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Announcements

o Mid-sem exam on Monday, Feb 18, 8:00am-10:00am (L-19, ERES)

o Syllabus up to today's lecture (but mostly the basics of VI)
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Announcements

o Mid-sem exam on Monday, Feb 18, 8:00am-10:00am (L-19, ERES)
o Syllabus up to today's lecture (but mostly the basics of VI)

o Questions will be a mix of MCQ), fill-in-the-blanks, short answer, and not-so-short answer
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Announcements

o Mid-sem exam on Monday, Feb 18, 8:00am-10:00am (L-19, ERES)
o Syllabus up to today's lecture (but mostly the basics of VI)
o Questions will be a mix of MCQ), fill-in-the-blanks, short answer, and not-so-short answer

o Answer must be written on the question paper itself in provided space
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Announcements

o Mid-sem exam on Monday, Feb 18, 8:00am-10:00am (L-19, ERES)

o Syllabus up to today's lecture (but mostly the basics of VI)

o Questions will be a mix of MCQ), fill-in-the-blanks, short answer, and not-so-short answer
o Answer must be written on the question paper itself in provided space

o Advised to use pencil and eraser (but write prominently)
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Announcements

o Mid-sem exam on Monday, Feb 18, 8:00am-10:00am (L-19, ERES)
o Syllabus up to today's lecture (but mostly the basics of VI)

Questions will be a mix of MCQ), fill-in-the-blanks, short answer, and not-so-short answer

©

o Answer must be written on the question paper itself in provided space

Advised to use pencil and eraser (but write prominently)

©

The exam will be closed book and closed notes/slides

©

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Contd)



Announcements

o Mid-sem exam on Monday, Feb 18, 8:00am-10:00am (L-19, ERES)
o Syllabus up to today's lecture (but mostly the basics of VI)

Questions will be a mix of MCQ), fill-in-the-blanks, short answer, and not-so-short answer

©

o Answer must be written on the question paper itself in provided space

Advised to use pencil and eraser (but write prominently)

©

The exam will be closed book and closed notes/slides

©

©

Necessary formulae/results etc will be provided in the question paper itself
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Announcements

o Mid-sem exam on Monday, Feb 18, 8:00am-10:00am (L-19, ERES)
o Syllabus up to today's lecture (but mostly the basics of VI)

Questions will be a mix of MCQ), fill-in-the-blanks, short answer, and not-so-short answer

©

o Answer must be written on the question paper itself in provided space

Advised to use pencil and eraser (but write prominently)

©

The exam will be closed book and closed notes/slides

©

©

Necessary formulae/results etc will be provided in the question paper itself

o A revision-cum-QA session on Friday (or Saturday?) 6:30pm in KD-101
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution q(Z|¢)
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving

¢ = argminKL{gy(Z)[|p(Z|X)]
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving

¢" = argmin KL[gy(Z)[|p(Z[X)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving
¢" = argmin KL[gy(Z)[|p(Z[X)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q

o Equivalent to finding g that maximizes the Evidence Lower Bound (ELBO)
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving
¢" = argmin KL[gy(Z)[|p(Z[X)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q
o Equivalent to finding g that maximizes the Evidence Lower Bound (ELBO)

L(q) = L(¢) = Eqllogp(X,Z)] - E4llog q(Z)]
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving
¢" = argmin KL[gy(Z)[|p(Z[X)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q
o Equivalent to finding g that maximizes the Evidence Lower Bound (ELBO)

L(q) = L(¢) = Eqllogp(X,Z)] - E4llog q(Z)]
Eq[log p(X|Z)]-KL(q(Z)||p(Z))
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving
¢" = argmin KL[gy(Z)[|p(Z[X)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q
o Equivalent to finding g that maximizes the Evidence Lower Bound (ELBO)

L(q) = L(¢) = Eqllogp(X,Z)] - E4llog q(Z)]
Eq[log p(X|Z)]-KL(q(Z)||p(Z))

o Can further simplify using a mean-field assumption on ¢: q(Z|¢) = Hj‘il q(Zj|¢;)
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving

¢" = argmin KL[gy(Z)[|p(Z[X)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q

©

Equivalent to finding g that maximizes the Evidence Lower Bound (ELBO)

L(q) = L(¢) = Eqllogp(X,Z)] - E4llog q(Z)]
Eq[log p(X|Z)]-KL(q(Z)||p(Z))

o Can further simplify using a mean-field assumption on ¢: q(Z|¢) = Hj‘il q(Zj|¢;)

(+]

For the optimal q;, log g/ (Z;) = Eix;[In p(X, Z)] + const

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Contd)



Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving
¢" = argmin KL[gy(Z)[|p(Z[X)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q
o Equivalent to finding g that maximizes the Evidence Lower Bound (ELBO)

L(q) = L(¢) = Eqllogp(X,Z)] - E4llog q(Z)]
Eq[log p(X|Z)]-KL(q(Z)||p(Z))

o Can further simplify using a mean-field assumption on ¢: q(Z|¢) = Hj‘il q(Zj|¢;)

o For the optimal g;, log q;(Z;) = Ei[In p(X, Z)] + const, and thus

ey exp(Eiglin p(X, Z)])
5% = feXP(Ef;Un p(X,Z)])dZ;
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving
¢" = argmin KL[gy(Z)[|p(Z[X)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q
o Equivalent to finding g that maximizes the Evidence Lower Bound (ELBO)

L(q) = L(¢) = Eqllogp(X,Z)] - E4llog q(Z)]
Eq[log p(X|Z)]-KL(q(Z)||p(Z))

o Can further simplify using a mean-field assumption on ¢: q(Z|¢) = Hj‘il q(Zj|¢;)

o For the optimal g;, log q;(Z;) = Ei[In p(X, Z)] + const, and thus
exp(E 4 lIn p(X, Z))

q (Zj) = Texp(Er{in p(X.Z)))dZ; = exp(Eig[inp(X,Z)]) VY
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Recap: VI and Mean-Field VI

o Approximate an intractable posterior p(Z|X) by another distribution g(Z|¢) by solving

