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Today’s Plan

Foray into models with several parameters

Goal will be to infer the posterior over all of them (not posterior for some, MLE-II for others)

Idea of conditional/local posteriors in such problems

Local conjugacy (which helps in computing conditional posteriors)

Gibbs sampling (an algorithm that infer the joint posterior via conditional posteriors)

An example: Bayesian matrix factorization (model with many parameters)

Note: Conditional/local posterior, local conjugacy, etc are important ideas (will appear in many
inference algorithms that we will see later)
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Moving Beyond Simple Models..

So far we’ve usually seen models with one “main” parameter and maybe a few hyperparams, e.g.,

Given data assumed to be from a Gaussian, infer the mean assuming variance known (or vice-versa)

Bayesian linear regression with weight vector w and noise/prior precision hyperparams β, λ

GP regression with one function to be learned

Easy posterior inference if the likelihood and prior are conjugate to each other

Otherwise have to approx. the posterior (e.g., Laplace approx. - recall Bayesian logistic regression)

Hyperparams, if desired, can be also estimated via MLE-II

Note however that MLE-II would only give a point estimate of hyperparams

What if we have a model with lots of parames/hyperparams and want posteriors over all of those?

Intractable in general but today we will look at a way of doing approx. inference in such models
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Multiparameter Models

Multiparameter models consist of two or more unknowns, say θ1 and θ2

Given data y , some examples for the simple two parameter case

Assume the likelihood model to be of the form p(y |θ1, θ2) (e.g., case 1 and 3 above)

Assume a joint prior distribution p(θ1, θ2)

The joint posterior p(θ1, θ2|y) ∝ p(y |θ1, θ2)p(θ1, θ2)

Easy the joint prior is conjugate to the likelihood (e.g., NIW prior for Gaussian likelihood)

Otherwise needs more work, e.g., MLE-II, MCMC, VB, etc. (already saw MLE-II, will see more later)
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Multiparameter Models: Some Examples

Multiparameter models arise in many situations, e.g.,

Probabilistic models with unknown hyperparameters (e.g., Bayesian linear regression we just saw)

Joint analysis of data from multiple (and possibly related) groups: Hierarchical models

.. and in fact, pretty much in any non-toy example of probablistic model :)
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Another Example Problem: Matrix Factorization/Completion

Given: Data D = {rij} of “interactions” (e.g., ratings) of users i = 1, . . . ,N on j = 1, . . . ,M items

Note: “users” and “items” could mean other things too (depends on the data)

(i , j) ∈ Ω denotes an observed user-item pair. Ω is the set of all such pairs

Only a small number of user-item ratings observed, i.e., |Ω| � NM

We would like to predict the unobserved values rij /∈ D
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Matrix Completion via Matrix Factorization

Let’s call the full matrix R and assume it to be an approximately low-rank matrix

R = UV> + E

U = [u1 . . .uN ]> is N × K and consists of the latent factors of the N users

u i ∈ RK denotes the latent factors (or learned features) of user i

V = [v 1 . . . vM ]> is M × K and consists of the latent factors of the M items

v j ∈ RK denotes the latent factors (or learned features) of item j

E = {εij} consists of the “noise” in R (not captured by the low-rank assumption)

We can write each element of matrix R as

rij = u>i v j + εij (i = 1, . . . ,N, j = 1, . . . ,M)

Given u i and v j , any unobserved element in R can be predicted using the above
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A Bayesian Model for Matrix Factorization

The low-rank matrix factorization model assumes

rij = u>i v j + εij

Let’s assume the noise to be Gaussian εij ∼ N (εij |0, β−1)

This results in the following Gaussian likelihood for each observation

p(rij |u i , v j) = N (rij |u>i v j , β
−1)

Assume Gaussian priors on the user and item latent factors

p(u i ) = N (u i |0, λ−1
u IK ) and p(v j) = N (v j |0, λ−1

v IK )

