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Some Basic Concepts You Should Know About

Random variables (discrete/continuous), probability distributions over discrete/continuous r.v.’s

Notions of joint, conditional, and marginal distributions

Properties of random variables (and of functions of random variables)

Expectation and variance/covariance

Examples of various probability distributions (and when is each appropriate) and their properties

Mean/mode/variance etc of a probability distribution

Multivariate Gaussian distribution and its properties (very important)

Functions of distributions, e.g., KL divergence, Entropy, etc.

Note: Today’s session is only a (very!) quick review of these things. Please refer to a text such as
PRML (Bishop) Chapter 2 + Appendix B, or MLAPP (Murphy) Chapter 2 for more details

Note: Some other pre-requisites (e.g., concepts from information theory, linear algebra, optimization,
etc.) will be introduced as and when they are required
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Random Variables

Informally, a random variable (r.v.) X denotes possible outcomes of an event

Can be discrete (i.e., finite many possible outcomes) or continuous

Some examples of discrete r.v.

A random variable X ∈ {0, 1} denoting outcomes of a coin-toss
A random variable X ∈ {1, 2, . . . , 6} denoteing outcome of a dice roll

Some examples of continuous r.v.

A random variable X ∈ (0, 1) denoting the bias of a coin
A random variable X denoting heights of students in CS698S
A random variable X denoting time to get to your hall from the department
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Discrete Random Variables

For a discrete r.v. X , p(x) denotes the probability that p(X = x)

p(x) is called the probability mass function (PMF)

p(x) ≥ 0

p(x) ≤ 1∑
x

p(x) = 1
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Continuous Random Variables

For a continuous r.v. X , a probability p(X = x) is meaningless

Instead we use p(X = x) or p(x) to denote the probability density at X = x

For a continuous r.v. X , we can only talk about probability within an interval X ∈ (x , x + δx)

p(x)δx is the probability that X ∈ (x , x + δx) as δx → 0

The probability density p(x) satisfies the following

p(x) ≥ 0 and

∫
x

p(x)dx = 1 (note: for continuous r.v., p(x) can be > 1)
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A word about notation..

p(.) can mean different things depending on the context

p(X ) denotes the distribution (PMF/PDF) of an r.v. X

p(X = x) or p(x) denotes the probability or probability density at point x

Actual meaning should be clear from the context (but be careful)

Exercise the same care when p(.) is a specific distribution (Bernoulli, Beta, Gaussian, etc.)

The following means drawing a random sample from the distribution p(X )

x ∼ p(X )
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Joint Probability Distribution

Joint probability distribution p(X ,Y ) models probability of co-occurrence of two r.v. X , Y

For discrete r.v., the joint PMF p(X ,Y ) is like a table (that sums to 1)∑
x

∑
y

p(X = x ,Y = y) = 1

For continuous r.v., we have joint PDF p(X ,Y )∫
x

∫
y

p(X = x ,Y = y)dxdy = 1
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Marginal Probability Distribution

Intuitively, the probability distribution of one r.v. regardless of the value the other r.v. takes

For discrete r.v.’s: p(X ) =
∑

y p(X ,Y = y), p(Y ) =
∑

x p(X = x ,Y )

For discrete r.v. it is the sum of the PMF table along the rows/columns

For continuous r.v.: p(X ) =
∫
y
p(X ,Y = y)dy , p(Y ) =

∫
x
p(X = x ,Y )dx

Note: Marginalization is also called “integrating out” (especially in Bayesian learning)
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Conditional Probability Distribution

- Probability distribution of one r.v. given the value of the other r.v.

- Conditional probability p(X |Y = y) or p(Y |X = x): like taking a slice of p(X ,Y )

- For a discrete distribution:

- For a continuous distribution1:

1
Picture courtesy: Computer vision: models, learning and inference (Simon Price)
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Some Basic Rules

Sum rule: Gives the marginal probability distribution from joint probability distribution

For discrete r.v.: p(X ) =
∑

Y p(X ,Y )

For continuous r.v.: p(X ) =
∫
Y
p(X ,Y )dY

Product rule: p(X ,Y ) = p(Y |X )p(X ) = p(X |Y )p(Y )

Bayes rule: Gives conditional probability

p(Y |X ) =
p(X |Y )p(Y )

p(X )

For discrete r.v.: p(Y |X ) = p(X |Y )p(Y )∑
Y p(X |Y )p(Y )

For continuous r.v.: p(Y |X ) = p(X |Y )p(Y )∫
Y p(X |Y )p(Y )dY

Also remember the chain rule

p(X1,X2, . . . ,XN) = p(X1)p(X2|X1) . . . p(XN |X1, . . . ,XN−1)
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CDF and Quantiles