¢" = argmin KL[gy(Z)[|p(Z[X)]  or equivalently  ¢*(Z) = arg min KL[q(Z)||p(Z|X)]
q

©

Equivalent to finding g that maximizes the Evidence Lower Bound (ELBO)

L(q) = L(¢) = Eqllogp(X,Z)] - E4llog q(Z)]
Eq[log p(X|Z)]-KL(q(Z)||p(Z))

o Can further simplify using a mean-field assumption on ¢: q(Z|¢) = Hj‘il q(Zj|¢;)

(+]

For the optimal q;, log g7 (Z;) = Eix[In p(X, Z)] + const, and thus

G (2) = e A (Bl p(X.2)) ¥

o Mean-field VI updates the g;'s in a cyclic manner, like ALT-OPT, Gibbs sampling, etc
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Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7
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Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7

o Assume the following normal-gamma prior on y and 7

p(ul7) = N (plpo, (ho7) ") p(7) = Gamma(7|ao, bo)
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Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7

o Assume the following normal-gamma prior on y and 7

p(ul7) = N (plpo, (ho7) ") p(7) = Gamma(7|ao, bo)

o Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Contd)



Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7

(+]

Assume the following normal-gamma prior on p and 7

p(ul7) = N (plpo, (ho7) ") p(7) = Gamma(7|ao, bo)

o Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

©

Let's try mean-field VI nevertheless to illustrate the idea
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Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7

(+]

Assume the following normal-gamma prior on p and 7

p(ul7) = N (plpo, (ho7) ") p(7) = Gamma(7|ao, bo)

o Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

©

Let's try mean-field VI nevertheless to illustrate the idea

o With mean-field assumption on the variational posterior q(1, 7) = q.(1)q-(7)

log g, (1) = Eq [logp(X,p,7)]+ const
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Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7

(+]

Assume the following normal-gamma prior on p and 7

p(ul7) = N (plpo, (ho7) ") p(7) = Gamma(7|ao, bo)

o Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

©

Let's try mean-field VI nevertheless to illustrate the idea

o With mean-field assumption on the variational posterior q(1, 7) = q.(1)q-(7)

log g, (1) = Eq [logp(X,p,7)]+ const
log g5 (7) Eq, [log p(X, p, 7)] + const
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Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7

(+]

Assume the following normal-gamma prior on p and 7

p(ul7) = N (plpo, (ho7) ") p(7) = Gamma(7|ao, bo)

o Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

©

Let's try mean-field VI nevertheless to illustrate the idea

o With mean-field assumption on the variational posterior q(1, 7) = q.(1)q-(7)

log g, (1) = Eq.[logp(X,p,7)] + const
|Og q: (T) = Equ [lOg p(X7 M, T)] + const

©

In this example, the log-joint log p(X, 1, 7) = log p(X|u, 7) + log p(1|7) + log p(7)
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Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7

(+]

Assume the following normal-gamma prior on p and 7

p(ul7) = N (plpo, (ho7) ") p(7) = Gamma(7|ao, bo)

o Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

©

Let's try mean-field VI nevertheless to illustrate the idea

o With mean-field assumption on the variational posterior q(1, 7) = q.(1)q-(7)

log g, (1) = Eq.[logp(X,p,7)] + const
|Og q: (T) = Equ [lOg p(X7 M, T)] + const

©

In this example, the log-joint log p(X, 1, 7) = log p(X|u, 7) + log p(p|7) + log p(7). Therefore

logg.(n) = Eq,[logp(X|p,T)+ logp(ulT)] + const
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Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7

(+]

Assume the following normal-gamma prior on p and 7

p(ul7) = N (plpo, (ho7) ") p(7) = Gamma(7|ao, bo)

o Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

©

Let's try mean-field VI nevertheless to illustrate the idea

o With mean-field assumption on the variational posterior q(1, 7) = q.(1)q-(7)

log g, (1) = Eq.[logp(X,p,7)] + const
|Og q: (T) = Equ [lOg p(X7 M, T)] + const

©

In this example, the log-joint log p(X, 1, 7) = log p(X|u, 7) + log p(p|7) + log p(7). Therefore

log g, (1) = Eq.[log p(X|p, ) + log p(p|7)] + const (only keeping terms that involve p)
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Mean-Field VI: A Very Simple Example

o Consider data X = {xi,...,xy} from a 1-D Gaussian N(x|u, 7~ !) with mean p, precision 7

(+]

Assume the following normal-gamma prior on p and 7

p(ul7) = N (plpo, (ho7) ") p(7) = Gamma(7|ao, bo)

o Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

©

Let's try mean-field VI nevertheless to illustrate the idea

o With mean-field assumption on the variational posterior q(1, 7) = q.(1)q-(7)

log g, (1) = Eq [logp(X,p,7)]+ const
loggr (1) = Eq,[logp(X, u,T)] + const
o In this example, the log-joint log p(X, i, 7) = log p(X|u, 7) + log p(|7) + log p(7). Therefore
log g, (1) = Eq.[log p(X|p, ) + log p(p|7)] + const (only keeping terms that involve p)
loggr (1) = Eq,[logp(X|u,7) + log p(u|7) + log p(7)] + const
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Mean-Field VI: A Very Simple Example (Contd)

o Substituting the expressions p(X|u, 7) = HQIZI P(xnlpt, 7) and log p(p|7), we get

log g;(n) = Eq,[logp(X|u, )+ log p(u|T)] + const
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Mean-Field VI: A Very Simple Example (Contd)

