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Recap: Conditional Posterior and Local Conjugacy

Consider some model with multiple unknowns θ1, . . . , θK and observations X

The joint posterior p(Θ|X) may not be computable but often conditional posteriors are..

The conditional posterior, a.k.a. local posterior, a.k.a. complete conditional

p(θk |X,Θ−k) =
p(X|θk ,Θ−k)p(θk)∫
p(X|θk ,Θ−k)p(θk)dθk

∝ p(X|θk ,Θ−k)p(θk)

This is computable easily if the model has Local Conjugacy

p(X|θk ,Θ−k) and p(θk) are conjugate to each other

The conditional posterior will also be in the same distribution family as p(θk)

The conditional posteriors are used within various inference algorithms, e.g.,

Expectation-Maximization (EM)

Gibbs Sampling (an MCMC sampling algorithm)

Mean-field variational inference
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Recap: Gibbs Sampling

Idea: Approximate a joint distribution using random samples from conditional distributions

For the simple two-parameter case θ = (θ1, θ2), the Gibb sampler looks like this

Initialize θ
(0)
2

For s = 1, . . . , S

Draw a random sample for θ1 as θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , y)

Draw a random sample for θ2 as θ
(s)
2 ∼ p(θ2|θ(s)

1 , y)

The set of S random samples {θ(s)
1 , θ

(s)
2 }Ss=1 represent the joint posterior distribution p(θ1, θ2|y)

Can think of this as an empirical distribution with support only at the samples generared

p(θ1, θ2|y) ≈ 1

S

S∑
s=1

δ
θ

(s)
1 ,θ

(s)
2

(.)

where δx(.) denotes the Dirac distribution with mass only at x

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 3



Recap: Gibbs Sampling

Idea: Approximate a joint distribution using random samples from conditional distributions

For the simple two-parameter case θ = (θ1, θ2), the Gibb sampler looks like this

Initialize θ
(0)
2

For s = 1, . . . , S

Draw a random sample for θ1 as θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , y)

Draw a random sample for θ2 as θ
(s)
2 ∼ p(θ2|θ(s)

1 , y)

The set of S random samples {θ(s)
1 , θ

(s)
2 }Ss=1 represent the joint posterior distribution p(θ1, θ2|y)

Can think of this as an empirical distribution with support only at the samples generared

p(θ1, θ2|y) ≈ 1

S

S∑
s=1

δ
θ

(s)
1 ,θ

(s)
2

(.)

where δx(.) denotes the Dirac distribution with mass only at x

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 3



Recap: Gibbs Sampling

Idea: Approximate a joint distribution using random samples from conditional distributions

For the simple two-parameter case θ = (θ1, θ2), the Gibb sampler looks like this

Initialize θ
(0)
2

For s = 1, . . . , S

Draw a random sample for θ1 as θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , y)

Draw a random sample for θ2 as θ
(s)
2 ∼ p(θ2|θ(s)

1 , y)

The set of S random samples {θ(s)
1 , θ

(s)
2 }Ss=1 represent the joint posterior distribution p(θ1, θ2|y)

Can think of this as an empirical distribution with support only at the samples generared

p(θ1, θ2|y) ≈ 1

S

S∑
s=1

δ
θ

(s)
1 ,θ

(s)
2

(.)

where δx(.) denotes the Dirac distribution with mass only at x

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 3



Recap: Gibbs Sampling

Idea: Approximate a joint distribution using random samples from conditional distributions

For the simple two-parameter case θ = (θ1, θ2), the Gibb sampler looks like this

Initialize θ
(0)
2

For s = 1, . . . , S

Draw a random sample for θ1 as θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , y)

Draw a random sample for θ2 as θ
(s)
2 ∼ p(θ2|θ(s)

1 , y)

The set of S random samples {θ(s)
1 , θ

(s)
2 }Ss=1 represent the joint posterior distribution p(θ1, θ2|y)

Can think of this as an empirical distribution with support only at the samples generared

p(θ1, θ2|y) ≈ 1

S

S∑
s=1

δ
θ

(s)
1 ,θ

(s)
2

(.)

where δx(.) denotes the Dirac distribution with mass only at x

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 3



Recap: Gibbs Sampling

Idea: Approximate a joint distribution using random samples from conditional distributions

