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Recap: Variational Inference (V1)

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving
¢" = argmin KL[gy(Z)[[p(ZIX)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q€

\
\/\

True posterior

x: data
Z: unknowns
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Recap: Variational Inference (V1)

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving
¢" = argmin KL[gy(Z)[[p(ZIX)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q€

/o

\/\

True posterior

x: data
Z: unknowns

o Equivalent to finding g that maximizes the Evidence Lower Bound (ELBO)
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Recap: Variational Inference (V1)

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving
¢" = argmin KL[gy(Z)[[p(ZIX)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q€

\/\

True posterior

x: data
Z: unknowns

L(q) = L(¢) = Eqllogp(X,Z)] —Eqflog q(Z)] = Eylog p(X|Z)]-KL(q(Z)||p(Z))

o VI requires solving an optimization problem in general (but closed-form solution exists in some
special cases, e.g., mean-field VI in locally-conjugate models)
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o Mean-Field VI: Assume g(Z|¢) = Hfil qa(Zj|¢;) = HJN:1 qi(Z;)
«O0>» «Fr» «E» « 3 DA
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Recap: Mean-Field VI

o Mean-Field VI: Assume g(Z|¢) = HJAil q(Zj|¢;) = HJN:1 q;(Z))

o For the optimal g;, log q;(Z;) = Ei[In p(X, Z)] + const
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Recap: Mean-Field VI

o Mean-Field VI: Assume g(Z|¢) = HJAil q(Zj|¢;) = HJN:1 q;(Z))

o For the optimal g;, log g7 (Z;) = Ei[In p(X, Z)] + const, and thus

)
6 (2) = A P ) x exp(Eiuln (X, 2))

1)
[ exp(Eiylin p(X, Z)])dZ;
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Recap: Mean-Field VI

o Mean-Field VI: Assume g(Z|¢) = HJAil q(Zj|¢;) = HJN:1 q;(Z))

o For the optimal g;, log g7 (Z;) = Ei[In p(X, Z)] + const, and thus

)
6 (2) = A P ) x exp(Eiuln (X, 2))

1)
[ exp(Eiylin p(X, Z)])dZ;

o We can also write log g7 (Z;) = Ei[log p(Z;|X, Z_;)] + const
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Recap: Mean-Field VI

o Mean-Field VI: Assume g(Z|¢) = HJAil q(Zj|¢;) = HJN:1 q;(Z))

o For the optimal g;, log g7 (Z;) = Ei[In p(X, Z)] + const, and thus

o exp(Eiylinp(X,2)]) V)

)
q-*(Z-) _ exp(E,¢j[Inp(X7Z)
) J ]

1)
[ exp(Eiylin p(X, Z)])dZ;

o We can also write log g7 (Z;) = Ei[log p(Z;|X, Z_;)] + const

o For locally conjugate models, the CP p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.

P(ZIX,Z-)) = h(Zj)exp [n(X, Z-)) ' Z; = A(n(X, Z-,))]
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Recap: Mean-Field VI

o Mean-Field VI: Assume q(Z|¢) =[]}, a(Zjl¢;) = [T/-; 4/(Z)

For the optimal g;, log g7 (Z;) = Ei[In p(X, Z)] + const, and thus

©

)
q-*(Z-) _ exp(E,¢j[Inp(X7Z)
) J ]

- J exp(Eixin p(X, Z) o exp(Eiz[In p(X, Z)]) vj

1)
)dZ;

(+]

We can also write log 7 (Z;) = Ej[log p(Z;|X,Z_;)] + const

o For locally conjugate models, the CP p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.
P(ZIX,Z-)) = h(Zj)exp [n(X, Z-)) ' Z; = A(n(X, Z-,))]

o In such a case, each optimal mean-field distribution will be of the form

a7 (Z;) o h(Z;) exp {E#j[fl(x-, ij)]TZJ}
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Recap: Mean-Field VI

o Mean-Field VI: Assume q(Z|¢) =[]}, a(Zjl¢;) = [T/-; 4/(Z)

For the optimal g;, log g7 (Z;) = Ei[In p(X, Z)] + const, and thus

©

)
q-*(Z-) _ exp(E,¢j[Inp(X7Z)
) J ]

- J exp(Eixin p(X, Z) o exp(Eiz[In p(X, Z)]) vj

1)
)dZ;

(+]

We can also write log 7 (Z;) = Ej[log p(Z;|X,Z_;)] + const
o For locally conjugate models, the CP p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.
P(ZIX,Z-)) = h(Zj)exp [n(X, Z-)) ' Z; = A(n(X, Z-,))]
o In such a case, each optimal mean-field distribution will be of the form
6/ (2)) o h(Z;) exp [Eisln(X,Z-)] 2]
.. so its parameters ¢; = E;ij[n(X,Z_j)], i.e., expectation of the natural params of the CP
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Recap: VI for Models with Local and Global Variables

o Assuming independence, data X = {x1,...,xn}, and local and global unknowns Z, 3, their joint

p(X,Z,8) = p(B) [ [ p(xal2n, B)p(24B)

n=1
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Recap: VI for Models with Local and Global Variables

o Assuming independence, data X = {x1,...,xn}, and local and global unknowns Z, 3, their joint