o Substituting the expressions p(X|u, 7) = HQIZI P(xnlpt, 7) and log p(p|7), we get

log g;(n) = Eq,[logp(X|u, )+ log p(u|T)] + const
Eqe.[r] [
= 3 {Z(Xn — 11)? + Xo(p — uo)z} + const
n=1
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Mean-Field VI: A Very Simple Example (Contd)

o Substituting the expressions p(X|u, 7) = HQIZI P(xnlpt, 7) and log p(p|7), we get

log g;(n) = Eq,[logp(X|u, )+ log p(u|T)] + const
Eqe.[r] [
= 3 {Z(Xn — 11)? + Xo(p — uo)z} + const
n=1

o (Verify) The above is log of a Gaussian
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Mean-Field VI: A Very Simple Example (Contd)

o Substituting the expressions p(X|u, 7) = HQIZI P(xnlpt, 7) and log p(p|7), we get

log g;(n) = Eq,[logp(X|u, )+ log p(u|T)] + const
N
E,. [T
- qu[ ] {Z(Xn — 11)? + Xo(p — uo)z} + const
n=1
o (Verify) The above is log of a Gaussian. Thus qj, (1) = N (1|pn, Tv) with
. Aopo + Nx
HN = X+ N
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Mean-Field VI: A Very Simple Example (Contd)

o Substituting the expressions p(X|u, 7) = HQIZI P(xnlpt, 7) and log p(p|7), we get

log g;(n) = Eq,[logp(X|u, )+ log p(u|T)] + const
Eqe.[r] [
= 3 {Z(Xn — 11)? + Xo(p — uo)z} + const
n=1

o (Verify) The above is log of a Gaussian. Thus qj, (1) = N (1|pn, Tv) with

. Aopo + Nx

N = ot N and )\N:()\o—f—N)EqT[T]
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Mean-Field VI: A Very Simple Example (Contd)

o Substituting the expressions p(X|u, 7) = HQIZI P(xnlpt, 7) and log p(p|7), we get

log g;(n) = Eq,[logp(X|u, )+ log p(u|T)] + const
Eqe.[r] [
= 3 {Z(Xn — 11)? + Xo(p — uo)z} + const
n=1

o (Verify) The above is log of a Gaussian. Thus qj, (1) = N (1|pn, Tv) with

. Aopo + Nx

N = ot N and )\N:()\o—f—N)EqT[T]

o Proceeding in a similar way (verify), we can show that ¢(7) = Gamma(7|ay, bn)

3N230+T
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Mean-Field VI: A Very Simple Example (Contd)

o Substituting the expressions p(X|u, 7) = HQIZI P(xnlpt, 7) and log p(p|7), we get

log g;(n) = Eq,[logp(X|u, )+ log p(u|T)] + const
Eqe.[r] [
= 3 {Z(Xn — 11)? + Xo(p — uo)z} + const
n=1

o (Verify) The above is log of a Gaussian. Thus qj, (1) = N (1|pn, Tv) with

. Aopo + Nx

N = ot N and )\N:()\o—f—N)EqT[T]

o Proceeding in a similar way (verify), we can show that ¢(7) = Gamma(7|ay, bn)

N
N+1 1
ay = ao + — and by = by + EE"“ LX;(Xn — )+ No(p — H0)2]

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Contd)



Mean-Field VI: A Very Simple Example (Contd)

o Substituting the expressions p(X|u, 7) = HQIZI P(xnlpt, 7) and log p(p|7), we get

log g;(n) = Eq,[logp(X|u, )+ log p(u|T)] + const
Eqe.[r] [
= 3 {Z(Xn — 11)? + Xo(p — uo)z} + const
n=1

o (Verify) The above is log of a Gaussian. Thus qj, (1) = N (1|pn, Tv) with

. Aopo + Nx

N = ot N and )\N:()\o—f—N)EqT[T]

o Proceeding in a similar way (verify), we can show that ¢(7) = Gamma(7|ay, bn)

N
N+1 1
ay = ao + — and by = by + EE"“ LX;(Xn — )+ No(p — H0)2]

o Important: Updates of g;, (1) and g;(7) depend on each-other (thus requires cyclic updates)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Contd)



o Since log g7 (Z;) = Eij[In p(X, Z)] + const
«O0>r «F>r «=H» «E» = DA
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Mean-Field VI: A Closer Look

o Since log g7 (Z;) = Ej[In p(X, Z)] + const = E,[In p(X, Z;, Z_;)] + const
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Mean-Field VI: A Closer Look

o Since log g7 (Z;) = Ej[In p(X, Z)] + const = E;[In p(X, Z;,Z_;)] + const, we can also write
log g7 (Z;) = Eijlog p(Zj|X, Z_;)] + const
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Mean-Field VI: A Closer Look

o Since log g7 (Z;) = Ej[In p(X, Z)] + const = E;[In p(X, Z;,Z_;)] + const, we can also write
log g7 (Z;) = Eijlog p(Zj|X, Z_;)] + const

o This is interesting: The form of optimal g;(Z;) will be the same as the conditional posterior of Z;
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Mean-Field VI: A Closer Look
o Since log g7 (Z;) = Ej[In p(X, Z)] + const = E;[In p(X, Z;,Z_;)] + const, we can also write
log g7 (Z;) = Eijlog p(Zj|X, Z_;)] + const
o This is interesting: The form of optimal g;(Z;) will be the same as the conditional posterior of Z;

o For locally conjugate models, p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.