For the simple two-parameter case θ = (θ1, θ2), the Gibb sampler looks like this

Initialize θ
(0)
2

For s = 1, . . . , S

Draw a random sample for θ1 as θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , y)

Draw a random sample for θ2 as θ
(s)
2 ∼ p(θ2|θ(s)

1 , y)

The set of S random samples {θ(s)
1 , θ

(s)
2 }Ss=1 represent the joint posterior distribution p(θ1, θ2|y)

Can think of this as an empirical distribution with support only at the samples generared

p(θ1, θ2|y) ≈ 1

S

S∑
s=1

δ
θ

(s)
1 ,θ

(s)
2

(.)

where δx(.) denotes the Dirac distribution with mass only at x

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 3



Recap: Gibbs Sampling

Idea: Approximate a joint distribution using random samples from conditional distributions

For the simple two-parameter case θ = (θ1, θ2), the Gibb sampler looks like this

Initialize θ
(0)
2

For s = 1, . . . , S

Draw a random sample for θ1 as θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , y)

Draw a random sample for θ2 as θ
(s)
2 ∼ p(θ2|θ(s)

1 , y)

The set of S random samples {θ(s)
1 , θ

(s)
2 }Ss=1 represent the joint posterior distribution p(θ1, θ2|y)

Can think of this as an empirical distribution with support only at the samples generared

p(θ1, θ2|y) ≈ 1

S

S∑
s=1

δ
θ

(s)
1 ,θ

(s)
2

(.)

where δx(.) denotes the Dirac distribution with mass only at x

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 3



Recap: Gibbs Sampling

Idea: Approximate a joint distribution using random samples from conditional distributions

For the simple two-parameter case θ = (θ1, θ2), the Gibb sampler looks like this

Initialize θ
(0)
2

For s = 1, . . . , S

Draw a random sample for θ1 as θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , y)

Draw a random sample for θ2 as θ
(s)
2 ∼ p(θ2|θ(s)

1 , y)

The set of S random samples {θ(s)
1 , θ

(s)
2 }Ss=1 represent the joint posterior distribution p(θ1, θ2|y)

Can think of this as an empirical distribution with support only at the samples generared

p(θ1, θ2|y) ≈ 1

S

S∑
s=1

δ
θ

(s)
1 ,θ

(s)
2

(.)

where δx(.) denotes the Dirac distribution with mass only at x

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 3



Recap: Gibbs Sampling for Bayesian Matrix Factorization

Randomly initialize the latent factors of users {u i}Ni=1 and items {v j}Mj=1

For s = 1, . . . ,S

For each user i = 1 : N, draw a random sample for u i as u(s)
i ∼ p(u i |R,U−i ,V)

For each item j = 1 : N, draw a random sample for v j as v (s)
j ∼ p(v j |R,V−j ,U)

Note: On the conditioning side, the most recent values of the latent factors are used

The posterior distribution is approximated as p(U,V|R) ≈ 1
S

∑S
s=1 δU(s),V(s) (.)

The posterior predictive distribution: p(rij |R) =
∫ ∫

p(rij |u i , v j)p(u i , v j |R)du idv j

In general, posterior predictive is also hard to compute and needs approximation

We can use the S samples {u(s)
i , v (s)

j }
S
s=1 to compute the predictive mean via Monte-Carlo averaging

For the Gaussian likelihood case in matrix factorization, the mean can be computed as

E[rij ] ≈
1

S

S∑
s=1

u(s)
i

>
v (s)
j

Can also compute the variance of rij (think how)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 4



Recap: Gibbs Sampling for Bayesian Matrix Factorization

Randomly initialize the latent factors of users {u i}Ni=1 and items {v j}Mj=1

For s = 1, . . . ,S

For each user i = 1 : N, draw a random sample for u i as u(s)
i ∼ p(u i |R,U−i ,V)

For each item j = 1 : N, draw a random sample for v j as v (s)
j ∼ p(v j |R,V−j ,U)

Note: On the conditioning side, the most recent values of the latent factors are used

The posterior distribution is approximated as p(U,V|R) ≈ 1
S

∑S
s=1 δU(s),V(s) (.)