N

p(X,Z,8) = p(B) [ [ p(xnlzn, B)p(2418) = p(B) [ | p(xn, 24 8)

n=1 n=1
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Recap: VI for Models with Local and Global Variables

o Assuming independence, data X = {x1,...,xn}, and local and global unknowns Z, 3, their joint
N N
p(X,Z,8) = p(B) [ [ p(xnlzn, B)p(2418) = p(B) [ | p(xn, 24 8)
n=1 n=1

o Assume all the distributions in the above to be exp-family distributions

P(xn 20|8) = h(xa, 22) exp | BT t(xa, 22) = A(B)] , P(Bler) = h(B) exp [ [8, ~A(B)] — ()]
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Recap: VI for Models with Local and Global Variables

o Assuming independence, data X = {x1,...,xn}, and local and global unknowns Z, 3, their joint
N N
p(X,Z,8) = p(B) [ [ p(xnlzn, B)p(2418) = p(B) [ | p(xn, 24 8)
n=1 n=1

o Assume all the distributions in the above to be exp-family distributions
P(x0241B) = h(xr, 22) exp [ BT t(xn,2:) = A(B)] . p(Blr) = h(B) exp [ [B, ~A(B)] - A(e)]
o Also assuming p(x,|z,) and p(z,) to be conjugate, CPs for z, and 3 are also exp-fam

p(zn|xn,B) o h(zn)exp [n(x,,,,B)Tzn]
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Recap: VI for Models with Local and Global Variables

o Assuming independence, data X = {x1,...,xn}, and local and global unknowns Z, 3, their joint
N N
p(X,Z,8) = p(B) [ [ p(xnlzn, B)p(2418) = p(B) [ | p(xn, 24 8)
n=1 n=1

o Assume all the distributions in the above to be exp-family distributions
P(x0241B) = h(xr, 22) exp [ BT t(xn,2:) = A(B)] . p(Blr) = h(B) exp [ [B, ~A(B)] - A(e)]
o Also assuming p(x,|z,) and p(z,) to be conjugate, CPs for z, and 3 are also exp-fam

p(zn|xn,B) o h(zn)exp [n(x,,,,B)Tzn]

p(BIX,Z) oc h(B)exp

[ + Z t(Xn, 2n), a2 + N] " [B, —A(IB)]}

n=1
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Recap: VI for Models with Local and Global Variables

o Assuming independence, data X = {x1,...,xn}, and local and global unknowns Z, 3, their joint

N

p(X,Z,8) = p(B prn\zn, p(z:18) = p(B) [ [ p(xn, z4B)

n=1
o Assume all the distributions in the above to be exp-family distributions
P(xn 20|8) = h(xa, 22) exp | BT t(xa, 22) = A(B)] , P(Bler) = h(B) exp [ [8, ~A(B)] — ()]

o Also assuming p(x,|z,) and p(z,) to be conjugate, CPs for z, and 3 are also exp-fam

p(zn|xn,B) o h(zn)exp [n(x,,,ﬂ)Tzn]

p(BIX,Z) oc h(B)exp

[ + Z t(Xn, 2n), a2 + N] " [B, —A(IB)]}

n=1

o Assuming q(3,Z) = q(B|)\) Hn 1 9(zn|®n), the optimal local and global var. params

¢n =Ex[n(xa, B)]  Vn
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Recap: VI for Models with Local and Global Variables

o Assuming independence, data X = {x1,...,xn}, and local and global unknowns Z, 3, their joint

N

p(X,Z,8) = p(B prn\zn, p(z:18) = p(B) [ [ p(xn, z4B)

n=1
o Assume all the distributions in the above to be exp-family distributions
P(xn 20|8) = h(xa, 22) exp | BT t(xa, 22) = A(B)] , P(Bler) = h(B) exp [ [8, ~A(B)] — ()]

o Also assuming p(x,|z,) and p(z,) to be conjugate, CPs for z, and 3 are also exp-fam

p(zn|xn,B) o h(zn)exp [n(x,,,ﬂ)Tzn]

p(BIX,Z) oc h(B)exp

[ + Z t(Xn, 2n), a2 + N] " [B, —A(IB)]}

n=1

o Assuming q(3,Z) = q(B|)\) Hn 1 9(zn|®n), the optimal local and global var. params
N T
¢n = Ex [n(xn, B)] Vn, and A= |1+ ZEO”[t(xm zp))],a2 + N| =Eu[@]
n=1
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Recap: VI for Models with Local and Global Variables

o Assuming independence, data X = {x1,...,xn}, and local and global unknowns Z, 3, their joint
N N
p(X,Z,8) = p(B) [ [ p(xnlzn, B)p(2418) = p(B) [ | p(xn, 24 8)
n=1 n=1

o Assume all the distributions in the above to be exp-family distributions
P(x0241B) = h(xr, 22) exp [ BT t(xn,2:) = A(B)] . p(Blr) = h(B) exp [ [B, ~A(B)] - A(e)]
o Also assuming p(x,|z,) and p(z,) to be conjugate, CPs for z, and 3 are also exp-fam

p(zn|xn,B) o h(zn)exp [n(x,,,ﬂ)Tzn]

p(BIX,Z) oc h(B)exp

[ + Z t(Xn, 2n), a2 + N] " [B, —A(IB)]}

n=1
o Assuming q(3,Z) = q(B|)\) H,'Y:l q(zn|¢n), the optimal local and global var. params
N T
o1+ Z Eg,[t(xn, zn)],c0 + N| = Eg[&]

n=1

o Note: Each update of global var. params requires waiting for all updates of local var. params