Cumulative distribution function (CDF): F (x) = p(X ≤ x)

α ≤ 1 quantile is defined as the xα s.t.

p(X ≤ xα) = α
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Independence

X and Y are independent (X ⊥⊥ Y ) when knowing one tells nothing about the other

p(X |Y = y) = p(X )

p(Y |X = x) = p(Y )

p(X ,Y ) = p(X )p(Y )

X ⊥⊥ Y is also called marginal independence

Conditional independence (X ⊥⊥ Y |Z ): independence given the value of another r.v. Z

p(X ,Y |Z = z) = p(X |Z = z)p(Y |Z = z)
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Expectation

Expectation or mean µ of an r.v. with PMF/PDF p(X )

E[X ] =
∑
x

xp(x) (for discrete distributions)

E[X ] =

∫
x

xp(x)dx (for continuous distributions)

Note: The definition applies to functions of r.v. too (e.g., E[f (X )])

Note: Expectations are always w.r.t. the underlying probability distribution of the random variable
involved, so sometimes we’ll write this explicitly as Ep()[.], unless it is clear from the context

Linearity of expectation

E[αf (X ) + βg(Y )] = αE[f (X )] + βE[g(Y )]

(a very useful property, true even if X and Y are not independent)

Rule of iterated/total expectation

Ep(X )[X ] = Ep(Y )[Ep(X |Y )[X |Y ]]
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Variance and Covariance

Variance σ2 (or “spread” around mean µ) of an r.v. with PMF/PDF p(X )

var[X ] = E[(X − µ)2] = E[X 2]− µ2

Standard deviation: std[X ] =
√

var[X ] = σ

For two scalar r.v.’s x and y , the covariance is defined by

cov[x , y ] = E [{x − E[x ]}{y − E[y ]}] = E[xy ]− E[x ]E[y ]

For vector r.v. x and y , the covariance matrix is defined as

cov[x , y ] = E
[
{x − E[x ]}{yT − E[yT ]}

]
= E[xyT ]− E[x ]E[y>]

Cov. of components of a vector r.v. x : cov[x ] = cov[x , x ]

Note: The definitions apply to functions of r.v. too (e.g., var[f (X )])

Note: Variance of sum of independent r.v.’s: var[X + Y ] = var[X ] + var[Y ]
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KL Divergence

KullbackLeibler divergence between two probability distributions p(X ) and q(X )

KL(p||q) =

∫
p(X ) log

p(X )

q(X )
dX = −

∫
p(X ) log

q(X )

p(X )
dX (for continuous distributions)

KL(p||q) =
K∑

k=1

p(X = k) log
p(X = k)

q(X = k)
(for discrete distributions)

It is non-negative, i.e., KL(p||q) ≥ 0, and zero if and only if p(X ) and q(X ) are the same

For some distributions, e.g., Gaussians, KL divergence has a closed form expression

KL divergence is not symmetric, i.e., KL(p||q) 6= KL(q||p)
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Entropy

Entropy of a continuous/discrete distribution p(X )

H(p) = −
∫

p(X ) log p(X )dX

H(p) = −
K∑

k=1

p(X = k) log p(X = k)

In general, a peaky distribution would have a smaller entropy than a flat distribution

Note that the KL divergence can be written in terms of expetation and entropy terms

KL(p||q) = Ep(X )[− log q(X )]− H(p)

Some other definition to keep in mind: conditional entropy, joint entropy, mutual information, etc.
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Transformation of Random Variables

Suppose y = f (x) = Ax + b be a linear function of an r.v. x

Suppose E[x ] = µ and cov[x ] = Σ

Expectation of y
E[y ] = E[Ax + b] = Aµ + b

Covariance of y
cov[y ] = cov[Ax + b] = AΣAT

Likewise if y = f (x) = aTx + b is a scalar-valued linear function of an r.v. x :

E[y ] = E[aTx + b] = aTµ + b

var[y ] = var[aTx + b] = aTΣa

Another very useful property worth remembering
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Common Probability Distributions

Important: We will use these extensively to model data as well as parameters

Some discrete distributions and what they can model:

Bernoulli: Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss

Binomial: Bounded non-negative integers, e.g., # of heads in n coin tosses

Multinomial: One of K (>2) possibilities, e.g., outcome of a dice roll

Poisson: Non-negative integers, e.g., # of words in a document

.. and many others

Some continuous distributions and what they can model:

Uniform: numbers defined over a fixed range

Beta: numbers between 0 and 1, e.g., probability of head for a biased coin

Gamma: Positive unbounded real numbers

Dirichlet: vectors that sum of 1 (fraction of data points in different clusters)