The posterior predictive distribution: p(rij |R) =
∫ ∫

p(rij |u i , v j)p(u i , v j |R)du idv j

In general, posterior predictive is also hard to compute and needs approximation

We can use the S samples {u(s)
i , v (s)

j }
S
s=1 to compute the predictive mean via Monte-Carlo averaging

For the Gaussian likelihood case in matrix factorization, the mean can be computed as

E[rij ] ≈
1

S

S∑
s=1

u(s)
i

>
v (s)
j

Can also compute the variance of rij (think how)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 4



Recap: Gibbs Sampling for Bayesian Matrix Factorization

Randomly initialize the latent factors of users {u i}Ni=1 and items {v j}Mj=1

For s = 1, . . . ,S

For each user i = 1 : N, draw a random sample for u i as u(s)
i ∼ p(u i |R,U−i ,V)

For each item j = 1 : N, draw a random sample for v j as v (s)
j ∼ p(v j |R,V−j ,U)

Note: On the conditioning side, the most recent values of the latent factors are used

The posterior distribution is approximated as p(U,V|R) ≈ 1
S

∑S
s=1 δU(s),V(s) (.)

The posterior predictive distribution: p(rij |R) =
∫ ∫

p(rij |u i , v j)p(u i , v j |R)du idv j

In general, posterior predictive is also hard to compute and needs approximation

We can use the S samples {u(s)
i , v (s)

j }
S
s=1 to compute the predictive mean via Monte-Carlo averaging

For the Gaussian likelihood case in matrix factorization, the mean can be computed as

E[rij ] ≈
1

S

S∑
s=1

u(s)
i

>
v (s)
j

Can also compute the variance of rij (think how)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 4



Recap: Gibbs Sampling for Bayesian Matrix Factorization

Randomly initialize the latent factors of users {u i}Ni=1 and items {v j}Mj=1

For s = 1, . . . ,S

For each user i = 1 : N, draw a random sample for u i as u(s)
i ∼ p(u i |R,U−i ,V)

For each item j = 1 : N, draw a random sample for v j as v (s)
j ∼ p(v j |R,V−j ,U)

Note: On the conditioning side, the most recent values of the latent factors are used

The posterior distribution is approximated as p(U,V|R) ≈ 1
S

∑S
s=1 δU(s),V(s) (.)

The posterior predictive distribution: p(rij |R) =
∫ ∫

p(rij |u i , v j)p(u i , v j |R)du idv j

In general, posterior predictive is also hard to compute and needs approximation

We can use the S samples {u(s)
i , v (s)

j }
S
s=1 to compute the predictive mean via Monte-Carlo averaging

For the Gaussian likelihood case in matrix factorization, the mean can be computed as

E[rij ] ≈
1

S

S∑
s=1

u(s)
i

>
v (s)
j

Can also compute the variance of rij (think how)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 4



Recap: Gibbs Sampling for Bayesian Matrix Factorization

Randomly initialize the latent factors of users {u i}Ni=1 and items {v j}Mj=1

For s = 1, . . . ,S

For each user i = 1 : N, draw a random sample for u i as u(s)
i ∼ p(u i |R,U−i ,V)

For each item j = 1 : N, draw a random sample for v j as v (s)
j ∼ p(v j |R,V−j ,U)

Note: On the conditioning side, the most recent values of the latent factors are used

The posterior distribution is approximated as p(U,V|R) ≈ 1
S

∑S
s=1 δU(s),V(s) (.)

The posterior predictive distribution: p(rij |R) =
∫ ∫

p(rij |u i , v j)p(u i , v j |R)du idv j

In general, posterior predictive is also hard to compute and needs approximation

We can use the S samples {u(s)
i , v (s)

j }
S
s=1 to compute the predictive mean via Monte-Carlo averaging

For the Gaussian likelihood case in matrix factorization, the mean can be computed as

E[rij ] ≈
1

S

S∑
s=1

u(s)
i

>
v (s)
j

Can also compute the variance of rij (think how)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 4



Recap: Gibbs Sampling for Bayesian Matrix Factorization

Randomly initialize the latent factors of users {u i}Ni=1 and items {v j}Mj=1

For s = 1, . . . ,S

For each user i = 1 : N, draw a random sample for u i as u(s)
i ∼ p(u i |R,U−i ,V)

For each item j = 1 : N, draw a random sample for v j as v (s)
j ∼ p(v j |R,V−j ,U)

Note: On the conditioning side, the most recent values of the latent factors are used

The posterior distribution is approximated as p(U,V|R) ≈ 1
S

∑S
s=1 δU(s),V(s) (.)

