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Some Basic Concepts You Should Know About

©

Random variables (discrete/continuous), probability distributions over discrete/continuous r.v.'s

o Notions of joint, conditional, and marginal distributions

©

Properties of random variables (and of functions of random variables)
o Expectation and variance/covariance
o Examples of various probability distributions (and when is each appropriate) and their properties

o Mean/mode/variance etc of a probability distribution

(+]

Multivariate Gaussian distribution and its properties (very important)

o Functions of distributions, e.g., KL divergence, Entropy, etc.

Note: Today's session is only a (very!) quick review of these things. Please refer to a text such as
PRML (Bishop) Chapter 2 + Appendix B, or MLAPP (Murphy) Chapter 2 for more details

Note: Some other pre-requisites (e.g., concepts from information theory, linear algebra, optimization,
etc.) will be introduced as and when they are required
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Random Variables

o Informally, a random variable (r.v.) X denotes possible outcomes of an event

o Can be discrete (i.e., finite many possible outcomes) or continuous

o Some examples of discrete r.v.

o A random variable X € {0, 1} denoting outcomes of a coin-toss

o A random variable X € {1,2,...,6} denoteing outcome of a dice roll
o Some examples of continuous r.v.

o A random variable X € (0, 1) denoting the bias of a coin
o A random variable X denoting heights of students in C5698S
o A random variable X denoting time to get to your hall from the department
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Discrete Random Variables

o For a discrete r.v. X, p(x) denotes the probability that p(X = x)
o p(x) is called the probability mass function (PMF)

p(x) > 0
p(x) < 1
Sh) = 1
X
P, .

Topics in Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Refresher: Basics of Probability and Statistics



Continuous Random Variables

o For a continuous r.v. X, a probability p(X = x) is meaningless

o Instead we use p(X = x) or p(x) to denote the probability density at X = x

o For a continuous r.v. X, we can only talk about probability within an interval X € (x, x + dx)

o p(x)dx is the probability that X € (x,x + dx) as ox — 0

A

\
/ \

/ : = m.,\
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b

o The probability density p(x) satisfies the following

p(x) >0 and p(x)dx =1 (note: for continuous r.v., p(x) can be > 1)

X
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A word about notation..

o p(.) can mean different things depending on the context

o p(X) denotes the distribution (PMF/PDF) of an r.v. X
o p(X = x) or p(x) denotes the probability or probability density at point x

o Actual meaning should be clear from the context (but be careful)

o Exercise the same care when p(.) is a specific distribution (Bernoulli, Beta, Gaussian, etc.)

(+]

The following means drawing a random sample from the distribution p(X)

x ~ p(X)
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Joint Probability Distribution

Joint probability distribution p(X, Y) models probability of co-occurrence of two r.v. X, Y
For discrete r.v., the joint PMF p(X, Y) is like a table (that sums to 1)

S X =x Y =y) =1

X

X p(X=x,Y=y)

Y P(X.Y) ’/ y

For continuous r.v., we have joint PDF p(X,Y)

//p(X:X7Y:y)dxdy:1
JxJy
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Marginal Probability Distribution

o Intuitively, the probability distribution of one r.v. regardless of the value the other r.v. takes
o Fordiscrete r.v.'s: p(X) =3 p(X,Y =y), p(Y)=>, p(X=xY)

o For discrete r.v. it is the sum of the PMF table along the rows/columns

X p(X=x,Y=y)

Y p(X’Y) / columns

ye=>pP(Y)

p(X)
o For continuous r.v.: p(X) = [ p(X,Y =y)dy, p(Y)= [ p(X=x,Y)dx

o Note: Marginalization is also called “integrating out” (especially in Bayesian learning)
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Conditional Probability Distribution

- Probability distribution of one r.v. given the value of the other r.v.