PEZIXZo) = h(Z)exp [n(X,Z-)) Z; — A(n(X, Z-)))]
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Mean-Field VI: A Closer Look
o Since log g7 (Z;) = Ej[In p(X, Z)] + const = E;[In p(X, Z;,Z_;)] + const, we can also write
log qj (Z;) = Eiyjlog p(Zj|X, Z_;)] + const
o This is interesting: The form of optimal g;(Z;) will be the same as the conditional posterior of Z;

o For locally conjugate models, p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.
PEZIXZo) = h(Z)exp [n(X,Z-)) Z; — A(n(X, Z-)))]

where 7() denotes the natural params of this exp-fam distribution (would depends on X and Z_;)
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Mean-Field VI: A Closer Look

o Since log g7 (Z;) = Ej[In p(X, Z)] + const = E;[In p(X, Z;,Z_;)] + const, we can also write
log q; (Z;) = Eixj[log p(Z;|X,Z_;)] + const
o This is interesting: The form of optimal g;(Z;) will be the same as the conditional posterior of Z;
o For locally conjugate models, p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.
PEZIXZo) = h(Z)exp [n(X,Z-)) Z; — A(n(X, Z-)))]

where 7() denotes the natural params of this exp-fam distribution (would depends on X and Z_;)

o Using the above, we can rewrite the optimal variational distribution as follows

logqf(Z) = Eiy [Iog (h(Zj)exp [n(x,z,,-)sz — A(n(X, z,j))m + const
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Mean-Field VI: A Closer Look

o Since log g7 (Z;) = Ej[In p(X, Z)] + const = E;[In p(X, Z;,Z_;)] + const, we can also write
log g7 (Z;) = Eiyj[log p(Z;|X,Z_;)] 4 const
o This is interesting: The form of optimal g;(Z;) will be the same as the conditional posterior of Z;
o For locally conjugate models, p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.
PEZIXZo) = h(Z)exp [n(X,Z-)) Z; — A(n(X, Z-)))]

where 7() denotes the natural params of this exp-fam distribution (would depends on X and Z_;)

o Using the above, we can rewrite the optimal variational distribution as follows
l0g a; (Z)) = iy [log (h(Z;)exp [n(X,Z-)72Z; — A(n(X,Z-))] )| + const

— q/(Z)) o« h(Z))exp [Eiqéj[U(X,ij)]TZj} (verify)
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Mean-Field VI: A Closer Look

o Since log g7 (Z;) = Ej[In p(X, Z)] + const = E;[In p(X, Z;,Z_;)] + const, we can also write
log g7 (Z;) = Eijlog p(Zj|X, Z_;)] + const

©

This is interesting: The form of optimal g;(Z;) will be the same as the conditional posterior of Z;
o For locally conjugate models, p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.

PEZIXZo) = h(Z)exp [n(X,Z-)) Z; — A(n(X, Z-)))]

where 7() denotes the natural params of this exp-fam distribution (would depends on X and Z_;)

o Using the above, we can rewrite the optimal variational distribution as follows
l0g a; (Z)) = iy [log (h(Z;)exp [n(X,Z-)72Z; — A(n(X,Z-))] )| + const

— q/(Z)) o« h(Z))exp [Eiqéj[U(X,ij)]TZj} (verify)

(]

So, in exp-fam case, getting qj’-k(Zj) just requires expectation of nat. params. of cond. post. of Z;
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Mean-Field VI: A Closer Look

o Since log g7 (Z;) = Ej[In p(X, Z)] + const = E;[In p(X, Z;,Z_;)] + const, we can also write
log qj (Z;) = Eiyjlog p(Zj|X, Z_;)] + const

©

This is interesting: The form of optimal g;(Z;) will be the same as the conditional posterior of Z;
o For locally conjugate models, p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.
PEZIXZo) = h(Z)exp [n(X,Z-)) Z; — A(n(X, Z-)))]

where 7() denotes the natural params of this exp-fam distribution (would depends on X and Z_;)

o Using the above, we can rewrite the optimal variational distribution as follows
l0g a; (Z)) = iy [log (h(Z;)exp [n(X,Z-)72Z; — A(n(X,Z-))] )| + const

— q/(Z)) o« h(Z))exp [Eiqéj[U(X,ij)]TZj} (verify)

(]

So, in exp-fam case, getting qj’-k(Zj) just requires expectation of nat. params. of cond. post. of Z;

©

Important/useful to keep these facts in mind (will use these later)
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VI for Models with Local and Global Variables

Problem-specific Dtepzngsxon

(discrete or cqrwtinuous) (e‘g%,,pGaussian)

K T
PEIP) p(xiz,8)

" Latent N

o Many LVMs consists of local variables Z and global variables 3 (8, ¢ above),
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VI for Models with Local and Global Variables

Problem-specific Dtepzngsxon

(discrete or cqrwtinuous) (e‘g%,,pGaussian)

K T
PEIP) p(xiz,8)

" Latent N

o Many LVMs consists of local variables Z and global variables 3 (6, ¢ above),, e.g.,

o GMM: Z = [z1,..., zy] are cluster ids, 8 = {m«, iy, Tk, }os
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VI for Models with Local and Global Variables

Problem-specific Dtepzngsxon
(discrete or cqrwtinuous) (e‘g%,,pGaussian)
“p(zi®)

o Many LVMs consists of local variables Z and global variables 3 (6, ¢ above),, e.g.,

v\
p(xI2,6)

A
" Latent

o GMM: Z = [z1,..., zy] are cluster ids, 8 = {m«, iy, Tk, }os

o PPCA: Z = [z1,...,2zn] are latent codes, 3 are params defining the “decoder” (z, to x, mapping)
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VI for Models with Local and Global Variables (Contd)

Problem-specific D‘epgffxo”
(discrete or commuous) eq. Gausslan)
\

p(zI®) plxiz.8)

o Assuming independence, the joint distribution of data X = {xy,...,xy} and unknowns Z, 3

p(X,Z,8) = p(B Hp Xn|zn, B)p(24]8)
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VI for Models with Local and Global Variables (Contd)

Problem-specific D‘epgffxo”
(discrete or commuous) eq. Gausslan)