(z)n = Ex [n(xnﬁ)] Vn, and A\ =
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Advances in Variational Inference
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o SVI - Stochastic Variational Inference (we'll mainly focus on SVI for locally-conjugate models)



Plan

o SVI - Stochastic Variational Inference (we'll mainly focus on SVI for locally-conjugate models)
o VI/SVI for non-conjugate models

o Model-specific tricks to handle non-conjugacy
o Black-Box Variational Inference (BBVI)
o Reparametrization Trick based VI

o Automatic Differentiation VI (ADVI) via Unconstrained Optimization
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Plan

o SVI - Stochastic Variational Inference (we'll mainly focus on SVI for locally-conjugate models)

©

VI/SVI for non-conjugate models

©

Model-specific tricks to handle non-conjugacy

o Black-Box Variational Inference (BBVI)

©

Reparametrization Trick based VI

©

Automatic Differentiation VI (ADVI) via Unconstrained Optimization

Amortized Variational Inference

©

Structured Variational Inference

©

o Other divergences (recall that VI finds optimal g by minimizing the KL divergence KL(q||p))
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Stochastic Variational Inference
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T

#n = Ex [n(xn, B)] Vn and A= |:”(1 + Z Eonlt(xn, zn)], 00 + N =Egla(X, Z)]
n=1

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T

#n = Ex [n(xn, B)] Vn and A= |:”(1 + Z Eonlt(xn, zn)], 00 + N =Egla(X, Z)]
n=1

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models
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#n = Ex [n(xn, B)] Vn and A= |:”(1 + Z Eonlt(xn, zn)], 00 + N =Egla(X, Z)]
n=1

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)

o SVI works with minibatches of data as follows (assuming minibatch size = 1)

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T
¢n=Ex[n(x,,B)] Vn and = {m + D Eon[t(xn, za)l, a2 + N| = Eg[&(X, Z)]
n=1

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)

o SVI works with minibatches of data as follows (assuming minibatch size = 1)

@ Initialize A randomly as A9 and set current iteration number as i = 1

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T
¢n=Ex[n(x,,B)] Vn and = {m + D Eon[t(xn, za)l, a2 + N| = Eg[&(X, Z)]
n=1

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)

o SVI works with minibatches of data as follows (assuming minibatch size = 1)

@ Initialize A randomly as A9 and set current iteration number as i = 1

@ Set the learning rate (decaying as) as ¢; = (i + 1) ™" where x € (0.5, 1]

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables

o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T

o1+ > By, [t(xn, za)]l, 00 + N| = Eg[&(X, 2)]
n=1

én = Ex [n(xn, B)] Vn and A= {

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)
o SVI works with minibatches of data as follows (assuming minibatch size = 1)

@ Initialize A randomly as A9 and set current iteration number as i = 1

@ Set the learning rate (decaying as) as ¢; = (i + 1) ™" where x € (0.5, 1]

@ Choose a data point n randomly, i.e., n ~ Uniform(1,..., N)

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T

#n = Ex [n(xn, B)] Vn and A= |:”(1 + Z Eonlt(xn, zn)], 00 + N =Egla(X, Z)]
n=1

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)
o SVI works with minibatches of data as follows (assuming minibatch size = 1)

@ Initialize A randomly as A9 and set current iteration number as i = 1

@ Set the learning rate (decaying as) as ¢; = (i + 1) ™" where x € (0.5, 1]

@ Choose a data point n randomly, i.e., n ~ Uniform(1,..., N)

@ Compute local var. param ¢, for data point x, as ¢, = E, 1) [1(xn, B)]

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T

#n = Ex [n(xn, B)] Vn and A= |:”(1 + Z Eonlt(xn, zn)], 00 + N =Egla(X, Z)]
n=1

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)

o SVI works with minibatches of data as follows (assuming minibatch size = 1)

@ Initialize A randomly as A9 and set current iteration number as i = 1
@ Set the learning rate (decaying as) as ¢; = (i + 1) ™" where x € (0.5, 1]
@ Choose a data point n randomly, i.e., n ~ Uniform(1,..., N)

@ Compute local var. param ¢, for data point x, as ¢, = E, 1) [1(xn, B)]
® Update X as A = (1 — ¢)A07Y ¢,

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T

#n = Ex [n(xn, B)] Vn and A= |:”(1 + Z Eonlt(xn, zn)], 00 + N =Egla(X, Z)]
n=1

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)

o SVI works with minibatches of data as follows (assuming minibatch size = 1)

