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Announcements

Mid-sem exam on Monday, Feb 18, 8:00am-10:00am (L-19, ERES)

Syllabus up to today’s lecture (but mostly the basics of VI)

Questions will be a mix of MCQ, fill-in-the-blanks, short answer, and not-so-short answer

Answer must be written on the question paper itself in provided space

Advised to use pencil and eraser (but write prominently)

The exam will be closed book and closed notes/slides

Necessary formulae/results etc will be provided in the question paper itself

A revision-cum-QA session on Friday (or Saturday?) 6:30pm in KD-101
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Recap: VI and Mean-Field VI

Approximate an intractable posterior p(Z|X) by another distribution q(Z|φ)

by solving

φ∗ = arg min
φ

KL[qφ(Z)||p(Z|X)] or equivalently q∗(Z) = arg min
q∈Q

KL[q(Z)||p(Z|X)]

Equivalent to finding q that maximizes the Evidence Lower Bound (ELBO)

L(q) = L(φ) = Eq[log p(X,Z)]− Eq[log q(Z)]

= Eq[log p(X|Z)]−KL(q(Z)||p(Z))

Can further simplify using a mean-field assumption on q: q(Z|φ) =
∏M

j=1 q(Zj |φj)

For the optimal qj , log q∗j (Zj) = Ei 6=j [ln p(X,Z)] + const, and thus

q∗j (Zj) =
exp(Ei 6=j [ln p(X,Z)])∫

exp(Ei 6=j [ln p(X,Z)])dZj
∝ exp(Ei 6=j [ln p(X,Z)]) ∀j

Mean-field VI updates the qj ’s in a cyclic manner, like ALT-OPT, Gibbs sampling, etc
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Mean-Field VI: A Very Simple Example

Consider data X = {x1, . . . , xN} from a 1-D Gaussian N (x |µ, τ−1) with mean µ, precision τ

Assume the following normal-gamma prior on µ and τ

p(µ|τ) = N (µ|µ0, (λ0τ)−1) p(τ) = Gamma(τ |a0, b0)

Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

Let’s try mean-field VI nevertheless to illustrate the idea

With mean-field assumption on the variational posterior q(µ, τ) = qµ(µ)qτ (τ)

log q∗µ(µ) = Eqτ [log p(X, µ, τ)] + const

log q∗τ (τ) = Eqµ [log p(X, µ, τ)] + const

In this example, the log-joint log p(X, µ, τ) = log p(X|µ, τ) + log p(µ|τ) + log p(τ). Therefore

log q∗µ(µ) = Eqτ [log p(X|µ, τ) + log p(µ|τ)] + const (only keeping terms that involve µ)

log q∗τ (τ) = Eqµ [log p(X|µ, τ) + log p(µ|τ) + log p(τ)] + const
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Mean-Field VI: A Very Simple Example (Contd)

Substituting the expressions p(X|µ, τ) =
∏N

n=1 p(xn|µ, τ) and log p(µ|τ), we get

log q∗µ(µ) = Eqτ [log p(X|µ, τ) + log p(µ|τ)] + const

= −Eqτ [τ ]

2

{
N∑

n=1

(xn − µ)2 + λ0(µ− µ0)2

}
+ const

(Verify) The above is log of a Gaussian. Thus q∗µ(µ) = N (µ|µN , τN) with

µN =
λ0µ0 + Nx̄

λ0 + N
and λN = (λ0 + N)Eqτ [τ ]

Proceeding in a similar way (verify), we can show that q∗τ (τ) = Gamma(τ |aN , bN)

aN = a0 +
N + 1

2
and bN = b0 +

1

2
Eqµ

[
N∑

n=1

(xn − µ)2 + λ0(µ− µ0)2

]
Important: Updates of q∗µ(µ) and q∗τ (τ) depend on each-other (thus requires cyclic updates)
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Mean-Field VI: A Closer Look

Since log q∗j (Zj) = Ei 6=j [ln p(X,Z)] + const

= Ei 6=j [ln p(X,Zj ,Z−j)] + const, we can also write

log q∗j (Zj) = Ei 6=j [log p(Zj |X,Z−j)] + const

This is interesting: The form of optimal qj(Zj) will be the same as the conditional posterior of Zj

For locally conjugate models, p(Zj |X,Z−j) is easy to find, and usually an exp-fam dist.

p(Zj |X,Z−j) = h(Zj) exp
[
η(X,Z−j)

>Zj − A(η(X,Z−j))
]

where η() denotes the natural params of this exp-fam distribution (would depends on X and Z−j)

Using the above, we can rewrite the optimal variational distribution as follows

log q∗j (Zj) = Ei 6=j

[
log
(
h(Zj) exp

[
η(X,Z−j)