) p(x(z,8)
o Assuming independence, the joint distribution of data X = {xy,...,xy} and unknowns Z, 3

N
p(X,Z,8) = p(B Hp xn|zn, B)p(248) = p(B) [ [ p(xn, z4|8)
n=1
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VI for Models with Local and Global Variables (Contd)

Problem-specific D‘epgffxo”
(discrete or commuous) eq. Gausslan)
p(ZI"’) p(xlzye)

o Assuming independence, the joint distribution of data X = {xy,...,xy} and unknowns Z, 3
N

p(X,Z,8) = p(B Hp x| 20, B)p(20|8) = p(B) [ | p(xn, z4B)

n=1
o Assume the joint dist. of data x, and Iocal var z, is an exp-fam dist with global params 3

P(xn: Za|B) = h(xn. 22) exp [BT t(xn, 20) — A(B)]
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VI for Models with Local and Global Variables (Contd)

Problem-specific D‘epgffxo”
(discrete or commuous) eq. Gausslan)

} Yp(zio) p(x|z,e)
o Assuming independence, the joint distribution of data X = {xy,...,xy} and unknowns Z, 3
N
p(X,Z,8) = p(B HP xn|zn, B)P(24B) = p(B )HP(XmZn|/6)
n=1

o Assume the joint dist. of data x, and Iocal var z, is an exp-fam dist with global params 3
P(Xn:20lB) = h(xa, o) exp B t(xn, 20) — A(B)]

o Assume a prior on global variables 3, that is conjugate to the above exp-fam dist

p(Bler) = h(B) exp [ [B, ~A(B)] — Aex)]
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VI for Models with Local and Global Variables (Contd)

Problem-specific D‘epgffxo”
(discrete or commuous) eq. Gausslan)

) Yp(z1@) ;;(x|z,e)
o Assuming independence, the joint distribution of data X = {xy,...,xy} and unknowns Z, 3
N
p(X,Z,8) = p(B HP xn|zn, B)P(24B) = p(B )HP(XmZn|/6)
n=1

o Assume the joint dist. of data x, and Iocal var z, is an exp-fam dist with global params 3
P(xn: Za|B) = h(xn. 22) exp [BT t(xn, 20) — A(B)]
o Assume a prior on global variables 3, that is conjugate to the above exp-fam dist
p(Blar) = h(B)exp [T [B, ~A(B)] — Ala)]

where o = [, ] T are hyperparams of the prior p(3) and [3, —A(B)] is the suff-stats vector

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Contd)



VI for Models with Local and Global Variables (Contd)

o Let's derive mean-field VI for such models
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VI for Models with Local and Global Variables (Contd)

o Let's derive mean-field VI for such models

o To do so, we need the conditional posterior of each local/global variable
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VI for Models with Local and Global Variables (Contd)

o Let's derive mean-field VI for such models
o To do so, we need the conditional posterior of each local/global variable

o Conditional posterior of global vars 3, will be in the same family as their prior p(3|c)
N T
p(B|X,Z) = p(Bl&) where & = |1 + Z t(xn, 2zn), 2 + N

n=1
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VI for Models with Local and Global Variables (Contd)

Let's derive mean-field VI for such models

©

(]

To do so, we need the conditional posterior of each local/global variable

o Conditional posterior of global vars 3, will be in the same family as their prior p(3|c)
N T
p(B|X,Z) = p(Bl&) where & = |1 + Z t(xn, 2zn), 2 + N
n=1

©

Conditional posterior of each local variable z,, will be

p(znlZ-n, X, B) = p(z4|xn, B) (assuming independence)
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VI for Models with Local and Global Variables (Contd)

Let's derive mean-field VI for such models

©

(]

To do so, we need the conditional posterior of each local/global variable

Conditional posterior of global vars 3, will be in the same family as their prior p(8|a)
T

©

N
p(B|X,Z) = p(Bl&) where & = |1 + Z t(xn, 2zn), 2 + N

n=1

©

Conditional posterior of each local variable z,, will be

p(znlZ-n, X, B) = p(z4|xn, B) (assuming independence)

(+]

Assume the above CP to be an exp-fam dist
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VI for Models with Local and Global Variables (Contd)

Let's derive mean-field VI for such models

©

(]

To do so, we need the conditional posterior of each local/global variable

Conditional posterior of global vars 3, will be in the same family as their prior p(8|a)
T

©

N
p(B|X,Z) = p(Bl&) where & = |1 + Z t(xn, 2zn), 2 + N

n=1

©

Conditional posterior of each local variable z,, will be

p(znlZ-n, X, B) = p(z4|xn, B) (assuming independence)

(+]

Assume the above CP to be an exp-fam dist (will usually be if p(x,|z,) and p(z,) are in exp-fam)
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VI for Models with Local and Global Variables (Contd)

Let's derive mean-field VI for such models

©

(]

To do so, we need the conditional posterior of each local/global variable

o Conditional posterior of global vars 3, will be in the same family as their prior p(3|c)
N T
p(B|X,Z) = p(Bl&) where & = |1 + Z t(xn, 2zn), 2 + N
n=1

©

Conditional posterior of each local variable z,, will be

p(znlZ-n, X, B) = p(z4|xn, B) (assuming independence)

(+]

Assume the above CP to be an exp-fam dist (will usually be if p(x,|z,) and p(z,) are in exp-fam)

p(Zn|X,,,,6) - h(zn) exp {T](Xna/@)—rzn - A(’I](Xn,ﬁ))}
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VI for Models with Local and Global Variables (Contd)

Let's derive mean-field VI for such models

©

(]

To do so, we need the conditional posterior of each local/global variable

o Conditional posterior of global vars 3, will be in the same family as their prior p(3|c)
N T
p(B|X,Z) = p(Bl&) where & = |1 + Z t(xn, 2zn), 2 + N
n=1