Gaussian: real-valued numbers or real-valued vectors

.. and many others
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Discrete Distributions
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Bernoulli Distribution

Distribution over a binary r.v. x ∈ {0, 1}, like a coin-toss outcome

Defined by a probability parameter p ∈ (0, 1)

P(x = 1) = p

Distribution defined as: Bernoulli(x ; p) = px(1− p)1−x

Mean: E[x ] = p

Variance: var[x ] = p(1− p)
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Binomial Distribution

Distribution over number of successes m (an r.v.) in a number of trials

Defined by two parameters: total number of trials (N) and probability of each success p ∈ (0, 1)

Can think of Binomial as multiple independent Bernoulli trials

Distribution defined as
Binomial(m;N, p) =

(
N

m

)
pm(1− p)N−m

Mean: E[m] = Np

Variance: var[m] = Np(1− p)
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Multinoulli Distribution

Also known as the categorical distribution (models categorical variables)

Think of a random assignment of an item to one of K bins - a K dim. binary r.v. x with single 1
(i.e.,

∑K
k=1 xk = 1): Modeled by a multinoulli

[0 0 0 . . . 0 1 0 0]︸ ︷︷ ︸
length = K

Let vector p = [p1, p2, . . . , pK ] define the probability of going to each bin

pk ∈ (0, 1) is the probability that xk = 1 (assigned to bin k)∑K
k=1 pk = 1

The multinoulli is defined as: Multinoulli(x ; p) =
∏K

k=1 p
xk
k

Mean: E[xk ] = pk

Variance: var[xk ] = pk(1− pk)
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Multinomial Distribution

Think of repeating the Multinoulli N times

Like distributing N items to K bins. Suppose xk is count in bin k

0 ≤ xk ≤ N ∀ k = 1, . . . ,K ,
K∑

k=1

xk = N

Assume probability of going to each bin: p = [p1, p2, . . . , pK ]

Multonomial models the bin allocations via a discrete vector x of size K

[x1 x2 . . . xk−1 xk xk−1 . . . xK ]

Distribution defined as

Multinomial(x ;N,p) =

(
N

x1x2 . . . xK

) K∏
k=1

pxkk

Mean: E[xk ] = Npk

Variance: var[xk ] = Npk(1− pk)

Note: For N = 1, multinomial is the same as multinoulli
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Poisson Distribution

Used to model a non-negative integer (count) r.v. k

Examples: number of words in a document, number of events in a fixed interval of time, etc.

Defined by a positive rate parameter λ

Distribution defined as
Poisson(k ;λ) =

λke−λ

k!
k = 0, 1, 2, . . .

Mean: E[k] = λ

Variance: var[k] = λ
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The Empirical Distribution

Given a set of points φ1, . . . , φK , the empirical distribution is a discrete distribution defined as

pemp(A) =
1

K

K∑
k=1

δφk
(A)

where δφ(.) is the dirac function located at φ, s.t.

δφ(A) =

{
1 if φ ∈ A

0 if φ ∈ A

The “weighted” version of the empirical distribution is

pemp(A) =
K∑

k=1

wkδφk
(A) (where

K∑
k=1

wk = 1)

and the weights and points (wk , φk)Kk=1 together define this discrete distribution
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Continuous Distributions
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Uniform Distribution

Models a continuous r.v. x distributed uniformly over a finite interval [a, b]

Uniform(x ; a, b) =
1

b − a

Mean: E[x ] = (b+a)
2

Variance: var[x ] = (b−a)2
12

Topics in Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Refresher: Basics of Probability and Statistics 27



Beta Distribution

Used to model an r.v. p between 0 and 1 (e.g., a probability)

Defined by two shape parameters α and β

Beta(p;α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1

Mean: E[p] = α
α+β

Variance: var[p] = αβ
(α+β)2(α+β+1)

Often used to model the probability parameter of a Bernoulli or Binomial (also conjugate to these
distributions)
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Gamma Distribution

Used to model positive real-valued r.v. x

Defined by a shape parameters k and a scale parameter θ

Gamma(x ; k , θ) =
xk−1e−

x
θ

θkΓ(k)

Mean: E[x ] = kθ

Variance: var[x ] = kθ2

Often used to model the rate parameter of Poisson or exponential distribution (conjugate to both),
or to model the inverse variance (precision) of a Gaussian (conjuate to Gaussian if mean known)

Note: There is another equivalent parameterization of gamma in terms of shape and rate parameters (rate = 1/scale). Another related distribution: Inverse gamma.
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Dirichlet Distribution