The posterior predictive distribution: p(rij |R) =
∫ ∫

p(rij |u i , v j)p(u i , v j |R)du idv j

In general, posterior predictive is also hard to compute and needs approximation

We can use the S samples {u(s)
i , v (s)

j }
S
s=1 to compute the predictive mean via Monte-Carlo averaging

For the Gaussian likelihood case in matrix factorization, the mean can be computed as

E[rij ] ≈
1

S

S∑
s=1

u(s)
i

>
v (s)
j

Can also compute the variance of rij (think how)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 4



Recap: Gibbs Sampling for Bayesian Matrix Factorization

Randomly initialize the latent factors of users {u i}Ni=1 and items {v j}Mj=1

For s = 1, . . . ,S

For each user i = 1 : N, draw a random sample for u i as u(s)
i ∼ p(u i |R,U−i ,V)

For each item j = 1 : N, draw a random sample for v j as v (s)
j ∼ p(v j |R,V−j ,U)

Note: On the conditioning side, the most recent values of the latent factors are used

The posterior distribution is approximated as p(U,V|R) ≈ 1
S

∑S
s=1 δU(s),V(s) (.)

The posterior predictive distribution: p(rij |R) =
∫ ∫

p(rij |u i , v j)p(u i , v j |R)du idv j

In general, posterior predictive is also hard to compute and needs approximation

We can use the S samples {u(s)
i , v (s)

j }
S
s=1 to compute the predictive mean via Monte-Carlo averaging

For the Gaussian likelihood case in matrix factorization, the mean can be computed as

E[rij ] ≈
1

S

S∑
s=1

u(s)
i

>
v (s)
j

Can also compute the variance of rij (think how)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 4



Recap: Gibbs Sampling for Bayesian Matrix Factorization
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Latent Variable Models

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 5



Why Latent Variable Models?

Application 1: Can use these to model latent properties/features of data, e.g.,

Cluster assignment of each observation (in mixture models)

Topic assignment of each word (in topic models such as Latent Dirichlet Allocation)

Low-dim rep. or “code” of each observation (e.g., prob. PCA, variational autoencoders, etc)

In such apps, latent variables (zn’s above) are called “local variables” (specific to individual obs.),
and other unknown parameters/hyperparams (θ, φ above) are called “global variables”
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Why Latent Variable Models?

Application 2: Sometimes, augmenting a model by latent variables simplies inference

.. even if these latent variables aren’t part of the original model definition

Some of the popular examples include

In Probit regression for binary classification, we can model each label yn ∈ {0, 1} as

yn = I[zn > 0] where zn ∼ N (w>xn, 1) is a Gaussian latent variable

.. and use EM etc, to infer the unknowns w and zn’s (MLAPP 11.4.6, EM for Probit Regression)

Many sparse priors on weights can be thought of as Gaussian “scale-mixtures” (scale is variance)

Laplace(wd |0, 1/γ) =
γ

2
exp(−γ|wd |) =

∫
N (wd |0, τ 2

d )Gamma(τ 2
d |1, γ2/2)dτ 2

d

.. where τd ’s are latent vars. Can use EM to infer w and τ (MLAPP 13.4.4 - EM for LASSO)

Such augmentation can make an originally non-conjugate model a conditionally conjugate one!

Can then use Gibbs sampling, EM, and various other conditional posterior based inference algos
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Nomenclature/Notation Alert

Why call some unknowns as parameters and others as latent variables?