©

Conditional posterior of each local variable z,, will be

p(znlZ-n, X, B) = p(z4|xn, B) (assuming independence)

(+]

Assume the above CP to be an exp-fam dist (will usually be if p(x,|z,) and p(z,) are in exp-fam)

P(zn|xn, B) = h(z,) exp {U(Xna/@)—rzn - A(’I](Xn,ﬁ))}

o With the CPs for 3 and z,’s, deriving the mean-field VI updates for these is easy!
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VI for Models with Local and Global Variables (Contd)

o Let's assume our mean-field approximation to be of the form

a(8,2) = a(BIN) [ [ a(znlen)

n=1
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VI for Models with Local and Global Variables (Contd)

o Let's assume our mean-field approximation to be of the form

a(8,2) = q(BIN) [ [ a(z4ln)

n=1

o Also, here CPs are ex-fam, so optimal g's depend on expected suff-stats of CP's nat. params
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VI for Models with Local and Global Variables (Contd)

o Let's assume our mean-field approximation to be of the form

a(8,2) = q(BIN) [ [ a(z4ln)

n=1

o Also, here CPs are ex-fam, so optimal g's depend on expected suff-stats of CP’s nat. params

o The optimal variational dist. for local vars z, will be g(z,|¢,) with

¢n = Ex [n(x,, 8)] vn
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VI for Models with Local and Global Variables (Contd)

o Let's assume our mean-field approximation to be of the form

a(8,2) = q(BIN) [ [ a(z4ln)

n=1

o Also, here CPs are ex-fam, so optimal g's depend on expected suff-stats of CP’s nat. params

o The optimal variational dist. for local vars z, will be g(z,|¢,) with

¢n = Ex [n(x,, 8)] vn

o The optimal variational dist. for global vars 3 will be g(B3|\) with
N
A= a1 + Z Eg,[t(Xn, zn)], 00 + N

n=1

T
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VI for Models with Local and Global Variables (Contd)
o Let's assume our mean-field approximation to be of the form

a(8,2) = q(BIN) [ [ a(z4ln)

n=1

Also, here CPs are ex-fam, so optimal g's depend on expected suff-stats of CP's nat. params

©

©

The optimal variational dist. for local vars z, will be g(z,|¢,) with

¢n = Ex [n(x,, 8)] vn

o The optimal variational dist. for global vars 3 will be g(B3|\) with
N T
A= a1 + Z Eg,[t(Xn, zn)], 00 + N
n=1

o The mean-field VI algo iterates b/w estimating ¢,'s Vn, and A, until ELBO value converges
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VI for Models with Local and Global Variables (Contd)
o Let's assume our mean-field approximation to be of the form

a(8,2) = q(BIN) [ [ a(z4ln)

n=1

Also, here CPs are ex-fam, so optimal g's depend on expected suff-stats of CP's nat. params

©

©

The optimal variational dist. for local vars z, will be g(z,|¢,) with

¢n = Ex [n(x,, 8)] vn

o The optimal variational dist. for global vars 3 will be g(B3|\) with
N T
A= a1 + Z Eg,[t(Xn, zn)], 00 + N
n=1

o The mean-field VI algo iterates b/w estimating ¢,'s Vn, and A, until ELBO value converges
A potential bottleneck: Updating A requires waiting for all ¢,'s to be updated (slow for large N)

©
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VI for Models with Local and Global Variables (Contd)
o Let's assume our mean-field approximation to be of the form

a(8,2) = q(BIN) [ [ a(z4ln)

n=1

Also, here CPs are ex-fam, so optimal g's depend on expected suff-stats of CP's nat. params

©

©

The optimal variational dist. for local vars z, will be g(z,|¢,) with

¢n = Ex [n(x,, 8)] vn

o The optimal variational dist. for global vars 3 will be g(B3|\) with
N T
A= a1 + Z Eg,[t(Xn, zn)], 00 + N
n=1

o The mean-field VI algo iterates b/w estimating ¢,'s Vn, and A, until ELBO value converges
A potential bottleneck: Updating A requires waiting for all ¢,'s to be updated (slow for large N)

©

o But this can be handled by online VI (a.k.a. stochastic variational inference - SVI); akin to online EM
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VI for Models with Local and Global Variables (Contd)
o Let's assume our mean-field approximation to be of the form

a(8,2) = q(BIN) [ [ a(z4ln)

n=1

Also, here CPs are ex-fam, so optimal g's depend on expected suff-stats of CP's nat. params

©

©

The optimal variational dist. for local vars z, will be g(z,|¢,) with

¢n = Ex [n(x,, 8)] vn

o The optimal variational dist. for global vars 3 will be g(B3|\) with
N T
A= a1 + Z Eg,[t(Xn, zn)], 00 + N
n=1

o The mean-field VI algo iterates b/w estimating ¢,'s Vn, and A, until ELBO value converges
A potential bottleneck: Updating A requires waiting for all ¢,'s to be updated (slow for large N)

©

o But this can be handled by online VI (a.k.a. stochastic variational inference - SVI); akin to online EM
o We will look at SVI (along with other advanced VI methods) after mid-sem
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent

o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows

@ Assume g(Z) to be from some family of distributions with variational parameters ¢
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢

@ Write down the full ELBO expression (this will give us a function of variational params ¢)

L(q) = L(¢) = Eq[logp(X,Z)] —Eqllogq(Z)]
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢

@ Write down the full ELBO expression (this will give us a function of variational params ¢)
L(q) =L(¢) = Eqllogp(X,Z)] —Eqllogq(Z)]
[ a@ogp(xiz)az + [ a@yiogp(@)dz - [ a(2)oga(2)9z
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢
@ Write down the full ELBO expression (this will give us a function of variational params ¢)
L(q) =L(¢) = Eqflogp(X,Z)] - Eqllog q(Z)]
[ a@ogp(xiz)az + [ a@yiogp(@)dz - [ a(2)oga(2)9z

