows (assuming minibatch size =1)
 - ① Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- ullet We saw the mean-field VI updates $(q(eta, \mathbf{Z}) = q(eta|_{oldsymbol{\lambda}}) \prod_{n=1}^N q(oldsymbol{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- ullet SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)
- ullet SVI works with minibatches of data as follows (assuming minibatch size =1)
 - ① Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1
 - ② Set the learning rate (decaying as) as $\epsilon_i = (i+1)^{-\kappa}$ where $\kappa \in (0.5,1]$

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- ullet We saw the mean-field VI updates $(q(eta, \mathbf{Z}) = q(eta|_{oldsymbol{\lambda}}) \prod_{n=1}^N q(oldsymbol{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- ullet SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)
- ullet SVI works with minibatches of data as follows (assuming minibatch size =1)
 - **(4)** Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1
 - ② Set the learning rate (decaying as) as $\epsilon_i = (i+1)^{-\kappa}$ where $\kappa \in (0.5,1]$
 - 3 Choose a data point *n* randomly, i.e., $n \sim \text{Uniform}(1, ..., N)$

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- ullet We saw the mean-field VI updates $(q(eta, \mathbf{Z}) = q(eta|_{oldsymbol{\lambda}}) \prod_{n=1}^N q(oldsymbol{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- ullet SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)
- ullet SVI works with minibatches of data as follows (assuming minibatch size =1)
 - **(4)** Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1
 - ② Set the learning rate (decaying as) as $\epsilon_i = (i+1)^{-\kappa}$ where $\kappa \in (0.5,1]$
 - 3 Choose a data point n randomly, i.e., $n \sim \mathsf{Uniform}(1,\ldots,N)$
 - **4** Compute local var. param ϕ_n for data point \mathbf{x}_n as $\phi_n = \mathbb{E}_{\lambda^{(i-1)}}\left[\eta(\mathbf{x}_n, \boldsymbol{\beta})\right]$

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- ullet We saw the mean-field VI updates $(q(eta, \mathbf{Z}) = q(eta|_{oldsymbol{\lambda}}) \prod_{n=1}^N q(oldsymbol{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- ullet SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)
- ullet SVI works with minibatches of data as follows (assuming minibatch size = 1)
 - **(4)** Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1
 - ② Set the learning rate (decaying as) as $\epsilon_i = (i+1)^{-\kappa}$ where $\kappa \in (0.5,1]$
 - **3** Choose a data point n randomly, i.e., $n \sim \text{Uniform}(1, \dots, N)$
 - **4** Compute local var. param ϕ_n for data point \mathbf{x}_n as $\phi_n = \mathbb{E}_{\lambda^{(i-1)}} [\eta(\mathbf{x}_n, \boldsymbol{\beta})]$
 - **5** Update λ as $\lambda^{(i)} = (1 \epsilon_i)\lambda^{(i-1)} + \epsilon_i\lambda_n$

Stochastic Variational Inference (SVI)

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- We saw the mean-field VI updates $(q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^N q(\mathbf{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- ullet SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)
- ullet SVI works with minibatches of data as follows (assuming minibatch size = 1)
 - ① Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1
 - ② Set the learning rate (decaying as) as $\epsilon_i = (i+1)^{-\kappa}$ where $\kappa \in (0.5,1]$
 - 3 Choose a data point *n* randomly, i.e., $n \sim \text{Uniform}(1, ..., N)$
 - **4** Compute local var. param ϕ_n for data point \mathbf{x}_n as $\phi_n = \mathbb{E}_{\lambda^{(i-1)}} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right]$
 - ⑤ Update λ as $\lambda^{(i)} = (1 \epsilon_i)\lambda^{(i-1)} + \epsilon_i\lambda_n$ where $\lambda_n = [\alpha_1 + \mathbb{E}_{\phi_n}[t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + 1]^{\top}$

Stochastic Variational Inference (SVI)

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- We saw the mean-field VI updates $(q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^{N} q(\mathbf{z}_{n}|\phi_{n}))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)
- SVI works with minibatches of data as follows (assuming minibatch size = 1)
 - Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1
 - Set the learning rate (decaying as) as $\epsilon_i = (i+1)^{-\kappa}$ where $\kappa \in (0.5, 1]$
 - Choose a data point n randomly, i.e., $n \sim \text{Uniform}(1, \dots, N)$
 - Compute local var. param ϕ_n for data point x_n as $\phi_n = \mathbb{E}_{\chi(i-1)} [\eta(x_n, \beta)]$
 - **9** Update λ as $\lambda^{(i)} = (1 \epsilon_i)\lambda^{(i-1)} + \epsilon_i\lambda_n$ where $\lambda_n = [\alpha_1 + \mathbb{E}_{\phi_n}[t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + 1]^\top = \mathbb{E}_{\phi_n}[\hat{\alpha}(\mathbf{x}_n, \mathbf{z}_n)]$

Stochastic Variational Inference (SVI)

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- ullet We saw the mean-field VI updates $(q(eta, \mathbf{Z}) = q(eta|_{oldsymbol{\lambda}}) \prod_{n=1}^N q(oldsymbol{z}_n|\phi_n))$ for such models

$$\phi_n = \mathbb{E}_{\lambda} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] \quad \forall n \quad \text{and} \quad \lambda = \left[\alpha_1 + \sum_{n=1}^N \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right]^{\top} = \mathbb{E}_{\phi} [\hat{\boldsymbol{\alpha}}(\mathbf{X}, \mathbf{Z})]$$

- ullet SVI makes the global params λ updates more efficient (note that λ depends on all ϕ_n 's)
- ullet SVI works with minibatches of data as follows (assuming minibatch size =1)
 - ① Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1
 - ② Set the learning rate (decaying as) as $\epsilon_i = (i+1)^{-\kappa}$ where $\kappa \in (0.5,1]$
 - 3 Choose a data point n randomly, i.e., $n \sim \text{Uniform}(1, \dots, N)$
 - **4** Compute local var. param ϕ_n for data point \mathbf{x}_n as $\phi_n = \mathbb{E}_{\lambda^{(i-1)}} \left[\eta(\mathbf{x}_n, \boldsymbol{\beta}) \right]$

 - **6** Set i = i + 1. If ELBO not converged, go to Step 2

ullet SVI updates the global var params λ using stochastic optimization of the ELBO †

- SVI updates the global var params λ using stochastic optimization of the ELBO[†]
- Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient

- ullet SVI updates the global var params λ using stochastic optimization of the ELBO †
- ullet Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient
 - ${}_{\bullet}$ Denoting the double derivative of the log-partition function of CP of ${\cal \beta}$ as ${\cal A}''$

- SVI updates the global var params λ using stochastic optimization of the ELBO[†]
- Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient
 - ullet Denoting the double derivative of the log-partition function of CP of $oldsymbol{eta}$ as A''

Usual gradient:
$$\nabla_{\lambda}\mathsf{ELBO} = A''(\lambda)(\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X},\mathbf{Z})] - \lambda)$$
 (exercise)

- SVI updates the global var params λ using stochastic optimization of the ELBO[†]
- Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient
 - ullet Denoting the double derivative of the log-partition function of CP of eta as A''

Usual gradient:
$$\nabla_{\lambda}\mathsf{ELBO} = A''(\lambda)(\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X},\mathbf{Z})] - \lambda)$$
 (exercise)

 $\mathsf{Natural\ gradient:}\quad \boldsymbol{g}(\lambda)\quad =\quad \boldsymbol{A}''(\lambda)^{-1}\times\nabla_{\lambda}\mathsf{ELBO} = \mathbb{E}_{\phi}[\boldsymbol{\hat{\alpha}}(\mathbf{X},\mathbf{Z})] - \lambda$

- SVI updates the global var params λ using stochastic optimization of the ELBO[†]
- Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient
 - $\, \bullet \,$ Denoting the double derivative of the log-partition function of CP of β as $A^{\prime\prime}$