Well, no specific reason. Sort of a convention adopted by some algorithms

EM refers to the unknowns estimated in E step as latent vars and those in M step as params

Here the distinction is: Infer the posterior for latent vars and point estimates of parameters

In contrast, some algos that infer posteriors for all unknowns refer to everything as latent vars

Sometimes the “global” or “local” unknown distinction makes it clear

Local variables = latent variables, global variables = parameters

But remember that this nomenclature isn’t really cast in stone, no need to be confused so long as
you are clear as to what the role of each unknown is, and how we want to estimate it (posterior or
point estimate) and using what type of inference algorithm
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Hybrid Inference (posterior inference + point estimation)

In many models, we infer the posterior on some unknowns and do point estimation for the rest

We have already seen that MLE-II based inference does that

Maximize the marginal likelihood to do point estimation for hyperparams

Infer the conditional posterior over the main parameter given the point estimates of hyperparams

The Expectation-Maximization algorithm (will see today) also does something similar

In E step, the conditional posterior of latent variables is inferred

In M step, the expected complete data log-lik. is maximized to get point estimates of parameters

If we can’t afford to (due to computational or other reasons) infer the posterior over all unknowns,
how to decide which variables to infer posterior on, and for which to do point estimation?

Rule of thumb: Infer posterior over local variables and point estimates for global variables

Reason: We typically have plenty of data to reliably estimate the global variables so it is okay even if
we just do point estimation for those (recall the schools problem in HW1)
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Inference/Parameter Estimation in Latent Variable Models
using Expectation-Maximization
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Parameter Estimation in Latent Variable Models

Assume each observation xn to be associated with a “local” latent variable zn

Although we can do fully Bayesian inference for all the unknowns, suppose we only want a point
estimate of the “global” parameters Θ = (θ, φ) via MLE/MAP
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Why Estimation is Difficult in LVMs?

Suppose we want to estimate parameters Θ via MLE

. If we knew both xn and zn then we could do

ΘMLE = arg max
Θ

N∑
n=1

log p(xn, zn|Θ) = arg max
Θ

N∑
n=1

[log p(zn|φ) + log p(xn|zn, θ)]

Simple to solve (usually closed form) if p(zn|φ) and p(xn|zn, θ) are “simple” (e.g., exp-fam. dist.)

However, in LVMs where zn is “hidden”, the MLE problem will be the following

ΘMLE = arg max
Θ

N∑
n=1

log p(xn|Θ) = arg max
Θ

log p(X|Θ)

The form of p(xn|Θ) may not be simple since we need to sum over unknown zn’s possible values

p(xn|Θ) =
∑
zn

p(xn, zn|Θ) ... or if zn is continuous: p(xn|Θ) =

∫
p(xn, zn|Θ)dzn

The summation/integral may be intractable + may lead to complex expressions for p(xn|Θ), in
fact almost never an exponential family distribution. MLE for Θ won’t have closed form solutions!
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An Important Identity

Define pz = p(Z|X,Θ) and let q(Z) be some distribution over Z

Assume discrete Z, the identity below holds for any choice of the distribution q(Z)

log p(X|Θ) = L(q,Θ) + KL(q||pz)

L(q,Θ) =
∑

Z

q(Z) log

{
p(X,Z|Θ)

q(Z)

}

KL(q||pz ) = −
∑

Z

q(Z) log

{
p(Z|X,Θ)

q(Z)

}

(Exercise: Verify the above identity)

Since KL(q||pz) ≥ 0, L(q,Θ) is a lower-bound on log p(X|Θ)

log p(X|Θ) ≥ L(q,Θ)

Maximizing L(q,Θ) will also improve log p(X|Θ)

. Also, as we’ll see, it’s easier to maximize L(q,Θ)
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Z

q(Z) log

{
p(X,Z|Θ)

q(Z)

}
and KL(q||pz ) = −

∑
Z

q(Z) log

{
p(Z|X,Θ)

q(Z)

}

Maximize L w.r.t. q with Θ fixed at Θold : Since log p(X|Θ) will be a constant in this case,

q̂ = arg max
q
L(q,Θold) = arg min

q
KL(q||pz) = pz = p(Z|X,Θold)

Maximize L w.r.t. Θ with q fixed at q̂ = p(Z|X,Θold)

Θnew = arg max
Θ
L(q̂,Θ) = arg max

Θ

∑
Z

p(Z|X,Θold ) log
p(X,Z|Θ)

p(Z|X,Θold )
= arg max

Θ

∑
Z

p(Z|X,Θold ) log p(X,Z|Θ)

.. therefore, Θnew = arg max
θ
Q(Θ,Θold) where Q(Θ,Θold) = Ep(Z|X,Θold )[log p(X,Z|Θ)]

Q(Θ,Θold) = Ep(Z|X,Θold )[log p(X,Z|Θ)] is known as expected complete data log-likelihood (CLL)
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What’s Going On: A Visual Illustration..