@ Compute ELBO gradients, i.e., V4L(¢) and use gradient methods to find optimal ¢
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢
@ Write down the full ELBO expression (this will give us a function of variational params ¢)
L(q) =L(¢) = Eqflogp(X,Z)] - Eqllog q(Z)]
[ a@ogp(xiz)az + [ a@yiogp(@)dz - [ a(2)oga(2)9z

@ Compute ELBO gradients, i.e., V4L(¢) and use gradient methods to find optimal ¢

o Note: Step 2 may be simplified due to the problem structure or assumptions on the form of q(Z)
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢
@ Write down the full ELBO expression (this will give us a function of variational params ¢)
L(q) =L(¢) = Eqflogp(X,Z)] - Eqllog q(Z)]
[ a@ogp(xiz)az + [ a@yiogp(@)dz - [ a(2)oga(2)9z

@ Compute ELBO gradients, i.e., V4L(¢) and use gradient methods to find optimal ¢

o Note: Step 2 may be simplified due to the problem structure or assumptions on the form of q(Z)

o i.i.d. observations simplify log p(X|Z);
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢
@ Write down the full ELBO expression (this will give us a function of variational params ¢)
L(q) =L(¢) = Eqflogp(X,Z)] - Eqllog q(Z)]
[ a@ogp(xiz)az + [ a@yiogp(@)dz - [ a(2)oga(2)9z

@ Compute ELBO gradients, i.e., V4L(¢) and use gradient methods to find optimal ¢

o Note: Step 2 may be simplified due to the problem structure or assumptions on the form of q(Z)

o i.i.d. observations simplify log p(X|Z); conditionally independent priors simplify log p(Z)
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢
@ Write down the full ELBO expression (this will give us a function of variational params ¢)
L(q) =L(¢) = Eqflogp(X,Z)] - Eqllog q(Z)]
[ a@ogp(xiz)az + [ a@yiogp(@)dz - [ a(2)oga(2)9z

@ Compute ELBO gradients, i.e., V4L(¢) and use gradient methods to find optimal ¢

o Note: Step 2 may be simplified due to the problem structure or assumptions on the form of q(Z)
o i.i.d. observations simplify log p(X|Z); conditionally independent priors simplify log p(Z)

o Locally-conjugate models
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢
@ Write down the full ELBO expression (this will give us a function of variational params ¢)
L(q) =L(¢) = Eqflogp(X,Z)] - Eqllog q(Z)]
[ a@ogp(xiz)az + [ a@yiogp(@)dz - [ a(2)oga(2)9z

@ Compute ELBO gradients, i.e., V4L(¢) and use gradient methods to find optimal ¢

o Note: Step 2 may be simplified due to the problem structure or assumptions on the form of q(Z)
o i.i.d. observations simplify log p(X|Z); conditionally independent priors simplify log p(Z)
o Locally-conjugate models

o The mean-field assumption simplifies q(Z) as q(Z) = H,’\il qi(Zi)
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VI by Taking ELBO Gradients

o More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢
@ Write down the full ELBO expression (this will give us a function of variational params ¢)
L(q) =L(¢) = Eqflogp(X,Z)] - Eqllog q(Z)]
[ a@ogp(xiz)az + [ a@yiogp(@)dz - [ a(2)oga(2)9z

@ Compute ELBO gradients, i.e., V4L(¢) and use gradient methods to find optimal ¢

o Note: Step 2 may be simplified due to the problem structure or assumptions on the form of q(Z)
o i.i.d. observations simplify log p(X|Z); conditionally independent priors simplify log p(Z)
o Locally-conjugate models
o The mean-field assumption simplifies q(Z) as q(Z) = H,’\il qi(Zi)
o Note that the last term reduces to sum of entropies of g;'s (which usually has known forms)
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Posterior Predictive with VI Approximations

o Given a VI approximation of the posterior, we can use it to approximate the posterior predictive
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Posterior Predictive with VI Approximations

o Given a VI approximation of the posterior, we can use it to approximate the posterior predictive

o For example, for a K component GMM, suppose we use the following form of variational posterior

(7, { e, N dier) = a*( Hq By Nio)
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Posterior Predictive with VI Approximations

o Given a VI approximation of the posterior, we can use it to approximate the posterior predictive

o For example, for a K component GMM, suppose we use the following form of variational posterior

p(m, {pi Medier) = a°( Hq(/"kal\k

o The mean-field VI updates will be as follows (PRML Sec 10.2)

I q¢*(m) = Dir(w|x) | ap = ag + Ny,

" (e Ar) = N (i mye, (3eAR) ™) WAL W)

5% = o+ Nk
1 .
m; = r (Bomg + NipXr)
B
W' = Wil4+ NS+ Gl (X —myg) (X —
k 0 NSk + - 20 + N k 0) (Xk
vy, = g+ Np.
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Posterior Predictive with VI Approximations

o Given a new observation X and past data X, the true posterior predictive for a GMM is

p(X|X) = Z /// p(X|Z, po, A)p(Z|7)p(m, p, A|X) dmr dpp dA

p(x|X) Z /// N (X[ pg, ALY plm, p, A|X) de dpedA
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Posterior Predictive with VI Approximations

o Given a new observation X and past data X, the true posterior predictive for a GMM is

p(X|X) = Z ///p(i\i w, ANp(Z|m)p(m, g, A|X) dr dp dA

p(x|X) Z /// TN (X pe, AL ') p(, e, AIX) de dpn dA

o Given the variational approx. of posterior, the posterior predictive can be approximated as
K
p(x|X) = Z /// TN (X, AL ) g(7)q(pn, Ax) dmr dpeg, dAge
).