Usual gradient:
$$\nabla_{\lambda} \mathsf{ELBO} = A''(\lambda) (\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda)$$
 (exercise)

$$\mathsf{Natural\ gradient:}\quad \boldsymbol{g}(\lambda)\quad =\quad \boldsymbol{A}''(\lambda)^{-1}\times\nabla_{\lambda}\mathsf{ELBO} = \mathbb{E}_{\phi}[\boldsymbol{\hat{\alpha}}(\mathbf{X},\mathbf{Z})] - \lambda$$

• Note: $A''(\lambda)$ is cov. of suff-stats of CP of β and $A''(\lambda)^{-1}$ is the Fisher information matrix

- SVI updates the global var params λ using stochastic optimization of the ELBO[†]
- Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient
 - $\, \bullet \,$ Denoting the double derivative of the log-partition function of CP of β as $A^{\prime\prime}$

Usual gradient:
$$\nabla_{\lambda}\mathsf{ELBO} = A''(\lambda)(\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda)$$
 (exercise)
Natural gradient: $g(\lambda) = A''(\lambda)^{-1} \times \nabla_{\lambda}\mathsf{ELBO} = \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda$

- Note: $A''(\lambda)$ is cov. of suff-stats of CP of β and $A''(\lambda)^{-1}$ is the Fisher information matrix
- Using the natural gradient has some nice advantages

- ullet SVI updates the global var params λ using stochastic optimization of the ELBO †
- Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient

Usual gradient:
$$\nabla_{\lambda} \mathsf{ELBO} = A''(\lambda) (\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda)$$
 (exercise)
Natural gradient: $g(\lambda) = A''(\lambda)^{-1} \times \nabla_{\lambda} \mathsf{ELBO} = \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda$

- Note: $A''(\lambda)$ is cov. of suff-stats of CP of β and $A''(\lambda)^{-1}$ is the Fisher information matrix
- Using the natural gradient has some nice advantages
 - \bullet Nat. gradient based updates of λ have simple form + easy to compute (no need to compute $\mathcal{A}''(\lambda)$)

- SVI updates the global var params λ using stochastic optimization of the ELBO[†]
- Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient
 - ullet Denoting the double derivative of the log-partition function of CP of $oldsymbol{eta}$ as A''

Usual gradient:
$$\nabla_{\lambda}\mathsf{ELBO} = A''(\lambda)(\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X},\mathbf{Z})] - \lambda)$$
 (exercise)

Natural gradient: $g(\lambda) = A''(\lambda)^{-1} \times \nabla_{\lambda}\mathsf{ELBO} = \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X},\mathbf{Z})] - \lambda$

- Note: $A''(\lambda)$ is cov. of suff-stats of CP of β and $A''(\lambda)^{-1}$ is the Fisher information matrix
- Using the natural gradient has some nice advantages
 - \circ Nat. gradient based updates of λ have simple form + easy to compute (no need to compute $\mathcal{A}''(\lambda)$)

$$\lambda^{(i)} = \lambda^{(i-1)} + \epsilon_i g(\lambda)|_{\lambda^{(i-1)}}$$

- SVI updates the global var params λ using stochastic optimization of the ELBO[†]
- Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient
 - ullet Denoting the double derivative of the log-partition function of CP of eta as A''

Usual gradient:
$$\nabla_{\lambda}\mathsf{ELBO} = A''(\lambda)(\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X},\mathbf{Z})] - \lambda)$$
 (exercise)
Natural gradient: $g(\lambda) = A''(\lambda)^{-1} \times \nabla_{\lambda}\mathsf{ELBO} = \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X},\mathbf{Z})] - \lambda$

- Note: $A''(\lambda)$ is cov. of suff-stats of CP of β and $A''(\lambda)^{-1}$ is the Fisher information matrix
- Using the natural gradient has some nice advantages
 - ullet Nat. gradient based updates of λ have simple form + easy to compute (no need to compute $A''(\lambda)$)

$$\boldsymbol{\lambda}^{(i)} = \boldsymbol{\lambda}^{(i-1)} + \epsilon_i g(\boldsymbol{\lambda})|_{\boldsymbol{\lambda}^{(i-1)}} \ = (1-\epsilon_i)\boldsymbol{\lambda}^{(i-1)} + \epsilon_i \mathbb{E}_{\phi}[\hat{\boldsymbol{\alpha}}(\mathbf{X},\mathbf{Z})] \quad \text{(assuming full batch)}$$

- SVI updates the global var params λ using stochastic optimization of the ELBO[†]
- Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient
 - ullet Denoting the double derivative of the log-partition function of CP of eta as A''

Usual gradient:
$$\nabla_{\lambda} \mathsf{ELBO} = A''(\lambda) (\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda)$$
 (exercise)
Natural gradient: $g(\lambda) = A''(\lambda)^{-1} \times \nabla_{\lambda} \mathsf{ELBO} = \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda$

- Note: $A''(\lambda)$ is cov. of suff-stats of CP of β and $A''(\lambda)^{-1}$ is the Fisher information matrix
- Using the natural gradient has some nice advantages
 - Nat. gradient based updates of λ have simple form + easy to compute (no need to compute $A''(\lambda)$)

$$\lambda^{(i)} = \lambda^{(i-1)} + \epsilon_i g(\lambda)|_{\lambda^{(i-1)}} = (1 - \epsilon_i)\lambda^{(i-1)} + \epsilon_i \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] \quad \text{(assuming full batch)}$$

• Natural gradients are more intuitive/meaningful: Euclidean distance isn't often meaningful when used to compute distance between parameters of probability distributions, e.g., $q(\beta|\lambda)$ and $q(\beta|\lambda')$

• Often operates on minibatches: For iteration i minibatch \mathcal{B}_i , update λ as follows

$$\hat{\lambda} = rac{1}{|\mathcal{B}_i|} \sum_{n \in \mathcal{B}_i} \lambda_n$$
 $\lambda^{(i)} = (1 - \epsilon_i) \lambda^{(i-1)} + \epsilon_i \hat{\lambda}$

• Often operates on minibatches: For iteration i minibatch \mathcal{B}_i , update λ as follows

$$\hat{\lambda} = \frac{1}{|\mathcal{B}_i|} \sum_{n \in \mathcal{B}_i} \lambda_n$$

$$\lambda^{(i)} = (1 - \epsilon_i) \lambda^{(i-1)} + \epsilon_i \hat{\lambda}$$

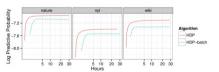
• Decaying learning rate is necessary for convergence (need $\sum_i \epsilon_i = \infty$ and $\sum_i \epsilon_i^2 < \infty$)

• Often operates on minibatches: For iteration i minibatch \mathcal{B}_i , update λ as follows

$$\hat{\lambda} = \frac{1}{|\mathcal{B}_i|} \sum_{n \in \mathcal{B}_i} \lambda_n$$

$$\lambda^{(i)} = (1 - \epsilon_i) \lambda^{(i-1)} + \epsilon_i \hat{\lambda}$$

- Decaying learning rate is necessary for convergence (need $\sum_i \epsilon_i = \infty$ and $\sum_i \epsilon_i^2 < \infty$)
- SVI successfully used on many large-scale problems (document topic modeling, citation network analysis, etc). Often has much faster convergence (and better results) as compared to batch VI



SVI vs Batch VI on a nonparametric Bayesian Topic Model
(Hierarchical Dirichlet Process)

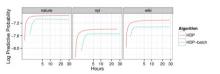
[†]Stochastic Variational Inference (Hoffman et al. 2013)

• Often operates on minibatches: For iteration i minibatch \mathcal{B}_i , update λ as follows

$$\hat{\lambda} = \frac{1}{|\mathcal{B}_i|} \sum_{n \in \mathcal{B}_i} \lambda_n$$

$$\lambda^{(i)} = (1 - \epsilon_i) \lambda^{(i-1)} + \epsilon_i \hat{\lambda}$$

- Decaying learning rate is necessary for convergence (need $\sum_i \epsilon_i = \infty$ and $\sum_i \epsilon_i^2 < \infty$)
- SVI successfully used on many large-scale problems (document topic modeling, citation network analysis, etc). Often has much faster convergence (and better results) as compared to batch VI



SVI vs Batch VI on a nonparametric Bayesian Topic Model (Hierarchical Dirichlet Process)