@ Initialize A randomly as A9 and set current iteration number as i = 1

@ Set the learning rate (decaying as) as ¢; = (i + 1) ™" where x € (0.5, 1]

@ Choose a data point n randomly, i.e., n ~ Uniform(1,..., N)

@ Compute local var. param ¢, for data point x, as ¢, = E, 1) [1(xn, B)]

® Update X as A1) = (1 — e)AU"Y 60, where A\, = [o1 + Eg, [t(xn, 2n)], a2 + 1] 7

T Stochastic Variational Inference (Hoffman et al, 2013)
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T

#n = Ex [n(xn, B)] Vn and A= |:”(1 + Z Eonlt(xn, zn)], 00 + N =Egla(X, Z)]
n=1

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)
o SVI works with minibatches of data as follows (assuming minibatch size = 1)
@ Initialize A randomly as A9 and set current iteration number as i = 1
@ Set the learning rate (decaying as) as ¢; = (i + 1) ™" where x € (0.5, 1]
@ Choose a data point n randomly, i.e., n ~ Uniform(1,..., N)
@ Compute local var. param ¢, for data point x, as ¢, = E, 1) [1(xn, B)]
® Update X as A7) = (1 — e)A"Y 60\, where A, = [ + Eg, [t(Xn, 20)], 2 + 1] = Eg, [&(xn, 24)]
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Stochastic Variational Inference (SVI)

o An “online” algorithm' to speed-up VI for LVMs with local and global variables
o We saw the mean-field VI updates (q(3,Z) = q(8|)) HQ’ZI q(z,|¢n)) for such models

N T

#n = Ex [n(xn, B)] Vn and A= |:”(1 + Z Eonlt(xn, zn)], 00 + N =Egla(X, Z)]
n=1

o SVI makes the global params A\ updates more efficient (note that A\ depends on all ¢,'s)

o SVI works with minibatches of data as follows (assuming minibatch size = 1)

@ Initialize A randomly as A9 and set current iteration number as i = 1

@ Set the learning rate (decaying as) as ¢; = (i + 1) ™" where x € (0.5, 1]

@ Choose a data point n randomly, i.e., n ~ Uniform(1,..., N)

@ Compute local var. param ¢, for data point x, as ¢, = E, 1) [1(xn, B)]

® Update X as A7) = (1 — e)A"Y 60\, where A, = [ + Eg, [t(Xn, 20)], 2 + 1] = Eg, [&(xn, 24)]
® Set i =i+ 1. If ELBO not converged, go to Step 2
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o SVI updates the global var params ) using stochastic optimization of the ELBOT
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What is SVI Doing?

o SVI updates the global var params ) using stochastic optimization of the ELBOT

o Instead of usual gradient of ELBO w.r.t. A, SVI uses the natural gradient
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o Instead of usual gradient of ELBO w.r.t. A, SVI uses the natural gradient

o Denoting the double derivative of the log-partition function of CP of 3 as A”
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o Denoting the double derivative of the log-partition function of CP of 3 as A”
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o Note: A”()) is cov. of suff-stats of CP of B and A”(A)™" is the Fisher information matrix
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Natural gradient: g(A\) = A"()\)_1 x VAELBO = E4[&(X,Z)] — A
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T Stochastic Variational Inference (Hoffman et al, 2013)
Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference: Scalability and Recent Advances



What is SVI Doing?

o SVI updates the global var params ) using stochastic optimization of the ELBOT
o Instead of usual gradient of ELBO w.r.t. A, SVI uses the natural gradient
o Denoting the double derivative of the log-partition function of CP of 3 as A”
Usual gradient: VA ELBO = A"(A)(E4[&(X,Z)] - ) (exercise)
Natural gradient: g(A\) = A"()\)_1 x VAELBO = E4[&(X,Z)] — A
o Note: A”()) is cov. of suff-stats of CP of B and A”(A)™" is the Fisher information matrix

o Using the natural gradient has some nice advantages

o Nat. gradient based updates of A have simple form + easy to compute (no need to compute A”(\))

AD =AY 4 g (M) oo
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What is SVI Doing?

o SVI updates the global var params ) using stochastic optimization of the ELBOT
o Instead of usual gradient of ELBO w.r.t. A, SVI uses the natural gradient
o Denoting the double derivative of the log-partition function of CP of 3 as A”
Usual gradient: VA ELBO = A"(A)(E4[&(X,Z)] - ) (exercise)
Natural gradient: g(A\) = A"()\)_1 x VAELBO = E4[&(X,Z)] — A
o Note: A”()) is cov. of suff-stats of CP of B and A”(A)™" is the Fisher information matrix
o Using the natural gradient has some nice advantages

o Nat. gradient based updates of A have simple form + easy to compute (no need to compute A”(\))

AD =AY o eg(W) ey = (1 — e)AT™D + eEg[&@(X,Z)]  (assuming full batch)

T Stochastic Variational Inference (Hoffman et al, 2013)
Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference: Scalability and Recent Advances



What is SVI Doing?