Step 1: We set q̂ = p(Z|X,Θold), L(q̂,Θ) touches log p(X|Θ) at Θold

Step 2: We maximize L(q̂,Θ) w.r.t. Θ (equivalent to maximizing Q(Θ,Θold))

After updating q
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What’s Going On: A Visual Illustration..

Step 1: We set q̂ = p(Z|X,Θold), L(q̂,Θ) touches log p(X|Θ) at Θold

Step 2: We maximize L(q̂,Θ) w.r.t. Θ (equivalent to maximizing Q(Θ,Θold))

Local Maxima Found

After updating q
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What’s Going On: Another Illustration

The two-step alternating optimzation scheme we saw can never decrease p(X|Θ) (good thing)

To see this consider both steps: (1) Optimize q given Θ = Θold ; (2) Optimize Θ given this q

(Step 1)
(Step 2)

Step 1 keeps Θ fixed, so p(X|Θ) obviously can’t decrease (stays unchanged in this step)

Step 2 maximizes the lower bound L(q,Θ) w.r.t Θ. Thus p(X|Θ) can’t decrease!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 16



What’s Going On: Another Illustration

The two-step alternating optimzation scheme we saw can never decrease p(X|Θ) (good thing)

To see this consider both steps: (1) Optimize q given Θ = Θold ; (2) Optimize Θ given this q

(Step 1)
(Step 2)

Step 1 keeps Θ fixed, so p(X|Θ) obviously can’t decrease (stays unchanged in this step)

Step 2 maximizes the lower bound L(q,Θ) w.r.t Θ. Thus p(X|Θ) can’t decrease!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 16



What’s Going On: Another Illustration

The two-step alternating optimzation scheme we saw can never decrease p(X|Θ) (good thing)

To see this consider both steps: (1) Optimize q given Θ = Θold ; (2) Optimize Θ given this q

(Step 1)
(Step 2)

Step 1 keeps Θ fixed, so p(X|Θ) obviously can’t decrease (stays unchanged in this step)

Step 2 maximizes the lower bound L(q,Θ) w.r.t Θ. Thus p(X|Θ) can’t decrease!

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Latent Variable Models (LVMs) and Inference in LVMs 16



The Expectation Maximization (EM) Algorithm

Initialize the parameters: Θold . Then alternate between these steps:

E (Expectation) step:

Compute the posterior distribution p(Z|X,Θold) over latent variables Z using Θold

Compute the expected complete data log-likelihood w.r.t. this posterior distribution

Q(Θ,Θold) = Ep(Z|X,Θold )[log p(X,Z|Θ)] =
N∑

n=1

Ep(zn|xn,Θold )[log p(xn, zn|Θ)]

=
N∑

n=1

Ep(zn|xn,Θold )[log p(xn|zn,Θ) + log p(zn|Θ)]

M (Maximization) step:

Maximize the expected complete data log-likelihood w.r.t. Θ

Θnew = arg max
Θ
Q(Θ,Θold)

If the incomplete log-lik p(X|Θ) not yet converged then set Θold = Θnew and go to the E step.
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The Expectation Maximization (EM) Algorithm as Psuedo-code

The EM Algorithm

Initialize Θ as Θ(0), set t = 1

Step 1: Compute conditional posterior of latent vars given current params Θ(t−1)

p(z (t)
n |xn,Θ

(t−1)) =
p(z (t)

n |Θ(t−1))p(xn|z (t)
n ,Θ(t−1))

p(xn|Θ(t−1))
∝ prior× likelihood

Step 2: Now maximize the expected complete data log-likelihood w.r.t. Θ

Θ(t) = arg max
Θ
Q(Θ,Θ(t−1)) = arg max

Θ

N∑
n=1

E
p(z (t)

n |xn,Θ(t−1))
[log p(xn, z (t)

n |Θ)]

If not yet converged, set t = t + 1 and go to Step 1.
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The Expected CLL

Deriving the EM algorithm requires finding the expression of the expected CLL

Q(Θ,Θold) =
N∑

n=1

Ep(zn|xn,Θold )[log p(xn|zn,Θ) + log p(zn|Θ)]