• Learning rate (κ parameter) and minibatch size is also important (see Hoffman et al for details)

† Stochastic Variational Inference (Hoffman et al, 2013)

VI for Non-conjugate Models

• ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q

- ullet ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models

- ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound

- ullet ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
- Assuming $q(a,b) = \prod_i q(a_i)q(b_i)$, the expectation below can be replaced by a lower bound

$$\mathbb{E}_q\left[\log\sum_i a_i b_i\right]$$

- ullet ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
- Assuming $q(a,b) = \prod_i q(a_i)q(b_i)$, the expectation below can be replaced by a lower bound

$$\mathbb{E}_q \Bigg[\log \sum_i \mathsf{a}_i b_i \Bigg] = \mathbb{E}_q \left[\log \sum_i \rho_i rac{\mathsf{a}_i b_i}{\rho_i} \right]$$

- ullet ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
- Assuming $q(a,b) = \prod_i q(a_i)q(b_i)$, the expectation below can be replaced by a lower bound

$$\mathbb{E}_{q}\left[\log\sum_{i}a_{i}b_{i}\right] = \mathbb{E}_{q}\left[\log\sum_{i}p_{i}\frac{a_{i}b_{i}}{p_{i}}\right] \geq \mathbb{E}_{q}\left[\sum_{i}p_{i}\log\frac{a_{i}b_{i}}{p_{i}}\right]$$

- ullet ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
- Assuming $q(a,b) = \prod_i q(a_i)q(b_i)$, the expectation below can be replaced by a lower bound

$$\mathbb{E}_q \left[\log \sum_i a_i b_i \right] = \mathbb{E}_q \left[\log \sum_i \rho_i \frac{a_i b_i}{\rho_i} \right] \ge \mathbb{E}_q \left[\underbrace{\sum_i \rho_i \log \frac{a_i b_i}{\rho_i}}_{\text{via Jensen's inequality}} \right] = \sum_i \rho_i \mathbb{E}_q [\log a_i + \log b_i] - \sum_i \rho_i \log \rho_i$$

- ullet ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
- Assuming $q(a,b) = \prod_i q(a_i)q(b_i)$, the expectation below can be replaced by a lower bound

$$\mathbb{E}_q \left[\log \sum_i a_i b_i \right] = \mathbb{E}_q \left[\log \sum_i p_i \frac{a_i b_i}{p_i} \right] \ge \mathbb{E}_q \left[\underbrace{\sum_i p_i \log \frac{a_i b_i}{p_i}}_{\text{via Jensen's inequality}} \right] = \sum_i p_i \mathbb{E}_q [\log a_i + \log b_i] - \sum_i p_i \log p_i$$

where p_i is a variable (depends on a_i and b_i) that we need to optimize

- ullet ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
- Assuming $q(a,b) = \prod_i q(a_i)q(b_i)$, the expectation below can be replaced by a lower bound

$$\mathbb{E}_q \left[\log \sum_i a_i b_i \right] = \mathbb{E}_q \left[\log \sum_i p_i \frac{a_i b_i}{p_i} \right] \ge \mathbb{E}_q \left[\underbrace{\sum_i p_i \log \frac{a_i b_i}{p_i}}_{\text{via Jensen's inequality}} \right] = \sum_i p_i \mathbb{E}_q [\log a_i + \log b_i] - \sum_i p_i \log p_i$$

where p_i is a variable (depends on a_i and b_i) that we need to optimize. Expectations above easy to compute

- ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
- Assuming $q(a,b) = \prod_i q(a_i)q(b_i)$, the expectation below can be replaced by a lower bound

$$\mathbb{E}_q \left[\log \sum_i a_i b_i \right] = \mathbb{E}_q \left[\log \sum_i p_i \frac{a_i b_i}{p_i} \right] \ge \mathbb{E}_q \left[\underbrace{\sum_i p_i \log \frac{a_i b_i}{p_i}}_{\text{via Jensen's inequality}} \right] = \sum_i p_i \mathbb{E}_q [\log a_i + \log b_i] - \sum_i p_i \log p_i$$

where p_i is a variable (depends on a_i and b_i) that we need to optimize. Expectations above easy to compute

• For models with logistic likelihood, we use the following (trick by Jaakkola and Jordan, 2000)

$$-\mathbb{E}_q[\log(1+\exp(-y_noldsymbol{w}^ opoldsymbol{x}_n))] \geq \log\sigma(\xi_n) + \mathbb{E}_q\left[rac{1}{2}(y_noldsymbol{w}^ opoldsymbol{x}_n - \xi_n) - \lambda(\xi_n)(oldsymbol{w}^ opoldsymbol{x}_noldsymbol{x}_n^ opoldsymbol{w} - \xi_n^2)
ight]$$

- ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
- Assuming $q(a,b) = \prod_i q(a_i)q(b_i)$, the expectation below can be replaced by a lower bound

$$\mathbb{E}_q \left[\log \sum_i a_i b_i \right] = \mathbb{E}_q \left[\log \sum_i p_i \frac{a_i b_i}{p_i} \right] \ge \mathbb{E}_q \left[\underbrace{\sum_i p_i \log \frac{a_i b_i}{p_i}}_{\text{via Jensen's inequality}} \right] = \sum_i p_i \mathbb{E}_q [\log a_i + \log b_i] - \sum_i p_i \log p_i$$

where p_i is a variable (depends on a_i and b_i) that we need to optimize. Expectations above easy to compute

• For models with logistic likelihood, we use the following (trick by Jaakkola and Jordan, 2000)

$$-\mathbb{E}_q[\log(1+\exp(-y_n \boldsymbol{w}^\top \boldsymbol{x}_n))] \geq \log\sigma(\xi_n) + \mathbb{E}_q\left[\frac{1}{2}(y_n \boldsymbol{w}^\top \boldsymbol{x}_n - \xi_n) - \lambda(\xi_n)(\boldsymbol{w}^\top \boldsymbol{x}_n \boldsymbol{x}_n^\top \boldsymbol{w} - \xi_n^2)\right]$$

where ξ_n is a variable to be optimized and $\lambda(\xi_n) = \frac{1}{2\xi_n} [\sigma(\xi_n) - 0.5]$

- ullet ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] \mathbb{E}_q[\log q(\mathbf{Z})]$ requires computing expectations w.r.t. var. dist. q
- The ELBO and its derivatives can be difficult to compute for non-conjugate models
- A common approach is to replace each difficult terms by a tight lower bound. Some examples:
- Assuming $q(a,b) = \prod_i q(a_i)q(b_i)$, the expectation below can be replaced by a lower bound

$$\mathbb{E}_q \left[\log \sum_i a_i b_i \right] = \mathbb{E}_q \left[\log \sum_i p_i \frac{a_i b_i}{p_i} \right] \ge \mathbb{E}_q \left[\underbrace{\sum_i p_i \log \frac{a_i b_i}{p_i}}_{\text{via Jensen's inequality}} \right] = \sum_i p_i \mathbb{E}_q [\log a_i + \log b_i] - \sum_i p_i \log p_i$$

where p_i is a variable (depends on a_i and b_i) that we need to optimize. Expectations above easy to compute

• For models with logistic likelihood, we use the following (trick by Jaakkola and Jordan, 2000)

$$-\mathbb{E}_q[\log(1+\exp(-y_n \boldsymbol{w}^\top \boldsymbol{x}_n))] \geq \log\sigma(\xi_n) + \mathbb{E}_q\left[\frac{1}{2}(y_n \boldsymbol{w}^\top \boldsymbol{x}_n - \xi_n) - \lambda(\xi_n)(\boldsymbol{w}^\top \boldsymbol{x}_n \boldsymbol{x}_n^\top \boldsymbol{w} - \xi_n^2)\right]$$

where ξ_n is a variable to be optimized and $\lambda(\xi_n) = \frac{1}{2\xi_n} [\sigma(\xi_n) - 0.5]$. Expectations above easy to compute

• Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo

- Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
- Uses the following identity for the ELBO's derivative

$$abla_{\phi}\mathcal{L}(q) =
abla_{\phi}\mathbb{E}_{q}[\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)]$$

- Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
- Uses the following identity for the ELBO's derivative

$$\nabla_{\phi} \mathcal{L}(q) = \nabla_{\phi} \mathbb{E}_{q}[\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)]$$

$$= \mathbb{E}_{q}[\nabla_{\phi} \log q(\mathbf{Z}|\phi)(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \text{ (proof on next slide)}$$

- Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
- Uses the following identity for the ELBO's derivative

$$\nabla_{\phi} \mathcal{L}(q) = \nabla_{\phi} \mathbb{E}_{q}[\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)]$$

$$= \mathbb{E}_{q}[\nabla_{\phi} \log q(\mathbf{Z}|\phi)(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \text{ (proof on next slide)}$$

ullet Thus ELBO gradient can be written solely in terms of expectation of gradient of $\log q(\mathbf{Z}|\phi)$

- Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
- Uses the following identity for the ELBO's derivative

$$\nabla_{\phi} \mathcal{L}(q) = \nabla_{\phi} \mathbb{E}_{q}[\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)]$$

$$= \mathbb{E}_{q}[\nabla_{\phi} \log q(\mathbf{Z}|\phi)(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \text{ (proof on next slide)}$$

- Thus ELBO gradient can be written solely in terms of expectation of gradient of $\log q(\mathbf{Z}|\phi)$
 - Required gradients don't depend on the model. Only on the chosen variational distribution

Black-box Variational Inference (BBVI)

- Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
- Uses the following identity for the ELBO's derivative

$$\nabla_{\phi} \mathcal{L}(q) = \nabla_{\phi} \mathbb{E}_{q}[\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)]$$

$$= \mathbb{E}_{q}[\nabla_{\phi} \log q(\mathbf{Z}|\phi)(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \text{ (proof on next slide)}$$

- ullet Thus ELBO gradient can be written solely in terms of expectation of gradient of $\log q(\mathbf{Z}|\phi)$
 - Required gradients don't depend on the model. Only on the chosen variational distribution
 - That's why this approach is called "black-box"

Black-box Variational Inference (BBVI)

- Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
- Uses the following identity for the ELBO's derivative

$$\nabla_{\phi} \mathcal{L}(q) = \nabla_{\phi} \mathbb{E}_{q}[\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)]$$

$$= \mathbb{E}_{q}[\nabla_{\phi} \log q(\mathbf{Z}|\phi)(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \text{ (proof on next slide)}$$

- ullet Thus ELBO gradient can be written solely in terms of expectation of gradient of $\log q(\mathbf{Z}|\phi)$
 - Required gradients don't depend on the model. Only on the chosen variational distribution
 - That's why this approach is called "black-box"
- Given S samples $\{\mathbf{Z}_s\}_{s=1}^S$ from $q(\mathbf{Z}|\phi)$, we can get (noisy) gradient $\nabla_{\phi}\mathcal{L}(q)$ as follows

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

Black-box Variational Inference (BBVI)

- Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
- Uses the following identity for the ELBO's derivative

$$\nabla_{\phi} \mathcal{L}(q) = \nabla_{\phi} \mathbb{E}_{q}[\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)]$$

$$= \mathbb{E}_{q}[\nabla_{\phi} \log q(\mathbf{Z}|\phi)(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] \text{ (proof on next slide)}$$

- Thus ELBO gradient can be written solely in terms of expectation of gradient of $\log q(\mathbf{Z}|\phi)$
 - Required gradients don't depend on the model. Only on the chosen variational distribution
 - That's why this approach is called "black-box"
- Given S samples $\{\mathbf{Z}_s\}_{s=1}^S$ from $q(\mathbf{Z}|\phi)$, we can get (noisy) gradient $\nabla_{\phi}\mathcal{L}(q)$ as follows

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

Above is also called the "score function" based gradient (also REINFORCE method)

$$abla_{\phi} \mathcal{L}(q) =
abla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$\nabla_{\phi} \mathcal{L}(q) = \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \qquad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem)}$$

$$\begin{split} \nabla_{\phi}\mathcal{L}(q) &= \nabla_{\phi}\int (\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ &= \int \nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{split}$$

$$\begin{split} \nabla_{\phi}\mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ &= \mathbb{E}_{q} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{split}$$

The ELBO gradient can be written as

$$\begin{split} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \\ &= \mathbb{E}_{q} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \end{split}$$

 $\bullet \ \, \mathsf{Note that} \,\, \mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right]$

The ELBO gradient can be written as

$$\begin{split} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \\ &= \mathbb{E}_{q} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \end{split}$$

 $\bullet \text{ Note that } \mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z}$

The ELBO gradient can be written as

$$\begin{array}{lcl} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\int(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ \\ & = & \int\nabla_{\phi}[(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} & (\nabla\text{ and }\int\text{ interchangeable; dominated convergence theorem}) \\ \\ & = & \int\nabla_{\phi}[(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi)+\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ \\ & = & \mathbb{E}_{q}[-\nabla_{\phi}\log q(\mathbf{Z}|\phi)]+\int\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{array}$$

• Note that $\mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[rac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}
ight] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z}$

$$\begin{array}{lcl} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\int(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ \\ & = & \int\nabla_{\phi}[(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} & (\nabla\text{ and }\int\text{ interchangeable; dominated convergence theorem}) \\ \\ & = & \int\nabla_{\phi}[(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi)+\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ \\ & = & \mathbb{E}_{q}[-\nabla_{\phi}\log q(\mathbf{Z}|\phi)]+\int\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log\rho(\mathbf{X},\mathbf{Z})-\log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{array}$$

$$\begin{array}{lll} \nabla_{\phi}\mathcal{L}(q) & = & \nabla_{\phi}\int(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)d\mathbf{Z} \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))q(\mathbf{Z}|\phi)]d\mathbf{Z} & (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ \\ & = & \int\nabla_{\phi}[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]q(\mathbf{Z}|\phi) + \nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \\ \\ & = & \mathbb{E}_{q}[-\nabla_{\phi}\log q(\mathbf{Z}|\phi)] + \int\nabla_{\phi}q(\mathbf{Z}|\phi)[(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]d\mathbf{Z} \end{array}$$

- ullet Also note that $abla_{\phi}q(\mathbf{Z}|\phi) =
 abla_{\phi}[\log q(\mathbf{Z}|\phi)]q(\mathbf{Z}|\phi)$

$$\begin{split} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \\ &= \mathbb{E}_{q} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \end{split}$$

- $\bullet \text{ Note that } \mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi 1 = 0$
- Also note that $\nabla_{\phi} q(\mathbf{Z}|\phi) = \nabla_{\phi} [\log q(\mathbf{Z}|\phi)] q(\mathbf{Z}|\phi)$, using which

$$\int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} = \int \nabla_{\phi} \log q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$\begin{split} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \\ &= \mathbb{E}_{q} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \end{split}$$

- Note that $\mathbb{E}_q[\nabla_\phi \log q(\mathbf{Z}|\phi)] = \mathbb{E}_q\left[\frac{\nabla_\phi q(\mathbf{Z}|\phi)}{q(\mathbf{Z}|\phi)}\right] = \int \nabla_\phi q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi \int q(\mathbf{Z}|\phi) d\mathbf{Z} = \nabla_\phi 1 = 0$
- Also note that $\nabla_{\phi} q(\mathbf{Z}|\phi) = \nabla_{\phi} [\log q(\mathbf{Z}|\phi)] q(\mathbf{Z}|\phi)$, using which

$$\int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} = \int \nabla_{\phi} \log q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$= \mathbb{E}_{q} [\nabla_{\phi} \log q(\mathbf{Z}|\phi) (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))]$$

The ELBO gradient can be written as

$$\begin{split} \nabla_{\phi} \mathcal{L}(q) &= \nabla_{\phi} \int (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi) d\mathbf{Z} \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi)) q(\mathbf{Z}|\phi)] d\mathbf{Z} \quad (\nabla \text{ and } \int \text{ interchangeable; dominated convergence theorem}) \\ &= \int \nabla_{\phi} [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) + \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \\ &= \mathbb{E}_{q} [-\nabla_{\phi} \log q(\mathbf{Z}|\phi)] + \int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} \end{split}$$