The goal is to infer latent factors U = {u i}Ni=1 and V = {v j}Mj=1, given observed ratings from R

For simplicity, we will assume the hyperparams β, λu, λv to be fixed and not to be learned
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The Posterior

Our target posterior distribution for this model will be

p(U,V|R) =
p(R|U,V)p(U,V)∫ ∫
p(R|U,V)p(U,V)dUdV

=

∏
(i,j)∈Ω p(rij |u i , v j )

∏
i p(u i )

∏
j p(v j )∫

. . .
∫ ∏

(i,j)∈Ω p(rij |u i , v j )
∏

i p(u i )
∏

j p(v j )du1 . . . duNdv1 . . . dvM

The denominator (and hence the posterior) is intractable!

Therefore, the posterior must be approximated somehow

One way to approximate is to compute Conditional Posterior (CP) over individual variables, e.g.,

p(u i |R,V,U−i ) and p(v j |R,U,V−j)

U−i denotes all of U except u i . Note: V,U−i is the set of all unknowns except u i

V−j denotes all of V except v j . Note: U,V−j is the set of all unknowns except v j

Caveat: Each CP should be “computable” (but this is possible for models with “local conjugacy”)

Since CP of each var. depends on all other vars, inference algos based on computing CPs usually
work in alternating fashion, until each CP converges (e.g., Gibbs sampling which we’ll look at later)
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Conditional Posterior and Local Conjugacy
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Conditional Posterior and Local Conjugacy

Conditional Posteriors are easy to compute if the model admits local conjugacy

Note: Some researchers also call CP as Complete Conditional or Local Posterior

Consider a general model with data X and K unknown params/hyperparams Θ = (θ1, θ2, . . . , θK )

Suppose posterior p(Θ|X) = p(X|Θ)p(Θ)
p(X) is intractable (will be the case if p(Θ) isn’t conjugate)

However suppose we can compute the following conditional posterior tractably

p(θk |X,Θ−k) =
p(X|θk ,Θ−k)p(θk)∫
p(X|θk ,Θ−k)p(θk)dθk

∝ p(X|θk ,Θ−k)p(θk)

.. which would be possible if p(X|θk ,Θ−k) and p(θk) are conjugate to each other

Such models are called “locally conjugate” models

Important: In the above context, when considering the likelihood p(X|θk ,Θ−k)

X actually refers to only that part of data X that depends on θk

Θ−k refers to only those unknowns that “interact” with θk in generating that part of data
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Representation of Posterior

With the conditional posterior based approximation, the target posterior

p(Θ|X) =
p(X|Θ)p(Θ)

p(X)

.. is represented by several conditional posteriors p(θk |X,Θ−k), k = 1, . . . ,K

Each of the conditional posterior is a distribution over one unknown θk , given all other unknowns

Need a way to “combine” these CPs to get the overall posterior

One way to get the overall representation of the posterior can be can be using sampling based
inference algorithms like Gibbs sampling or MCMC (more on this later)
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Detour: Gibbs Sampling (Geman and Geman, 1982)

A general sampling algorithm to simulate samples from multivariate distributions

Samples one component at a time from its conditional, conditioned on all other components

Assumes that the conditional distributions are available in a closed form

The generated samples give a sample-based approximation of the multivariate distribution

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Inference in Multiparameter Models, Conditional Posterior, Local Conjugacy 13



Detour: Gibbs Sampling (Geman and Geman, 1982)

Can be used to get a sampling-based approximation of a multiparameter posterior distribution

Gibbs sampler iteratively draws random samples from conditional posteriors

When run long enough, the sampler produces samples from the joint posterior

For the simple two-parameter case θ = (θ1, θ2), the Gibb sampler looks like this

Initialize θ
(0)
2

For s = 1, . . . , S

Draw a random sample for θ1 as θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , y)

Draw a random sample for θ2 as θ
(s)
2 ∼ p(θ2|θ(s)