>Zj − A(η(X,Z−j))
])]

+ const

=⇒ q∗j (Zj) ∝ h(Zj) exp
[
Ei 6=j [η(X,Z−j)]>Zj

]
(verify)

So, in exp-fam case, getting q∗j (Zj) just requires expectation of nat. params. of cond. post. of Zj

Important/useful to keep these facts in mind (will use these later)
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This is interesting: The form of optimal qj(Zj) will be the same as the conditional posterior of Zj

For locally conjugate models, p(Zj |X,Z−j) is easy to find, and usually an exp-fam dist.

p(Zj |X,Z−j) = h(Zj) exp
[
η(X,Z−j)

>Zj − A(η(X,Z−j))
]

where η() denotes the natural params of this exp-fam distribution (would depends on X and Z−j)

Using the above, we can rewrite the optimal variational distribution as follows

log q∗j (Zj) = Ei 6=j

[
log
(
h(Zj) exp

[
η(X,Z−j)

>Zj − A(η(X,Z−j))
])]

+ const

=⇒ q∗j (Zj) ∝ h(Zj) exp
[
Ei 6=j [η(X,Z−j)]>Zj

]
(verify)

So, in exp-fam case, getting q∗j (Zj) just requires expectation of nat. params. of cond. post. of Zj

Important/useful to keep these facts in mind (will use these later)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Variational Inference (Contd) 6



Mean-Field VI: A Closer Look

Since log q∗j (Zj) = Ei 6=j [ln p(X,Z)] + const = Ei 6=j [ln p(X,Zj ,Z−j)] + const, we can also write

log q∗j (Zj) = Ei 6=j [log p(Zj |X,Z−j)] + const

This is interesting: The form of optimal qj(Zj) will be the same as the conditional posterior of Zj

For locally conjugate models, p(Zj |X,Z−j) is easy to find, and usually an exp-fam dist.

p(Zj |X,Z−j) = h(Zj) exp
[
η(X,Z−j)

>Zj − A(η(X,Z−j))
]

where η() denotes the natural params of this exp-fam distribution (would depends on X and Z−j)

Using the above, we can rewrite the optimal variational distribution as follows

log q∗j (Zj) = Ei 6=j

[
log
(
h(Zj) exp

[
η(X,Z−j)

>Zj − A(η(X,Z−j))
])]

+ const

=⇒ q∗j (Zj) ∝ h(Zj) exp
[
Ei 6=j [η(X,Z−j)]>Zj

]
(verify)

So, in exp-fam case, getting q∗j (Zj) just requires expectation of nat. params. of cond. post. of Zj

Important/useful to keep these facts in mind (will use these later)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Variational Inference (Contd) 6



VI for Models with Local and Global Variables

Many LVMs consists of local variables Z and global variables β (θ, φ above),

, e.g.,

GMM: Z = [z1, . . . , zN ] are cluster ids, β = {πk ,µk ,Σk , }Kk=1

PPCA: Z = [z1, . . . , zN ] are latent codes, β are params defining the “decoder” (zn to xn mapping)
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VI for Models with Local and Global Variables (Contd)

Assuming independence, the joint distribution of data X = {x1, . . . , xN} and unknowns Z,β

p(X,Z,β) = p(β)
N∏

n=1

p(xn|zn,β)p(zn|β)

= p(β)
N∏

n=1

p(xn, zn|β)

Assume the joint dist. of data xn and local var zn is an exp-fam dist with global params β

p(xn, zn|β) = h(xn, zn) exp
[
β>t(xn, zn)− A(β)

]
Assume a prior on global variables β, that is conjugate to the above exp-fam dist

p(β|α) = h(β) exp
[
α>[β,−A(β)]− A(α)

]
where α = [α1, α2]> are hyperparams of the prior p(β) and [β,−A(β)] is the suff-stats vector
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VI for Models with Local and Global Variables (Contd)

Let’s derive mean-field VI for such models

To do so, we need the conditional posterior of each local/global variable

Conditional posterior of global vars β, will be in the same family as their prior p(β|α)

p(β|X,Z) = p(β|α̂) where α̂ =

[
α1 +

N∑
n=1

t(xn, zn), α2 + N

]>
Conditional posterior of each local variable zn will be

p(zn|Z−n,X,β) = p(zn|xn,β) (assuming independence)

Assume the above CP to be an exp-fam dist (will usually be if p(xn|zn) and p(zn) are in exp-fam)

p(zn|xn,β) = h(zn) exp
[
η(xn,β)>zn − A(η(xn,β))

]
With the CPs for β and zn’s, deriving the mean-field VI updates for these is easy!
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VI for Models with Local and Global Variables (Contd)