- Also note that $\nabla_{\phi} q(\mathbf{Z}|\phi) = \nabla_{\phi} [\log q(\mathbf{Z}|\phi)] q(\mathbf{Z}|\phi)$, using which

$$\int \nabla_{\phi} q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] d\mathbf{Z} = \int \nabla_{\phi} \log q(\mathbf{Z}|\phi) [(\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))] q(\mathbf{Z}|\phi) d\mathbf{Z}$$

$$= \mathbb{E}_{q} [\nabla_{\phi} \log q(\mathbf{Z}|\phi) (\log p(\mathbf{X}, \mathbf{Z}) - \log q(\mathbf{Z}|\phi))]$$

ullet Therefore $abla_{\phi}\mathcal{L}(q) = \mathbb{E}_q[
abla_{\phi}\log q(\mathbf{Z}|\phi)(\log p(\mathbf{X},\mathbf{Z}) - \log q(\mathbf{Z}|\phi))]$

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

• Enables applying VB inference for a wide variety of probabilistic models

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Can also work with small minibatches of data rather than full data

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Can also work with small minibatches of data rather than full data
- BBVI has very few requirements

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Can also work with small minibatches of data rather than full data
- BBVI has very few requirements
 - ullet Should be able to sample from $q(\mathbf{Z}|\phi)$

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{\mathcal{S}} \sum_{s=1}^{\mathcal{S}}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Can also work with small minibatches of data rather than full data
- BBVI has very few requirements
 - Should be able to sample from $q(\mathbf{Z}|\phi)$
 - Should be able to compute $\nabla_{\phi} \log q(\mathbf{Z}|\phi)$ (automatic differentiation methods exist!)

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{\mathcal{S}} \sum_{s=1}^{\mathcal{S}}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Can also work with small minibatches of data rather than full data
- BBVI has very few requirements
 - Should be able to sample from $q(\mathbf{Z}|\phi)$
 - Should be able to compute $\nabla_{\phi} \log q(\mathbf{Z}|\phi)$ (automatic differentiation methods exist!)
 - Should be able to evaluate p(X, Z) and $\log q(Z|\phi)$

$$abla_{\phi}\mathcal{L}(q) pprox rac{1}{\mathcal{S}} \sum_{s=1}^{\mathcal{S}}
abla_{\phi} \log q(\mathbf{Z}_{s}|\phi) (\log p(\mathbf{X},\mathbf{Z}_{s}) - \log q(\mathbf{Z}_{s}|\phi))$$

- Enables applying VB inference for a wide variety of probabilistic models
- Can also work with small minibatches of data rather than full data
- BBVI has very few requirements
 - ullet Should be able to sample from $q(\mathbf{Z}|\phi)$
 - Should be able to compute $\nabla_{\phi} \log q(\mathbf{Z}|\phi)$ (automatic differentiation methods exist!)
 - Should be able to evaluate p(X, Z) and $\log q(Z|\phi)$
- Some tricks needed to control the variance in the Monte Carlo estimate of the ELBO gradient (if
 interested in the details, please refer to the BBVI paper)

• Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)
- ullet In general, suppose we want to compute ELBO's gradient $abla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{X}, \mathbf{Z}) \log q_{\phi}(\mathbf{Z})]$

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)
- In general, suppose we want to compute ELBO's gradient $\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{X}, \mathbf{Z}) \log q_{\phi}(\mathbf{Z})]$
- Assume a deterministic transformation $\mathbf{Z} = g(\epsilon, \phi)$ with $\epsilon \sim p(\epsilon)$, and $p(\epsilon)$ doesn't depend on ϕ

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)
- In general, suppose we want to compute ELBO's gradient $\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{X}, \mathbf{Z}) \log q_{\phi}(\mathbf{Z})]$
- Assume a deterministic transformation $\mathbf{Z} = g(\epsilon, \phi)$ with $\epsilon \sim p(\epsilon)$, and $p(\epsilon)$ doesn't depend on ϕ
- With this reparametrization, the ELBO's gradient can be written as

$$abla_{\phi} \mathbb{E}_{p(\epsilon)}[\log p(\mathbf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))]$$

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)
- In general, suppose we want to compute ELBO's gradient $\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{X}, \mathbf{Z}) \log q_{\phi}(\mathbf{Z})]$
- Assume a deterministic transformation $\mathbf{Z} = g(\epsilon, \phi)$ with $\epsilon \sim p(\epsilon)$, and $p(\epsilon)$ doesn't depend on ϕ
- With this reparametrization, the ELBO's gradient can be written as

$$\nabla_{\phi} \mathbb{E}_{p(\epsilon)}[\log p(\mathbf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))] = \mathbb{E}_{p(\epsilon)} \nabla_{\phi}[\log p(\mathbf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))]$$

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)
- In general, suppose we want to compute ELBO's gradient $\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{X}, \mathbf{Z}) \log q_{\phi}(\mathbf{Z})]$
- Assume a deterministic transformation $\mathbf{Z} = g(\epsilon, \phi)$ with $\epsilon \sim p(\epsilon)$, and $p(\epsilon)$ doesn't depend on ϕ
- With this reparametrization, the ELBO's gradient can be written as

$$\nabla_{\phi} \mathbb{E}_{\rho(\epsilon)}[\log p(\mathbf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))] = \mathbb{E}_{\rho(\epsilon)} \nabla_{\phi}[\log p(\mathbf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))]$$

LHS true due to Law of Unconscious Statistician

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)
- In general, suppose we want to compute ELBO's gradient $\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{X}, \mathbf{Z}) \log q_{\phi}(\mathbf{Z})]$
- Assume a deterministic transformation $\mathbf{Z} = g(\epsilon, \phi)$ with $\epsilon \sim p(\epsilon)$, and $p(\epsilon)$ doesn't depend on ϕ
- With this reparametrization, the ELBO's gradient can be written as

$$\nabla_{\phi} \mathbb{E}_{\rho(\epsilon)}[\log p(\mathbf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))] = \mathbb{E}_{\rho(\epsilon)} \nabla_{\phi}[\log p(\mathbf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))]$$

- LHS true due to Law of Unconscious Statistician
- ullet Could interchange expect. and grad. on RHS since $p(\epsilon)$ doesn't depend on ϕ

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)
- ullet In general, suppose we want to compute ELBO's gradient $abla_{\phi}\mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{X},\mathbf{Z}) \log q_{\phi}(\mathbf{Z})]$
- Assume a deterministic transformation $\mathbf{Z} = g(\epsilon, \phi)$ with $\epsilon \sim p(\epsilon)$, and $p(\epsilon)$ doesn't depend on ϕ
- With this reparametrization, the ELBO's gradient can be written as

$$\nabla_{\phi} \mathbb{E}_{\rho(\epsilon)}[\log p(\mathsf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))] = \mathbb{E}_{\rho(\epsilon)} \nabla_{\phi}[\log p(\mathsf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))]$$

- LHS true due to Law of Unconscious Statistician
- ullet Could interchange expect. and grad. on RHS since $p(\epsilon)$ doesn't depend on ϕ
- Given S i.i.d. random samples $\{\epsilon_s\}_{s=1}^S$ from $p(\epsilon)$, we can compute a Monte-Carlo approx, so

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{X}, \mathbf{Z}) - \log q_{\phi}(\mathbf{Z})] \approx \frac{1}{S} \sum_{s=1}^{S} [\nabla_{\phi} \log p(\mathbf{X}, g(\epsilon_{s}, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon_{s}, \phi))]$$

- Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)
- In general, suppose we want to compute ELBO's gradient $\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{X}, \mathbf{Z}) \log q_{\phi}(\mathbf{Z})]$
- Assume a deterministic transformation $\mathbf{Z}=g(\epsilon,\phi)$ with $\epsilon\sim p(\epsilon)$, and $p(\epsilon)$ doesn't depend on ϕ
- With this reparametrization, the ELBO's gradient can be written as

$$\nabla_{\phi} \mathbb{E}_{\rho(\epsilon)}[\log p(\mathbf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))] = \mathbb{E}_{\rho(\epsilon)} \nabla_{\phi}[\log p(\mathbf{X}, g(\epsilon, \phi)) - \log q_{\phi}(g(\epsilon, \phi))]$$