o SVI updates the global var params ) using stochastic optimization of the ELBOT
o Instead of usual gradient of ELBO w.r.t. A, SVI uses the natural gradient

o Denoting the double derivative of the log-partition function of CP of 3 as A”

Usual gradient: VA ELBO = A"(A)(E4[&(X,Z)] - ) (exercise)
Natural gradient: g(A\) = A"()\)_1 x VAELBO = E4[&(X,Z)] — A

o Note: A”()) is cov. of suff-stats of CP of B and A”(A)™" is the Fisher information matrix
o Using the natural gradient has some nice advantages

o Nat. gradient based updates of A have simple form + easy to compute (no need to compute A”(\))

AD =AY o eg(W) ey = (1 — e)AT™D + eEg[&@(X,Z)]  (assuming full batch)

o Natural gradients are more intuitive/meaningful: Euclidean distance isn't often meaningful when used
to compute distance between parameters of probability distributions, e.g., g(3|)\) and q(8|\")
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SVI: Some Comments

o Often operates on minibatches: For iteration i minibatch B;, update A\ as follows

Q 1

neB;
)\(i) = (1 — Ei)A(iil) + 6,'3\
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SVI: Some Comments

o Often operates on minibatches: For iteration i minibatch B;, update A\ as follows

Q 1

neB;
)\(i) = (1 — Ei)A(iil) + 6,'3\

o Decaying learning rate is necessary for convergence (need Y, ¢; = 0o and ), € < c0)

T Stochastic Variational Inference (Hoffman et al, 2013)
Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference: Scalability and Recent Advances



SVI: Some Comments

o Often operates on minibatches: For iteration i minibatch B;, update A\ as follows

Q 1

neB;
)\(i) = (1 — Ei)A(iil) + 6,'3\
o Decaying learning rate is necessary for convergence (need Y, ¢; = 0o and ), € < c0)

o SVI successfully used on many large-scale problems (document topic modeling, citation network
analysis, etc). Often has much faster convergence (and better results) as compared to batch VI

> nature m ki
|
2724
& Algorithm
2761 HoP
3 HDP-batch
B804
[
g I — e —— —r———
b s 10 2 % 5 10 20 30 510 2 %
Hours

SVI vs Batch VI on a nonparametric Bayesian Topic Model
(Hierarchical Dirichlet Process)
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SVI: Some Comments

o Often operates on minibatches: For iteration i minibatch B;, update A\ as follows

2 1

neB;
)\(i) = (1 — Ei)A(iil) + 6,'3\
o Decaying learning rate is necessary for convergence (need Y, ¢; = 0o and ), € < c0)

o SVI successfully used on many large-scale problems (document topic modeling, citation network
analysis, etc). Often has much faster convergence (and better results) as compared to batch VI

> nature m ki
|
2724
& Algorithm
276 HoP
3 HDP-batch
B80
[
g I — e —— —r———
b s 10 2 % 5 10 20 30 510 2 %
Hours

SVI vs Batch VI on a nonparametric Bayesian Topic Model
(Hierarchical Dirichlet Process)

o Learning rate (k parameter) and minibatch size is also important (see Hoffman et al for details)

T Stochastic Variational Inference (Hoffman et al, 2013)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference: Scalability and Recent Advances 10



VI for Non-conjugate Models
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Some Model-Specific Tricks

o ELBO L(q) = E4llog p(X, Z)] — Eq4[log g(Z)] requires computing expectations w.r.t. var. dist. g
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o ELBO L(q) = E4llog p(X, Z)] — Eq4[log g(Z)] requires computing expectations w.r.t. var. dist. g

o The ELBO and its derivatives can be difficult to compute for non-conjugate models
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Some Model-Specific Tricks

o ELBO L(q) = E4llog p(X, Z)] — Eq4[log g(Z)] requires computing expectations w.r.t. var. dist. g
o The ELBO and its derivatives can be difficult to compute for non-conjugate models

o A common approach is to replace each difficult terms by a tight lower bound
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Some Model-Specific Tricks

©

ELBO L(q) = Eq[log p(X, Z)] — E4[log g(Z)] requires computing expectations w.r.t. var. dist. g

The ELBO and its derivatives can be difficult to compute for non-conjugate models

©

o A common approach is to replace each difficult terms by a tight lower bound. Some examples:

o Assuming q(a, b) =[1; q(ai)q(b;), the expectation below can be replaced by a lower bound

Eq [Iog Z a;b,]
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Some Model-Specific Tricks

©

ELBO L(q) = Eq[log p(X, Z)] — E4[log g(Z)] requires computing expectations w.r.t. var. dist. g

The ELBO and its derivatives can be difficult to compute for non-conjugate models

©

o A common approach is to replace each difficult terms by a tight lower bound. Some examples:

o Assuming q(a, b) =[1; q(ai)q(b;), the expectation below can be replaced by a lower bound

Eq[logza,bi] =Eq |ogzpia;[‘3i] > E, Zpiloga;fi]

via Jensen’s inequality
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Some Model-Specific Tricks

ELBO L(q) = Eq[log p(X, Z)] — E4[log g(Z)] requires computing expectations w.r.t. var. dist. g