- Conditional probability p(X|Y = y) or p(Y|X = x): like taking a slice of p(X, Y)
- For a discrete distribution:

X X
Y Y

1 i e

U
R

- For a continuous distribution®:

p(xly=y,)

p(Xly=y,)

1

Picture courtesy: Computer vision: models, learning and inference (Simon Price)
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Some Basic Rules

o Sum rule: Gives the marginal probability distribution from joint probability distribution

o For discrete rv.: p(X) =3, p(X,Y)
o For continuous r.v.: p(X) = [, p(X,Y)dY

o Product rule: p(X,Y) = p(Y|X)p(X) = p(X|Y)p(Y)

o Bayes rule: Gives conditional probability

p(X[Y)p(Y)

p(Y1X) = P

o For discrete r.v.: p(Y|X) = %

p(X]Y)p(Y)

o For continuous r.v.: p(Y|X) = TRV aY
Y

o Also remember the chain rule

p(Xl,Xz, . ,XN) = p(Xl)p(X2|X1) . p(XN|X1, e ,XNfl)
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CDF and Quantiles

o Cumulative distribution function (CDF): F(x) = p(X < x)

o « <1 quantile is defined as the x, s.t.
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Independence

o X and Y are independent (X 1L Y') when knowing one tells nothing about the other

p(XIY =y) = p(X)
p(Y|IX=x) = p(Y)
p(X,Y) = p(X)p(Y)
X p(X)
Y P(X,Y) = p(Y)

o X 1L Y is also called marginal independence

o Conditional independence (X 1L Y|Z): independence given the value of another r.v. Z

p(X.Y|Z = 2) = p(X|Z = 2)p(Y|Z = 2)

Topics in Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Refresher: Basics of Probability and Statistics

12



Expectation

o Expectation or mean p of an r.v. with PMF/PDF p(X)

E[X] = Y xp(x)  (for discrete distributions)

E[X] = /xp(x)dx (for continuous distributions)

o Note: The definition applies to functions of r.v. too (e.g., E[f(X)])

o Note: Expectations are always w.r.t. the underlying probability distribution of the random variable
involved, so sometimes we'll write this explicitly as EP()[.], unless it is clear from the context

o Linearity of expectation
Elaf(X) + Bg(Y)] = aE[f(X)] + BE[g(Y)]
(a very useful property, true even if X and Y are not independent)

o Rule of iterated/total expectation
Epx)[X] = Ep(r)[Epx ) [XIY]]
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Variance and Covariance

Variance o2 (or “spread” around mean ) of an r.v. with PMF/PDF p(X)

©

var[X] = E[(X — n)?] = E[X?] -

©

Standard deviation: std[X] = y/var[X] =0

o For two scalar r.v.'s x and y, the covariance is defined by

covlx, y] = E[{x — E[x]H{y — E[y]}] = E[xy] - E[x]E[y]
For vector r.v. x and y, the covariance matrix is defined as

cov[x,y] =E [{x —E[x]}{y” —E[y"]}] =E[xy'] - E[x]E[y ]

o Cov. of components of a vector r.v. x: cov[x] = cov[x, x]

©

o Note: The definitions apply to functions of r.v. too (e.g., var[f(X)])
o Note: Variance of sum of independent r.v.’s: var[X + Y] = var[X] 4 var[Y]

Topics in Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Refresher: Basics of Probability and Statistics



KL Divergence

(+]

©

©

KullbackLeibler divergence between two probability distributions p(X) and g(X)

_ PX) s _ q(X) , o
KL(pllg) = /p(X) log a(X) dX = f/p(X) log MdX (for continuous distributions)
KL(pllq) = §K (X =k)lo PX = k) (for discrete distributions)
Plq - pot P - g q(X — k)

It is non-negative, i.e., KL(p||g) > 0, and zero if and only if p(X) and g(X) are the same
For some distributions, e.g., Gaussians, KL divergence has a closed form expression

KL divergence is not symmetric, i.e., KL(p||q) # KL(q||p)
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Entropy

o Entropy of a continuous/discrete distribution p(X)
H(p) = —/p(X) log p(X)dX
K

H(p) = *Zp k) log p(X = k)

©

In general, a peaky distribution would have a smaller entropy than a flat distribution

©

Note that the KL divergence can be written in terms of expetation and entropy terms

KL(pllg) = Epx)[—log q(X)] — H(p)

©

Some other definition to keep in mind: conditional entropy, joint entropy, mutual information, etc.
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Transformation of Random Variables