1 , y)

The set of S random samples {θ(s)
1 , θ

(s)
2 }Ss=1 represent the joint posterior distribution p(θ1, θ2|y)

More on Gibbs sampling when we discuss MCMC sampling algorithms (above is the high-level idea)
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Back to Bayesian Matrix Factorization..
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Bayesian Matrix Factorization: Conditional Posteriors

The BMF model with Gaussian likelihood and Gaussian prior has local conjugacy

To see this, note that the conditional posterior for user latent factor u i is

p(u i |R,V,U−i ) ∝
∏

j :(i,j)∈Ω

p(rij |u i , v j )p(u i )

Note: the posterior of u i doesn’t actually depend on U−i and rows of R except row i

After substituting the likelihood and prior (both Gaussians), the conditional posterior of u i is

p(u i |R,V) ∝
∏

j :(i,j)∈Ω

N (rij |u>i v j , β
−1)N (u i |0, λ−1

u IK )

Since V fixed (remember we are computing conditional posteriors alternating fashion), the
likelihood and prior are conjugate. This is just like Bayesian linear regression

Linear regression analogy: {v j}j :(i,j)∈Ω: inputs, {rij}j :(i,j)∈Ω: responses, u i : unknown weight vector

Likewise, the conditional posterior of v j will be

p(v j |R,U) ∝
∏

i :(i,j)∈Ω

N (rij |u>i v j , β
−1)N (v j |0, λ−1

v IK )

.. like Bayesian lin. reg. with {u i}i :(i,j)∈Ω: inputs, {rij}i :(i,j)∈Ω: responses, v j : unknown weight vec
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Bayesian Matrix Factorization: Conditional Posteriors

The conditional posteriors will have forms similar to solution of Bayesian linear regression

For each u i , its conditional posterior, given V and ratings

p(u i |R,V) = N (u i |µui
,Σui

)

where Σui
= (λu I + β

∑
j :(i,j)∈Ω v jv>j )−1and µui

= Σui
(β

∑
j :(i,j)∈Ω rijv j )

For each v j , its conditional posterior, given U and ratings

p(v j |R,U) = N (v j |µvj
,Σvj

)

where Σvj
= (λv I + β

∑
i :(i,j)∈Ω u iu>i )−1 and µvj

= Σvj
(β

∑
i :(i,j)∈Ω riju i )

These conditional posteriors can be updated in an alternating fashion until convergence

This can be be implemented using a Gibbs sampler

Note: Hyperparameters can also be inferred by computing their conditional posteriors (also see “Bayesian

Probabilistic Matrix Factorization using Markov Chain Monte Carlo” by Salakhutdinov and Mnih (2008))

Can extend Gaussian BMF easily to other exp. family distr. while maintaining local conjugacy
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Bayesian Matrix Factorization

The posterior predictive distribution for BMF (assuming other hyperparams known)

p(rij |R) =

∫ ∫
p(rij |u i , v j)p(u i , v j |R)du idv j

In general, this is hard and needs approximation

If we are using Gibbs sampling, we can use the S samples {u(s)
i , v (s)

j }
S
s=1 to compute the mean

For the Gaussian likelihood case, the mean can be computed as

E[rij ] ≈
1

S

S∑
s=1

u(s)
i

>
v (s)
j (Monte-Carlo averaging)

Can also compute the variance of rij (think how)

A comparison of Bayesian MF with other methods (from Salakhutdinov and Mnih (2008))
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Summary and Some Comments

Bayesian inference in even very complex probabilistic models can often be performed rather easily if
the models have the local conjugacy property

It therefore helps to choose the likelihood model and priors on each param as exp. family distr.

Even if we can’t get a globally conjugacy model, we can still get a model with local conjugacy

Local conjugacy allows computing conditional posteriors that are needed in inference algos like
Gibbs sampling, MCMC, EM, variational inference, etc.
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