- LHS true due to Law of Unconscious Statistician
- ullet Could interchange expect. and grad. on RHS since $p(\epsilon)$ doesn't depend on ϕ
- ullet Given S i.i.d. random samples $\{\epsilon_s\}_{s=1}^S$ from $p(\epsilon)$, we can compute a Monte-Carlo approx, so

$$abla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] pprox rac{1}{S} \sum_{s=1}^{S} [
abla_{\phi} \log p(\mathsf{X}, g(\epsilon_{s}, \phi)) -
abla_{\phi} \log q_{\phi}(g(\epsilon_{s}, \phi))]$$

• Such gradients are called pathwise gradients (we took a "path" from ϵ to **Z**)

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

• Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(w)]$ (due to the expectation being intractable)

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi}\mathbb{E}_q[f(w)]$. Let's use the reparametrization trick

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(w)]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi}\mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- ullet Reparametrize $oldsymbol{w}$ as $oldsymbol{w} = \mu + \mathbf{L} oldsymbol{v}$

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi} \mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- ullet Reparametrize $oldsymbol{w}$ as $oldsymbol{w} = \mu + oldsymbol{\mathsf{L}}oldsymbol{v}$ where $oldsymbol{\mathsf{L}} = \mathsf{chol}(oldsymbol{\Sigma})$ and $oldsymbol{v} \sim \mathcal{N}(0, oldsymbol{\mathsf{I}})$

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi} \mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- Reparametrize ${m w}$ as ${m w}=\mu+{m L}{m v}$ where ${m L}={\sf chol}(\Sigma)$ and ${m v}\sim \mathcal{N}(0,{m I})$, and write

$$abla_{\mu,\mathbf{L}} \mathbb{E}_{\mathcal{N}(oldsymbol{w}|\mu,oldsymbol{\Sigma})}[f(oldsymbol{w})]$$

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(w)]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi} \mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- ullet Reparametrize $m{w}$ as $m{w}=\mu+m{L}m{v}$ where $m{L}={
 m chol}(m{\Sigma})$ and $m{v}\sim\mathcal{N}(0,m{I})$, and write

$$abla_{\mu,\mathsf{L}} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\Sigma)}[f(\boldsymbol{w})] =
abla_{\mu,\mathsf{L}} \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathsf{I})}[f(\mu+\mathsf{L}\boldsymbol{v})]$$

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi}\mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- Reparametrize ${m w}$ as ${m w}=\mu+{m L}{m v}$ where ${m L}={\sf chol}(\Sigma)$ and ${m v}\sim \mathcal{N}(0,{m I})$, and write

$$\nabla_{\mu,\mathbf{L}} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] = \nabla_{\mu,\mathbf{L}} \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[f(\mu+\mathbf{L}\boldsymbol{v})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[\nabla_{\mu,\mathbf{L}}f(\mu+\mathbf{L}\boldsymbol{v})]$$

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi} \mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- ullet Reparametrize $m{w}$ as $m{w}=\mu+m{L}m{v}$ where $m{L}={
 m chol}(m{\Sigma})$ and $m{v}\sim\mathcal{N}(0,m{I})$, and write

$$\nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] = \nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[f(\mu+\mathsf{L}\boldsymbol{v})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[\nabla_{\mu,\mathsf{L}}f(\mu+\mathsf{L}\boldsymbol{v})]$$

ullet Now easy to take derivatives w.r.t. variational params μ , ${f L}$ using Monte Carlo sampling

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi} \mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- ullet Reparametrize $oldsymbol{w}$ as $oldsymbol{w}=\mu+oldsymbol{\mathsf{L}}oldsymbol{v}$ where $oldsymbol{\mathsf{L}}=\mathsf{chol}(oldsymbol{\Sigma})$ and $oldsymbol{v}\sim\mathcal{N}(0,oldsymbol{\mathsf{I}})$, and write

$$\nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] = \nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[f(\mu+\mathsf{L}\boldsymbol{v})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[\nabla_{\mu,\mathsf{L}}f(\mu+\mathsf{L}\boldsymbol{v})]$$

- ullet Now easy to take derivatives w.r.t. variational params μ , ${f L}$ using Monte Carlo sampling
- ullet In practice, even one random sample $oldsymbol{v}_s \sim \mathcal{N}(oldsymbol{v}|0,oldsymbol{\mathsf{I}})$ suffices*

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi} \mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- ullet Reparametrize $m{w}$ as $m{w}=\mu+m{L}m{v}$ where $m{L}={
 m chol}(m{\Sigma})$ and $m{v}\sim\mathcal{N}(0,m{I})$, and write

$$\nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] = \nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[f(\mu+\mathsf{L}\boldsymbol{v})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[\nabla_{\mu,\mathsf{L}}f(\mu+\mathsf{L}\boldsymbol{v})]$$

- ullet Now easy to take derivatives w.r.t. variational params μ , ${f L}$ using Monte Carlo sampling
- ullet In practice, even one random sample $oldsymbol{v}_s \sim \mathcal{N}(oldsymbol{v}|0, oldsymbol{I})$ suffices*. So the above gradients will be

$$\nabla_{\mu} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\boldsymbol{I})}[\nabla_{\mu} f(\mu + \boldsymbol{L}\boldsymbol{v})] \approx \nabla_{\mu} f(\mu + \boldsymbol{L}\boldsymbol{v}_s)$$

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi} \mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- ullet Reparametrize $oldsymbol{w}$ as $oldsymbol{w}=\mu+oldsymbol{\mathsf{L}}oldsymbol{v}$ where $oldsymbol{\mathsf{L}}=\mathsf{chol}(oldsymbol{\Sigma})$ and $oldsymbol{v}\sim\mathcal{N}(0,oldsymbol{\mathsf{I}})$, and write

$$\nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] = \nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[f(\mu+\mathsf{L}\boldsymbol{v})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[\nabla_{\mu,\mathsf{L}}f(\mu+\mathsf{L}\boldsymbol{v})]$$

- ullet Now easy to take derivatives w.r.t. variational params μ , ${f L}$ using Monte Carlo sampling
- ullet In practice, even one random sample $oldsymbol{v}_s \sim \mathcal{N}(oldsymbol{v}|0, oldsymbol{I})$ suffices*. So the above gradients will be

$$\begin{array}{lcl} \nabla_{\mu} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu},\boldsymbol{\Sigma})}[f(\boldsymbol{w})] & = & \mathbb{E}_{\mathcal{N}(\boldsymbol{\nu}|0,\mathbf{I})}[\nabla_{\mu}f(\boldsymbol{\mu}+\boldsymbol{\mathsf{L}}\boldsymbol{\nu})] \approx \nabla_{\mu}f(\boldsymbol{\mu}+\boldsymbol{\mathsf{L}}\boldsymbol{\nu}_s) \\ \nabla_{\mathsf{L}} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu},\boldsymbol{\Sigma})}[f(\boldsymbol{w})] & = & \mathbb{E}_{\mathcal{N}(\boldsymbol{\nu}|0,\mathbf{I})}[\nabla_{\mathsf{L}}f(\boldsymbol{\mu}+\boldsymbol{\mathsf{L}}\boldsymbol{\nu})] \approx \nabla_{\mathsf{L}}f(\boldsymbol{\mu}+\boldsymbol{\mathsf{L}}\boldsymbol{\nu}_s) \end{array}$$

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi} \mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- ullet Reparametrize $oldsymbol{w}$ as $oldsymbol{w}=\mu+oldsymbol{\mathsf{L}}oldsymbol{v}$ where $oldsymbol{\mathsf{L}}=\mathsf{chol}(oldsymbol{\Sigma})$ and $oldsymbol{v}\sim\mathcal{N}(0,oldsymbol{\mathsf{I}})$, and write

$$\nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] = \nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[f(\mu+\mathsf{L}\boldsymbol{v})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathbf{I})}[\nabla_{\mu,\mathsf{L}}f(\mu+\mathsf{L}\boldsymbol{v})]$$