- I
p(x|X) = EZ apSt(X|mg, Ly, v +1 — D)

k=1
(v +1—D)p
L, = 7\\
k (1+ Be) K
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Some Properties of VB

Recall that VB is equivalent to finding g by minimizing KL(q||p)

KL(«?/IIP):/C’(Z)Iog [p?élz))()}

If the true posterior p(Z|X) is very small in some region then, to minimize KL(g||p), the approx. dist. g
will also have to be very small (otherwise KL will be very large)

Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Contd)



Some Properties of VB

Recall that VB is equivalent to finding g by minimizing KL(q||p)

KL(«?/IIP):/C’(Z)Iog [p?élz))()}

If the true posterior p(Z|X) is very small in some region then, to minimize KL(g||p), the approx. dist. g
will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB
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Some Properties of VB

Recall that VB is equivalent to finding g by minimizing KL(q||p)

KL(«?/IIP):/C’(Z)Iog [p?élz))()}

If the true posterior p(Z|X) is very small in some region then, to minimize KL(g||p), the approx. dist. g
will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB
o Underestimates the variances of the true posterior

o For multimodal posteriors, VB locks onto one of the modes

Figure: (Left) Zero-Forcing Property of VB, (Right) For multi-modal posterior, VB locks onto one of the models
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Some Properties of VB

Recall that VB is equivalent to finding g by minimizing KL(q||p)

KL(«?/IIP):/C’(Z)Iog [p?élz))()}

If the true posterior p(Z|X) is very small in some region then, to minimize KL(g||p), the approx. dist. g
will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB
o Underestimates the variances of the true posterior

o For multimodal posteriors, VB locks onto one of the modes

Figure: (Left) Zero-Forcing Property of VB, (Right) For multi-modal posterior, VB locks onto one of the models

Note: Some other inference methods, e.g., Expectation Propagation (EP) cap avoid this behavior
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VI and Convergence

o VI is guaranteed to converge but only to a local optima (just like EM)

o Therefore proper initialization is important (just like EM)

—-1.6-10° |

-1.8-10° -
2 2.10°

—2.10° |
a 7/

—2.2-10° {

—24-10° | /

0 10 20 30 40 50
Seconds

Different initializations may lead to different optima

o ELBO increases monotonically with iterations, so we can monitor the ELBO to assess convergence
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ELBO for Model Selection

o Recall that ELBO is a lower bound on log of model evidence log p(X|m))
o We can compute ELBO for each model m and then choose the one with largest value of ELBO

o An Example: The ELBO plot for a GMM with different K values (number of components)

o Note that unlike likelihood, ELBO doesn’t monotonically increase with K (penalizes large K)

Plot of the variational lower bound
£ versus the number K of com-
ponents in the Gaussian mixture
model, for the Old Faithful data,
showing a distinct peak at K =
2 components. For each value
of K, the model is trained from
100 different random starts, and
the results shown as ‘+' symbols
plotted with small random hori-
zontal perturbations so that they
can be distinguished. MNote that
some solutions find suboptimal
local maxima, but that this hap-
pens infrequently.

Figure courtesy: PRML (Bishop, 2006)
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ELBO for Model Selection

o Recall that ELBO is a lower bound on log of model evidence log p(X|m))
o We can compute ELBO for each model m and then choose the one with largest value of ELBO

o An Example: The ELBO plot for a GMM with different K values (number of components)

Plot of the variational lower bound
£ versus the number K of com-
ponents in the Gaussian mixture
model, for the Old Faithful data,
showing a distinct peak at K =
2 components. For each value
of K, the model is trained from 4
100 different random starts, and - -
the results shown as *+' symbols -

plotted with small randur% hori- P(PIK) e
zontal perturbations so that they +
can be distinguished. MNote that
some solutions find suboptimal
local maxima, but that this hap-
pens infrequently.

o Note that unlike likelihood, ELBO doesn’t monotonically increase with K (penalizes large K)

o Some criticism since we are using a lower-bound but works well in practice in many problems

Figure courtesy: PRML (Bishop, 2006)
Prob. Modeling & Inference - CS698X (Piyush Rai, ITK) Variational Inference (Contd)



VI and Expectation Maximization (EM)

o VB can be seen as a generalization of the EM algorithm

o Unlike EM, in VI there is no distinction between parameters © and latent variables Z
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VI and Expectation Maximization (EM)

o VB can be seen as a generalization of the EM algorithm
o Unlike EM, in VI there is no distinction between parameters © and latent variables Z

o VI treats all unknowns of the model as latent variables and calls them Z
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VI and Expectation Maximization (EM)

©

VB can be seen as a generalization of the EM algorithm

©

Unlike EM, in VI there is no distinction between parameters © and latent variables Z

o VI treats all unknowns of the model as latent variables and calls them Z

©

Since there is no notion of “parameters”, VI is like EM without the “M step”
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VI and Expectation Maximization (EM)

©

VB can be seen as a generalization of the EM algorithm

©

Unlike EM, in VI there is no distinction between parameters © and latent variables Z

o VI treats all unknowns of the model as latent variables and calls them Z

©

Since there is no notion of “parameters”, VI is like EM without the “M step”
o VI can be used within an EM algorithm if the E step is intractable

o This is known as Variational EM algorithm
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VI: The Road Ahead

Moving beyond locally conjugate models

©

(+]

Moving beyond the mean-field assumption

More scalable variational inference

(+]

General-purpose VI (that doesn't require model-specific derivations)

©

o Posing VI as a general gradient based optimization problem
¢"" = ¢° + 1 x V [Eq, [log p(X, Z)] — Eq, [log q(Z[¢)]]

o A lot of recent research on approximating the gradient of an expectation

o We will look at these issues after mid-sem
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