Used to model non-negative r.v. vectors p = [p1, . . . , pK ] that sum to 1

0 ≤ pk ≤ 1, ∀k = 1, . . . ,K and
K∑

k=1

pk = 1

Equivalent to a distribution over the K − 1 dimensional simplex

Defined by a K size vector α = [α1, . . . , αK ] of positive reals

Distribution defined as
Dirichlet(p;α) =

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

pαk−1
k

Often used to model the probability vector parameters of Multinoulli/Multinomial distribution

Dirichlet is conjugate to Multinoulli/Multinomial

Note: Dirichlet can be seen as a generalization of the Beta distribution. Normalizing a bunch of
Gamma r.v.’s gives an r.v. that is Dirichlet distributed.
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Dirichlet Distribution

- For p = [p1, p2, . . . , pK ] drawn from Dirichlet(α1, α2, . . . , αK )

Mean: E[pk ] = αk∑K
k=1 αk

Variance: var[pk ] = αk (α0−αk

α2
0(α0+1)

where α0 =
∑K

k=1 αk

- Note: p is a point on (K − 1)-simplex

- Note: α0 =
∑K

k=1 αk controls how peaked the distribution is

- Note: αk ’s control where the peak(s) occur

Plot of a 3 dim. Dirichlet (2 dim. simplex) for various values of α:
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Now comes the
Gaussian (Normal) distribution..
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Univariate Gaussian Distribution

Distribution over real-valued scalar r.v. x

Defined by a scalar mean µ and a scalar variance σ2

Distribution defined as
N (x ;µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2

Mean: E[x ] = µ

Variance: var[x ] = σ2

Precision (inverse variance) β = 1/σ2
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Multivariate Gaussian Distribution

Distribution over a multivariate r.v. vector x ∈ RD of real numbers

Defined by a mean vector µ ∈ RD and a D × D covariance matrix Σ

N (x ;µ,Σ) =
1√

(2π)D |Σ|
e−

1
2 (x−µ)>Σ−1(x−µ)

The covariance matrix Σ must be symmetric and positive definite

All eigenvalues are positive

z>Σz > 0 for any real vector z
Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix, i.e., the
precision matrix Λ = Σ−1
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Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full

Picture courtesy: Computer vision: models, learning and inference (Simon Price)
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Some nice properties of the
Gaussian distribution..
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Multivariate Gaussian: Marginals and Conditionals

Given x having multivariate Gaussian distribution N (x |µ,Σ) with Λ = Σ−1. Suppose

The marginal distribution is simply

p(xa) = N (xa|µa,Σaa)

The conditional distribution is given by

Thus marginals and conditionals
of Gaussians are Gaussians
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Multivariate Gaussian: Marginals and Conditionals

Given the conditional of an r.v. y and marginal of r.v. x , y is conditioned on

Marginal of y and “reverse” conditional are given by

where Σ = (Λ + A>LA)−1

Note that the “reverse conditional” p(x |y) is basically the posterior of x is the prior is p(x)

Also note that the marginal p(y) is the predictive distribution of y after integrating out x

Very useful property for probabilistic models with Gaussian likelihoods and/or priors. Also very
handly for computing marginal likelihoods.
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Gaussians: Product of Gaussians

Pointwise multiplication of two Gaussians is another (unnormalized) Gaussian
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Multivariate Gaussian: Linear Transformations

Given a x ∈ Rd with a multivariate Gaussian distribution

N (x ;µ,Σ)

Consider a linear transform of x into y ∈ RD

y = Ax + b

where A is D × d and b ∈ RD

y ∈ RD will have a multivariate Gaussian distribution

N (y ; Aµ + b,AΣA>)
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Some Other Important Distributions

Wishart Distribution and Inverse Wishart (IW) Distribution: Used to model D × D p.s.d. matrices

Wishart often used as a conjugate prior for modeling precision matrices, IW for covariance matrices

For D = 1, Wishart is the same as gamma dist., IW is the same as inverse gamma (IG) dist.

Normal-Wishart Distribution: Used to model mean and precision matrix of a multivar. Gaussian

Normal-Inverse Wishart (NIW): : Used to model mean and cov. matrix of a multivar. Gaussian

For D = 1, the corresponding distr. are Normal-Gamma and Normal-Inverse Gamma (NIG)

Student-t Distribution (a more robust version of Normal distribution)

Can be thought of as a mixture of infinite many Gaussians with different precisions (or a single
Gaussian with its precision/precision matrix given a gamma/Wishart prior and integrated out)

Please refer to PRML (Bishop) Chapter 2 + Appendix B, or MLAPP (Murphy) Chapter 2 for more
details
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