©

©

The ELBO and its derivatives can be difficult to compute for non-conjugate models
o A common approach is to replace each difficult terms by a tight lower bound. Some examples:

o Assuming q(a, b) =[1; q(ai)q(b;), the expectation below can be replaced by a lower bound

Eq [Iogz a;b,] =Eq Iogz pi a,'fi] Z pi Iog } Zp, qllog ai + log bi] — Zp, log pi

via Jensen’s inequality

where p; is a variable (depends on a; and b;) that we need to optimize
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The ELBO and its derivatives can be difficult to compute for non-conjugate models
o A common approach is to replace each difficult terms by a tight lower bound. Some examples:

o Assuming q(a, b) =[1; q(ai)q(b;), the expectation below can be replaced by a lower bound

Eq [Iogz a;b,] =Eq Iogz pi a,'fi] Z pi Iog } Zp, qllog ai + log bi] — Zp, log pi

via Jensen’s inequality

where p; is a variable (depends on a; and b;) that we need to optimize. Expectations above easy to compute
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Some Model-Specific Tricks
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ELBO L(q) = Eq[log p(X, Z)] — E4[log g(Z)] requires computing expectations w.r.t. var. dist. g

The ELBO and its derivatives can be difficult to compute for non-conjugate models

©

o A common approach is to replace each difficult terms by a tight lower bound. Some examples:

o Assuming q(a, b) =[1; q(ai)q(b;), the expectation below can be replaced by a lower bound

Eq [Iogz a;b,] =Eq Iogz pi a,'fi] Z pi Iog } Zp, qllog ai + log bi] — Zp, log pi

via Jensen’s inequality

where p; is a variable (depends on a; and b;) that we need to optimize. Expectations above easy to compute

©

For models with logistic likelihood, we use the following (trick by Jaakkola and Jordan, 2000)

Eq[log(1 + exp(—yow " x0))] > log o(£x) + Eq [1(ynw X — €0) — A(En) (W xox] W — )
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©

o A common approach is to replace each difficult terms by a tight lower bound. Some examples:

o Assuming q(a, b) =[1; q(ai)q(b;), the expectation below can be replaced by a lower bound

Eq [Iogz a;b,] =Eq Iogz pi a,'fi] Z pi Iog } Zp, qllog ai + log bi] — Zp, log pi

via Jensen’s inequality

where p; is a variable (depends on a; and b;) that we need to optimize. Expectations above easy to compute

©

For models with logistic likelihood, we use the following (trick by Jaakkola and Jordan, 2000)
1
~Eqllog(1-+ explyow X )] 2 08 0(61) + B | 30w 50 &) = A€W 057 w — €)

where £, is a variable to be optimized and A\(&,) = i[a(fn) —0.5]
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ELBO L(q) = Eq[log p(X, Z)] — E4[log g(Z)] requires computing expectations w.r.t. var. dist. g
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The ELBO and its derivatives can be difficult to compute for non-conjugate models
o A common approach is to replace each difficult terms by a tight lower bound. Some examples:

o Assuming q(a, b) =[1; q(ai)q(b;), the expectation below can be replaced by a lower bound

Eq [Iogz a;b,] =Eq Iogz pi a,'fi] Z pi Iog } Zp, qllog ai + log bi] — Zp, log pi

via Jensen’s inequality

where p; is a variable (depends on a; and b;) that we need to optimize. Expectations above easy to compute

For models with logistic likelihood, we use the following (trick by Jaakkola and Jordan, 2000)

©

Eq[log(1 + exp(—yow " x0))] > log o(£x) + Eq [1(ynw X — €0) — A(En) (W xox] W — )

where £, is a variable to be optimized and A\(&,) = [U(fn) 0.5] . Expectations above easy to compute

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference: Scalability and Recent Advances 12



Black-box Variational Inference (BBVI)

o Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo

*Black Box Variational Inference - Ranganath et al (2014)
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Black-box Variational Inference (BBVI)

o Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
o Uses the following identity for the ELBO's derivative

VoL(q) = VyEq[logp(X,Z) - logq(Z|¢)]

*Black Box Variational Inference - Ranganath et al (2014)
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Black-box Variational Inference (BBVI)

o Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
o Uses the following identity for the ELBO's derivative

VeL(q) = VsEqllogp(X,Z) — log q(Z|9)]
Eq[Vylog g(Z|¢)(log p(X, Z) — log q(Z|¢))] (proof on next slide)
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Black-box Variational Inference (BBVI)

o Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo

o Uses the following identity for the ELBO's derivative

VeL(q) = VsEqllogp(X,Z) — log q(Z|9)]
= E4[V,logq(Z|p)(log p(X,Z) — log q(Z|¢))] (proof on next slide)

o Thus ELBO gradient can be written solely in terms of expectation of gradient of log q(Z|¢)

o Required gradients don't depend on the model. Only on the chosen variational distribution

o That's why this approach is called “black-box”

o Given S samples {Z;}2 ; from q(Z|¢), we can get (noisy) gradient V4£(q) as follows