- ullet Now easy to take derivatives w.r.t. variational params $\mu, {f L}$ using Monte Carlo sampling
- ullet In practice, even one random sample $oldsymbol{v}_s \sim \mathcal{N}(oldsymbol{v}|0, oldsymbol{I})$ suffices*. So the above gradients will be

$$\nabla_{\mu} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\Sigma)}[f(\boldsymbol{w})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,1)}[\nabla_{\mu}f(\mu+\boldsymbol{L}\boldsymbol{v})] \approx \nabla_{\mu}f(\mu+\boldsymbol{L}\boldsymbol{v}_s)
\nabla_{\mathbf{L}} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\Sigma)}[f(\boldsymbol{w})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,1)}[\nabla_{\mathbf{L}}f(\mu+\boldsymbol{L}\boldsymbol{v})] \approx \nabla_{\mathbf{L}}f(\mu+\boldsymbol{L}\boldsymbol{v}_s)$$

.. the above just requires being able to take derivatives of $f(\mathbf{w})$ w.r.t. \mathbf{w}

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

- Suppose our variational distribution is $q_{\phi}(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mu, \Sigma)$, so $\phi = \{\mu, \Sigma\}$
- Suppose our ELBO has a difficult term $\mathbb{E}_q[f(\mathbf{w})]$ (due to the expectation being intractable)
- We are actually interested in its gradient $\nabla_{\phi}\mathbb{E}_q[f(\mathbf{w})]$. Let's use the reparametrization trick
- ullet Reparametrize $m{w}$ as $m{w}=\mu+m{L}m{v}$ where $m{L}={
 m chol}(m{\Sigma})$ and $m{v}\sim\mathcal{N}(0,m{I})$, and write

$$\nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\boldsymbol{\Sigma})}[f(\boldsymbol{w})] = \nabla_{\mu,\mathsf{L}}\mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathsf{I})}[f(\mu+\mathsf{L}\boldsymbol{v})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,\mathsf{I})}[\nabla_{\mu,\mathsf{L}}f(\mu+\mathsf{L}\boldsymbol{v})]$$

- ullet Now easy to take derivatives w.r.t. variational params $\mu, {f L}$ using Monte Carlo sampling
- ullet In practice, even one random sample $oldsymbol{v}_s \sim \mathcal{N}(oldsymbol{v}|0, oldsymbol{I})$ suffices*. So the above gradients will be

$$\nabla_{\mu} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\Sigma)}[f(\boldsymbol{w})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,1)}[\nabla_{\mu}f(\mu+\boldsymbol{L}\boldsymbol{v})] \approx \nabla_{\mu}f(\mu+\boldsymbol{L}\boldsymbol{v}_s)
\nabla_{\mathbf{L}} \mathbb{E}_{\mathcal{N}(\boldsymbol{w}|\mu,\Sigma)}[f(\boldsymbol{w})] = \mathbb{E}_{\mathcal{N}(\boldsymbol{v}|0,1)}[\nabla_{\mathbf{L}}f(\mu+\boldsymbol{L}\boldsymbol{v})] \approx \nabla_{\mathbf{L}}f(\mu+\boldsymbol{L}\boldsymbol{v}_s)$$

- .. the above just requires being able to take derivatives of $f(\mathbf{w})$ w.r.t. \mathbf{w}
- Note: Std. reparam. trick assumes differentiability but recent work on removing this limitation

^{*} Autoencoding Variational Bayes - Kingma and Welling (2013)

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

[†] Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurnov et al, 2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)

• Standard Reparametrization Trick assumes the model to be differentiable

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

Note that this wasn't the case with BBVI.

[†] Categorical Reparameterization with Gumbel-Softmax (Jang et al., 2017), * The Generalized Reparameterization Gradient (Ruiz et al., 2016), # Implicit Reparameterization Gradients (Figurnov et al, 2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

- Note that this wasn't the case with BBVI
- ullet Thus rep. trick often isn't applicable, e.g., when **Z** is discrete (e.g., binary, categorical, etc)

[†] Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurnoy et al, 2018), © Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

- Note that this wasn't the case with BBVI
- Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)
 - Recent work on continuous approximation of discrete variables[†]

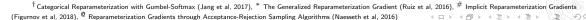
[†]Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurnov et al, 2018). Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

- Note that this wasn't the case with BBVI
- Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)
 - Recent work on continuous approximation of discrete variables[†]
- The transformation function g may be difficult to find for general distributions

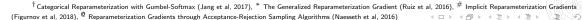
$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

- Note that this wasn't the case with BBVI
- Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)
 - Recent work on continuous approximation of discrete variables[†]
- ullet The transformation function g may be difficult to find for general distributions
 - Recent work on generalized reparametrizations*



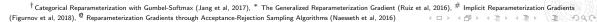
$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

- Note that this wasn't the case with BBVI
- Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)
 - Recent work on continuous approximation of discrete variables[†]
- The transformation function g may be difficult to find for general distributions
 - Recent work on generalized reparametrizations*
- Also, the transformation function g needs to be invertible (difficult/expensive)



$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

- Note that this wasn't the case with BBVI
- Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)
 - Recent work on continuous approximation of discrete variables[†]
- ullet The transformation function g may be difficult to find for general distributions
 - Recent work on generalized reparametrizations*
- ullet Also, the transformation function g needs to be invertible (difficult/expensive)
 - Recent work on implicit reparametrized gradients#



$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

- Note that this wasn't the case with BBVI
- Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)
 - Recent work on continuous approximation of discrete variables[†]
- ullet The transformation function g may be difficult to find for general distributions
 - Recent work on generalized reparametrizations*
- Also, the transformation function g needs to be invertible (difficult/expensive)
 - Recent work on implicit reparametrized gradients[#]
- Also assume that we can directly draw samples from $p(\epsilon)$. If we can't then rep. trick isn't valid[®]

[†]Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurnov et al, 2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathsf{Z})}[\log p(\mathsf{X}, \mathsf{Z}) - \log q_{\phi}(\mathsf{Z})] = \mathbb{E}_{p(\epsilon)}[\nabla_{\phi} \log p(\mathsf{X}, g(\epsilon, \phi)) - \nabla_{\phi} \log q_{\phi}(g(\epsilon, \phi))]$$

- Note that this wasn't the case with BBVI
- Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)
 - Recent work on continuous approximation of discrete variables[†]
- ullet The transformation function g may be difficult to find for general distributions
 - Recent work on generalized reparametrizations*
- Also, the transformation function g needs to be invertible (difficult/expensive)
 - Recent work on implicit reparametrized gradients[#]
- Also assume that we can directly draw samples from $p(\epsilon)$. If we can't then rep. trick isn't valid[®]
- Very active area of research in VI right now!

[†] Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurnov et al, 2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)

Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables

^{*} Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)

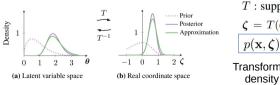
- Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables
- These derivatives is all what we need to optimize the function (in our case, ELBO)

^{*} Automatic Differentiation Variational Inference (Kucukelbir et al. 2017)

- Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables
- These derivatives is all what we need to optimize the function (in our case, ELBO)
- VI is also optimization. However, often the variables are constrained, e.g.,
 - Gamma's shape and scale can only be non-negative
 - Beta's parameters can only be non-negative
 - Dirichlet's probability parameter sums to one

^{*} Automatic Differentiation Variational Inference (Kucukelbir et al. 2017)

- Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables
- These derivatives is all what we need to optimize the function (in our case, ELBO)
- VI is also optimization. However, often the variables are constrained, e.g.,
 - Gamma's shape and scale can only be non-negative
 - Beta's parameters can only be non-negative
 - Dirichlet's probability parameter sums to one
- If we can somehow transform our distributions to unconstrained ones, we can use AD for VI



$$T: \operatorname{supp}(p(oldsymbol{ heta}))
ightarrow \mathbb{R}^K$$
 $oldsymbol{\zeta} = T(oldsymbol{ heta}) \Big[p\left(\mathbf{x}, \mathcal{T}^{-1}(oldsymbol{\zeta})
ight) \Big] \det \Big[J_{T^{-1}}(oldsymbol{\zeta}) \Big]$ Transformed Original Jacobian of

density

inverse of T

^{*} Automatic Differentiation Variational Inference (Kucukelbir et al. 2017)

ullet Many latent variable models have one latent variable $oldsymbol{z}_n$ for each data point $oldsymbol{x}_n$