If p(xn|zn,Θ) and p(zn|Θ) are exp-family distributions, expected CLL will have a simple form

Finding the expression for the expected CLL in such cases is fairly straightforward

First write down the expressions for p(xn|zn,Θ) and p(zn|Θ) and simplify as much as possible

In the resulting expressions, replace all terms containing zn’s by their respective expectations, e.g.,

zn replaced by Ep(zn|xn,Θold )[zn], i.e., the posterior mean of zn

znz>n replaced by Ep(zn|xn,Θold )[znz>n ]

.. and so on..
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Online or Incremental EM

Needn’t compute p(zn|xn) for every xn in each EM iteration (computational/storage efficiency)

Recall that the expected CLL is often a sum over all data points

Q(Θ,Θold) = E[log p(X,Z|Θ) =
N∑

n=1

E[log p(xn|zn, θ)] + E[log p(zn|φ)]

Can compute this quantity recursively using small minibatches of data

Qt = (1− γt)Qt−1 + γt

[
Nt∑
n=1

E[log p(xn|zn, θ)] + E[log p(zn|φ)]

]
.. where γt = (1 + t)−κ, 0.5 < κ ≤ 1 is a decaying learning rate

Requires computing p(zn|xn) only for data in current mini-batch (computational/storage efficiency)

MLE on above Qt can be shown to be equivalent to a simple recursive updates for Θ

Θ(t) = (1− γt)×Θ(t−1) + γt × arg max
Θ
Q(Θ,Θt−1)︸ ︷︷ ︸

computed using only
the Nt examples

from this minibatch
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Some Applications of EM

Mixture of (multivariate) Gaussians/Bernoullis,multinoullis, Mixture of experts models

Problems with missing labels/features (treat these as latent variables)

Note that EM not only gives estimates of the parameters Θ but also infers latent variables Z

Hyperparameter estimation in probabilistic models (an alternative to MLE-II)

We’ve already seen MLE-II where we did MLE on marginal likelihood, e.g., for linear regression

p(y |X, λ, β) =

∫
p(y |X,w , β)p(w |λ)dw

As an alternative, can treat w as a latent variable and β, λ as parameters and use EM to learn these

Note: In this case, the latent variable w is not “local” (but EM still applies)

E step computes posterior p(w |X, y , β, λ) assuming β, λ fixed from the previous M step

M step maximizes E[log p(y ,w |X, β, λ)] = E[log p(y |w ,X, β) + log p(w |λ)] w.r.t. λ, β

This requires using expectations of quantities like w and ww> which can be obtained easily from the
posterior p(w |X, y , β, λ) which we compute in the E step
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The EM Algorithm: Some Comments

The E and M steps may not always be possible to perform exactly. Some reasons

The posterior of latent variables p(Z|X,Θ) may not be easy to find

Would need to approximate p(Z|X,Θ) in such a case

Even if p(Z|X,Θ) is easy, the expected CLL, i.e., E[log p(X,Z|Θ)] may still not be tractabe

E[log p(X,Z|Θ)] =

∫
log p(X,Z|Θ)p(Z|X,Θ)dZ

.. which can be approximated, e.g., using Monte-Carlo expectation (called Monte-Carlo EM)

Maximization of the expected CLL may not be possible in closed form

EM works even if the M step is only solved approximately (Generalized EM)

If M step has multiple parameters whose updates depend on each other, they are updated in an
alternating fashion - called Expectation Conditional Maximization (ECM) algorithm
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The EM Algorithm: Some Comments

Can also use the idea of “annealing”† to avoid local optima problem of EM

Basic idea: Use a modified form of the posterior over the latent variables

f (zn|xn) =
p(xn, zn|Θ)β∫
p(xn, zn|Θ)βzn

Here β ∈ (0, 1) is a “temperature” parameter (start very small and gradually increase)

(close to 0)

(close to 1)

Other advanced probabilistic inference algorithms are based on ideas similar to EM

E.g., Variational Bayes (VB) inference, a.k.a. Variational Inference (VI): Also maximizes a lower
bound on log evidence log p(X) (and unlike EM, treats all unknowns as latent vars). Will see it soon.

† Deterministic annealing EM algorithm (Ueda and Nakano, 1998)
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