S
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Black-box Variational Inference (BBVI)

o Black-box Variational Inference (BBVI) approximates ELBO derivatives using Monte-Carlo
o Uses the following identity for the ELBO's derivative

VeL(q) = VsEqllogp(X,Z) — log q(Z|9)]
= E4[V,logq(Z|p)(log p(X,Z) — log q(Z|¢))] (proof on next slide)

o Thus ELBO gradient can be written solely in terms of expectation of gradient of log q(Z|¢)

o Required gradients don't depend on the model. Only on the chosen variational distribution

o That's why this approach is called “black-box”

o Given S samples {Z;}2 ; from q(Z|¢), we can get (noisy) gradient V4£(q) as follows

S
VoLla) ® ¢ 3 Vs log a(Zelo)log p(X, Z2) ~ log a(Z:|6))

s=1

o Above is also called the “score function” based gradient (also REINFORCE method)

*Black Box Variational Inference - Ranganath et al (2014)
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o The ELBO gradient can be written as
Votla) = Ve [(ogp(X.2) - loga(Zlé)a(2|s)dz
«4O0>» «F>r «E» «E)» = DA
Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) ~ Variational Inference: Scalability and Recent Advances 14



Proof of BBVI Identity

o The ELBO gradient can be written as

VoL@ = Vo [(ogp(X.2) - log q(Zé))a(Zl0)dZ

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK)

/Vd)[(log p(X,Z) — log q(Z|$))a(Z|¢)]dZ (V and / interchangeable; dominated convergence theorem)
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Benefits of BBVI

o Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

S
VuL(q %Z o log q(Zs|¢)(log p(X, Zs) — log q(Zs|$))
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s=1

o Enables applying VB inference for a wide variety of probabilistic models
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Benefits of BBVI

©

©

Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations
s
1
VoL(a) % 5 Y Vologa(Zs|o)(log p(X, Zs) — log 4(Zs|%))
s=1

Enables applying VB inference for a wide variety of probabilistic models
Can also work with small minibatches of data rather than full data

BBVI has very few requirements
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Benefits of BBVI

o Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

S
VoLla) ® ¢ 3 Vs loga(Zelo)log p(X, Z2) ~ log a(Z:6))

©

Enables applying VB inference for a wide variety of probabilistic models

o Can also work with small minibatches of data rather than full data

©

BBVI has very few requirements

o Should be able to sample from q(Z|¢)
o Should be able to compute V4 log q(Z|¢$) (automatic differentiation methods exist!)
o Should be able to evaluate p(X, Z) and log q(Z|¢)

o Some tricks needed to control the variance in the Monte Carlo estimate of the ELBO gradient (if
interested in the details, please refer to the BBVI paper)
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Reparametrization Trick

o Another Monte-Carlo approx. of ELBO grad (with often lower variance than BBVI based grad)

* Autoencoding Variational Bayes - Kingma and Welling (2013)
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o Such gradients are called pathwise gradients (we took a “path” from € to Z)
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Suppose our variational distribution is gs(w) = N (w|u, X), so ¢ = {p, X}
o Suppose our ELBO has a difficult term E4[f(w)] (due to the expectation being intractable)

o We are actually interested in its gradient V4Eq[f(w)]. Let's use the reparametrization trick
o Reparametrize w as w = 1 + Lv where L = chol(X) and v ~ N(0, 1), and write
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o In practice, even one random sample v, ~ A/(v|0,1) suffices*. So the above gradients will be
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ViEnwlwn)lf(W)] = Enxwon[Vif(e+Lv)] = Vif(u+ Lvs)

.. the above just requires being able to take derivatives of f(w) w.r.t. w

o Note: Std. reparam. trick assumes differentiability but recent work on removing this limitation
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Reparametrization Trick: Some Comments

o Standard Reparametrization Trick assumes the model to be differentiable

VoEq,z)llog p(X, Z) — log g4(Z)] = Ep)[ Vs log p(X, g(c, ¢)) — Vi log qs(g (e, ¢))]

TCategcrical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients
(Figurnov et al, 2018), e Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)
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Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary, categorical, etc)
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o Recent work on continuous approximation of discrete variables’

o The transformation function g may be difficult to find for general distributions
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Also, the transformation function g needs to be invertible (difficult/expensive)

o Recent work on implicit reparametrized gradients”

o Also assume that we can directly draw samples from p(e). If we can't then rep. trick isn't valid®

o Very active area of research in VI right now!
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o Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables
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Automatic Differentiation Variational Inference (ADVI)

o Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables
o These derivatives is all what we need to optimize the function (in our case, ELBO)
o Vlis also optimization. However, often the variables are constrained, e.g.,

o Gamma's shape and scale can only be non-negative

o Beta’'s parameters can only be non-negative

o Dirichlet’s probability parameter sums to one

o If we can somehow transform our distributions to unconstrained ones, we can use AD for VI

T : supp(p(6)) — R¥

T Prior
é‘ — Posterior ‘ C — T(a)
é 1 -1 1 Approximation : )
: p(x,Q)=lp (x, T71(¢)) | det Jp1(C)|
= T 2 ¢ o i
6 1 = 8 L8 1 2k Transformed ~ Original Jacobian of
(a) Latent variable space (b) Real coordinate space denSity density inverse of T