Let’s assume our mean-field approximation to be of the form

q(β,Z) = q(β|λ)
N∏

n=1

q(zn|φn)

Also, here CPs are ex-fam, so optimal q’s depend on expected suff-stats of CP’s nat. params

The optimal variational dist. for local vars zn will be q(zn|φn) with

φn = Eλ [η(xn,β)] ∀n

The optimal variational dist. for global vars β will be q(β|λ) with

λ =

[
α1 +

N∑
n=1

Eφn [t(xn, zn)], α2 + N

]>
The mean-field VI algo iterates b/w estimating φn’s ∀n, and λ, until ELBO value converges

A potential bottleneck: Updating λ requires waiting for all φn’s to be updated (slow for large N)

But this can be handled by online VI (a.k.a. stochastic variational inference - SVI); akin to online EM

We will look at SVI (along with other advanced VI methods) after mid-sem
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VI by Taking ELBO Gradients

More general way of doing VI is by computing ELBO’s gradient and doing gradient ascent/descent

The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows

1 Assume q(Z) to be from some family of distributions with variational parameters φ

2 Write down the full ELBO expression (this will give us a function of variational params φ)

L(q) = L(φ) = Eq[log p(X,Z)]− Eq[log q(Z)]

=

∫
q(Z) log p(X|Z)dZ +

∫
q(Z) log p(Z)dZ−

∫
q(Z) log q(Z)dZ

3 Compute ELBO gradients, i.e., ∇φL(φ) and use gradient methods to find optimal φ

Note: Step 2 may be simplified due to the problem structure or assumptions on the form of q(Z)

i.i.d. observations simplify log p(X|Z); conditionally independent priors simplify log p(Z)

Locally-conjugate models

The mean-field assumption simplifies q(Z) as q(Z) =
∏M

i=1 qi (Zi )

Note that the last term reduces to sum of entropies of qi ’s (which usually has known forms)
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Posterior Predictive with VI Approximations

Given a VI approximation of the posterior, we can use it to approximate the posterior predictive

For example, for a K component GMM, suppose we use the following form of variational posterior

p(π, {µk ,Λk}Kk=1) = q∗(π)
K∏

k=1

q(µk ,Λk)

The mean-field VI updates will be as follows (PRML Sec 10.2)
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Posterior Predictive with VI Approximations

Given a new observation x̂ and past data X, the true posterior predictive for a GMM is

Given the variational approx. of posterior, the posterior predictive can be approximated as
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Some Properties of VB

Recall that VB is equivalent to finding q by minimizing KL(q||p)

KL(q||p) =

∫
q(Z) log

[
q(Z)

p(Z|X)

]
If the true posterior p(Z|X) is very small in some region then, to minimize KL(q||p), the approx. dist. q
will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB

Underestimates the variances of the true posterior

For multimodal posteriors, VB locks onto one of the modes

Figure: (Left) Zero-Forcing Property of VB, (Right) For multi-modal posterior, VB locks onto one of the models

Note: Some other inference methods, e.g., Expectation Propagation (EP) can avoid this behavior
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VI and Convergence

VI is guaranteed to converge but only to a local optima (just like EM)

Therefore proper initialization is important (just like EM)

Different initializations may lead to different optima

ELBO increases monotonically with iterations, so we can monitor the ELBO to assess convergence
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ELBO for Model Selection

Recall that ELBO is a lower bound on log of model evidence log p(X|m))

We can compute ELBO for each model m and then choose the one with largest value of ELBO

An Example: The ELBO plot for a GMM with different K values (number of components)

Note that unlike likelihood, ELBO doesn’t monotonically increase with K (penalizes large K )

Some criticism since we are using a lower-bound but works well in practice in many problems

Figure courtesy: PRML (Bishop, 2006)
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VI and Expectation Maximization (EM)

VB can be seen as a generalization of the EM algorithm

Unlike EM, in VI there is no distinction between parameters Θ and latent variables Z

VI treats all unknowns of the model as latent variables and calls them Z

Since there is no notion of “parameters”, VI is like EM without the “M step”

VI can be used within an EM algorithm if the E step is intractable

This is known as Variational EM algorithm
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VI: The Road Ahead

Moving beyond locally conjugate models

Moving beyond the mean-field assumption

More scalable variational inference

General-purpose VI (that doesn’t require model-specific derivations)

Posing VI as a general gradient based optimization problem

φnew = φold + η ×∇φ

[
Eqφ [log p(X,Z)]− Eqφ [log q(Z|φ)]

]
A lot of recent research on approximating the gradient of an expectation

We will look at these issues after mid-sem
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