- Many latent variable models have one latent variable z_n for each data point x_n
- ullet VI finds the optimal ϕ_n for each $q(oldsymbol{z}_n|\phi_n)$

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(\mathbf{z}_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(\mathbf{z}_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_* , finding ϕ_* requires iterative updates

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(\mathbf{z}_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_* , finding ϕ_* requires iterative updates
 - ullet Update local ϕ_* , update global λ , and repeat until convergence

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(\mathbf{z}_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_* , finding ϕ_* requires iterative updates
 - ullet Update local ϕ_* , update global λ , and repeat until convergence
- ullet Amortized VI : Learn an "inference network" or "recognition model" to directly get ϕ_n

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(z_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_* , finding ϕ_* requires iterative updates
 - Update local ϕ_* , update global λ , and repeat until convergence
- Amortized VI: Learn an "inference network" or "recognition model" to directly get ϕ_n , e.g.,
 - A neural network to directly map x_n to ϕ_n

$$q(\pmb{z}_n|\phi_n) pprox q(\pmb{z}_n|\hat{\phi}_n)$$
 where $\hat{\phi}_n = \mathsf{NN}_{\phi}(\pmb{x}_n)$

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(\mathbf{z}_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_* , finding ϕ_* requires iterative updates
 - Update local ϕ_* , update global λ , and repeat until convergence
- Amortized VI: Learn an "inference network" or "recognition model" to directly get ϕ_n , e.g.,
 - A neural network to directly map x_n to ϕ_n

$$q(\pmb{z}_n|\phi_n) pprox q(\pmb{z}_n|\hat{\phi}_n)$$
 where $\hat{\phi}_n = \mathsf{NN}_{\phi}(\pmb{x}_n)$

ullet The inference network params ϕ can be learned along with the other global vars

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(\mathbf{z}_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_* , finding ϕ_* requires iterative updates
 - ullet Update local ϕ_* , update global λ , and repeat until convergence
- Amortized VI: Learn an "inference network" or "recognition model" to directly get ϕ_n , e.g.,
 - ullet A neural network to directly map x_n to ϕ_n

$$q(\pmb{z}_n|\phi_n) pprox q(\pmb{z}_n|\hat{\phi}_n)$$
 where $\hat{\phi}_n = \mathsf{NN}_{\phi}(\pmb{x}_n)$

- ullet The inference network params ϕ can be learned along with the other global vars
- Popular in deep probabilistic models such as variational autoencoders, deep Gaussian Processes, etc

Structured Variational Inference

Structured Variational Inference

- Here "structured" may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions

- Here "structured" may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions
- To remove the mean-field assumption, various approaches exist

- Here "structured" may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions
- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)

- Here "structured" may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions
- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)
 - Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M "tied" via a shared prior

$$q(\mathbf{z}_1,\ldots,\mathbf{z}_M|\theta) = \int \left[\prod_{m=1}^M q(\mathbf{z}_m|\phi_m)\right] p(\boldsymbol{\phi}|\theta) d\boldsymbol{\phi}$$

- Here "structured" may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions
- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)
 - Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M "tied" via a shared prior

$$q(\mathbf{z}_1,\ldots,\mathbf{z}_M|\theta) = \int \left[\prod_{m=1}^M q(\mathbf{z}_m|\phi_m)\right] p(\boldsymbol{\phi}|\theta) d\boldsymbol{\phi}$$

• To learn more expressive variational approximations, various approaches exist

- Here "structured" may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions
- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)
 - Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M "tied" via a shared prior

$$q(\mathbf{z}_1,\ldots,\mathbf{z}_M|\theta) = \int \left[\prod_{m=1}^M q(\mathbf{z}_m|\phi_m)\right] p(\boldsymbol{\phi}|\theta) d\boldsymbol{\phi}$$

- To learn more expressive variational approximations, various approaches exist, e.g.,
 - \bullet Boosting or mixture of simpler distributions, e.g., $q(\mathbf{z}) = \sum_{c=1}^{\mathsf{C}} \rho_c q_c(\mathbf{z}|\phi_c)$

- Here "structured" may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions
- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)
 - Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M "tied" via a shared prior

$$q(\mathbf{z}_1,\ldots,\mathbf{z}_M| heta) = \int \left[\prod_{m=1}^M q(\mathbf{z}_m|\phi_m)\right] p(\boldsymbol{\phi}| heta) d\boldsymbol{\phi}$$

- To learn more expressive variational approximations, various approaches exist, e.g.,
 - Boosting or mixture of simpler distributions, e.g., $q(\mathbf{z}) = \sum_{c=1}^{C} \rho_c q_c(\mathbf{z}|\phi_c)$
 - Normalizing flows: Turn a simple q(z) into a complex one via series of invertible transformations

ullet VI minimizes $\mathit{KL}(q||p)$ but other divergences can be minimized as well

- ullet VI minimizes $\mathit{KL}(q||p)$ but other divergences can be minimized as well
- ullet A general form of divergence is Renyi's lpha-divergence defined as

$$D_{\alpha}^{R}(p(\mathbf{x})||q(\mathbf{x})) = \frac{1}{\alpha - 1}\log \int p(\mathbf{x})^{\alpha}q(\mathbf{x})^{1 - \alpha}d\mathbf{x}$$

- ullet VI minimizes $\mathit{KL}(q||p)$ but other divergences can be minimized as well
- \bullet A general form of divergence is Renyi's $\alpha\text{-divergence}$ defined as

$$D_{\alpha}^{R}(p(\mathbf{x})||q(\mathbf{x})) = \frac{1}{\alpha - 1}\log \int p(\mathbf{x})^{\alpha}q(\mathbf{x})^{1 - \alpha}d\mathbf{x}$$

ullet $\mathit{KL}(p||q)$ is a special case with lpha o 1 (can verify using L'Hopital rule of taking limits)

- ullet VI minimizes $\mathit{KL}(q||p)$ but other divergences can be minimized as well
- \bullet A general form of divergence is Renyi's $\alpha\text{-divergence}$ defined as

$$D_{\alpha}^{R}(p(\mathbf{x})||q(\mathbf{x})) = \frac{1}{\alpha - 1} \log \int p(\mathbf{x})^{\alpha} q(\mathbf{x})^{1 - \alpha} d\mathbf{x}$$

- ullet $\mathit{KL}(p||q)$ is a special case with lpha o 1 (can verify using L'Hopital rule of taking limits)
- An even more general form of divergece is *f*-Divergence

$$D_f(p(\mathbf{x})||q(\mathbf{x})) = \int q(\mathbf{x})f\left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right)d\mathbf{x}$$

- VI minimizes KL(q||p) but other divergences can be minimized as well
- \bullet A general form of divergence is Renyi's $\alpha\text{-divergence}$ defined as

$$D_{\alpha}^{R}(p(\mathbf{x})||q(\mathbf{x})) = \frac{1}{\alpha - 1} \log \int p(\mathbf{x})^{\alpha} q(\mathbf{x})^{1 - \alpha} d\mathbf{x}$$

- ullet $\mathit{KL}(p||q)$ is a special case with lpha o 1 (can verify using L'Hopital rule of taking limits)
- An even more general form of divergece is *f*-Divergence

$$D_f(p(\mathbf{x})||q(\mathbf{x})) = \int q(\mathbf{x})f\left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right)d\mathbf{x}$$

Many recent inference algorithms are based on minimizing such divergences

Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - ullet This + SVI gives excellent scalability

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability
- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability
- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success
- Note: Most of these ideas apply also to Variational EM

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability
- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success
- Note: Most of these ideas apply also to Variational EM
- Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g., Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability
- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success
- Note: Most of these ideas apply also to Variational EM
- Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g., Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models
- Still a very active area of research, especially for doing VI in complex models
 - Models with discrete latent variables
 - Reducing the variance in Monte-Carlo estimate of ELBO gradients