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK)

* Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)
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Amortized Variational Inference
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Also slow at test time: Given a new x,, finding ¢, requires iterative updates

o Update local ¢., update global A, and repeat until convergence

Amortized VI : Learn an “inference network” or “recognition model” to directly get ¢,

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference: Scalability and Recent Advances

21



Amortized Variational Inference

(]

©

©

©

Many latent variable models have one latent variable z, for each data point x,
VI finds the optimal ¢, for each g(z,|¢,)
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o Update local ¢., update global A, and repeat until convergence
Amortized VI : Learn an “inference network” or “recognition model” to directly get ¢,, e.g.,

o A neural network to directly map x, to ¢,

q(2alén) ~ (24|n) where &, = NNy(xn)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference: Scalability and Recent Advances

21



Amortized Variational Inference

(]

©

©

©

(+]

Many latent variable models have one latent variable z, for each data point x,
VI finds the optimal ¢, for each g(z,|¢,)
This can be expensive for large datasets (a similar issue which motivated SVI)

Also slow at test time: Given a new x,, finding ¢, requires iterative updates

o Update local ¢., update global A, and repeat until convergence
Amortized VI : Learn an “inference network” or “recognition model” to directly get ¢,, e.g.,

o A neural network to directly map x, to ¢,
(zal$n) ~ q(za|én) where  Gp = NNy (xn)

The inference network params ¢ can be learned along with the other global vars
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Many latent variable models have one latent variable z, for each data point x,
VI finds the optimal ¢, for each g(z,|¢,)
This can be expensive for large datasets (a similar issue which motivated SVI)

Also slow at test time: Given a new x,, finding ¢, requires iterative updates

o Update local ¢., update global A, and repeat until convergence
Amortized VI : Learn an “inference network” or “recognition model” to directly get ¢,, e.g.,

o A neural network to directly map x, to ¢,
(zal$n) ~ q(za|én) where  Gp = NNy (xn)

The inference network params ¢ can be learned along with the other global vars

Popular in deep probabilistic models such as variational autoencoders, deep Gaussian Processes, etc
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Structured Variational Inference
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Structured Variational Inference
o Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,

o Removing the independence assumption of mean-field VI

o Learning more complex forms variational distributions
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o Hierarchical VI (Ranganath et al, 2016): Variational params ¢1,...,¢u “tied” via a shared prior

alzr, .. zul6) = | [H q(zm¢m)] p($16)deb

o To learn more expressive variational approximations, various approaches exist, e.g.,

o Boosting or mixture of simpler distributions, e.g., q(z) = Zle pcqc(z|pc)
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Structured Variational Inference

o Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,

o Removing the independence assumption of mean-field VI

o Learning more complex forms variational distributions
o To remove the mean-field assumption, various approaches exist

o Structured mean-field (Saul et al, 1996)

o Hierarchical VI (Ranganath et al, 2016): Variational params ¢1,...,¢u “tied” via a shared prior

alzr, .. zul6) = | [H q(zm¢m)] p($16)deb

o To learn more expressive variational approximations, various approaches exist, e.g.,

o Boosting or mixture of simpler distributions, e.g., q(z) = Zle pcqc(z|pc)

o Normalizing flows:" Turn a simple g(z) into a complex one via series of invertible transformations
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Other Divergence Measures
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Other Divergence Measures

o VI minimizes KL(q||p) but other divergences can be minimized as well
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Other Divergence Measures
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o A general form of divergence is Renyi's a-divergence defined as
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o KL(pl||q) is a special case with o — 1 (can verify using L'Hopital rule of taking limits)
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o A general form of divergence is Renyi's a-divergence defined as

DE(p(x)lla(x)) = = log [ plx)"a(x)'

o KL(pl||q) is a special case with o — 1 (can verify using L'Hopital rule of taking limits)
o An even more general form of divergece is f-Divergence

Drlp(lla(x)) = [ a(o)f <5§3> ix
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Other Divergence Measures
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VI minimizes KL(q||p) but other divergences can be minimized as well

A general form of divergence is Renyi's a-divergence defined as

1 —a
DE(p(x)lla(x)) = = log [ plx)"a(x)'
KL(p||q) is a special case with e — 1 (can verify using L'Hopital rule of taking limits)

An even more general form of divergece is f-Divergence

Drlp(lla(x)) = [ a(o)f <5§3> ix

Many recent inference algorithms are based on minimizing such divergences
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Variational Inference: Some Comments

o Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
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o Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
o This + SVI gives excellent scalability

o Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success

o Note: Most of these ideas apply also to Variational EM

o Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g.,
Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models
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Variational Inference: Some Comments

©

Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference

o Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
o This + SVI gives excellent scalability

o Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success

o Note: Most of these ideas apply also to Variational EM

o Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g.,
Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models

o Still a very active area of research, especially for doing VI in complex models

o Models with discrete latent variables

o Reducing the variance in Monte-Carlo estimate of ELBO gradients
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