Suppose y = f(x) = Ax + b be a linear function of an r.v. x
Suppose E[x] = p and cov[x] = X

o Expectation of y

Ely] =E[Ax +b] =Au+b
o Covariance of y
cov[y] = cov[Ax + b] = AZAT

Likewise if y = f(x) = a’ x + b is a scalar-valued linear function of an r.v. x:

o Ely]=E[a"x+bl=a"pu+b

o var[y] =var[a’x + b = a’Xa

Another very useful property worth remembering
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Common Probability Distributions

Important: We will use these extensively to model data as well as parameters

Some discrete distributions and what they can model:
o Bernoulli: Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss
o Binomial: Bounded non-negative integers, e.g., # of heads in n coin tosses

o Multinomial: One of K (>2) possibilities, e.g., outcome of a dice roll

©

Poisson: Non-negative integers, e.g., # of words in a document
o .. and many others
Some continuous distributions and what they can model:
o Uniform: numbers defined over a fixed range
o Beta: numbers between 0 and 1, e.g., probability of head for a biased coin
o Gamma: Positive unbounded real numbers
Dirichlet: vectors that sum of 1 (fraction of data points in different clusters)

Gaussian: real-valued numbers or real-valued vectors

©

. and many others
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Discrete Distributions
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Bernoulli Distribution

o Distribution over a binary r.v. x € {0, 1}, like a coin-toss outcome

o Defined by a probability parameter p € (0,1)

o Distribution defined as: Bernoulli(x; p) = p*(1 — p)*~>

o Mean: E[x] =p
o Variance: var[x] = p(1 — p)
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Binomial Distribution

o Distribution over number of successes m (an r.v.) in a number of trials

Defined by two parameters: total number of trials () and probability of each success p € (0,1)

©

o Can think of Binomial as multiple independent Bernoulli trials

o : N
o Distribution defined as Binomial(m; N, p) = < )pm(l — p)N-m
m

Binomial distribution withn = 15 and p =02

Probability

o Mean: E[m] = Np et

o Variance: var[m] = Np(1 — p)
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Multinoulli Distribution

o Also known as the categorical distribution (models categorical variables)

o Think of a random assignment of an item to one of K bins - a K dim. binary r.v. x with single 1
(e, Y25, xx = 1): Modeled by a multinoulli

0 00 ...0 1 0 0

length = K

(]

Let vector p = [p1, p2, - - ., Pk] define the probability of going to each bin
o px € (0,1) is the probability that x, = 1 (assigned to bin k)
o Yiapk=1

The multinoulli is defined as: Multinoulli(x; p) = HkK:1 P

©

©

Mean: E[x(] = p«

©

Variance: var[xx] = px(1 — px)
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Multinomial Distribution

o Think of repeating the Multinoulli N times

o Like distributing N items to K bins. Suppose xj is count in bin k
K
0<xx<N Vk=1,... K, Zxk:N
k=1

o Assume probability of going to each bin: p =[p1,p2, ..., pk]
o Multonomial models the bin allocations via a discrete vector x of size K
[x1 x .oxk—1 Xk Xk—1... Xk]

o Distribution defined as

N K
Multinomial(x; N, p) = ( ) 117
k=1

X1X0 . . . XK
o Mean: E[xx] = Npx

o Variance: var[xx] = Npx(1 — p)

o Note: For N = 1, multinomial is the same as multinoulli
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Poisson Distribution

o Used to model a non-negative integer (count) r.v. k
o Examples: number of words in a document, number of events in a fixed interval of time, etc.
o Defined by a positive rate parameter A
o Distribution defined as . Ake=A
Poisson(k; \) = i k=0,1,2,...
0.40, T
03519 ® A=l
030 | .4
5025 A=10
20.20
RUIE
0.10. 0,
0.05 R
0.00 o 15 s 20

o Mean: E[k] = A

o Variance: var[k] = A
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The Empirical Distribution
o Given a set of points ¢1, ..., ¢k, the empirical distribution is a discrete distribution defined as
1K
Pemp(A) = K ;5@ (A)

where d4(.) is the dirac function located at ¢, s.t.

1 ifgecA
%6(A) = {0 if o€ A

o The "weighted” version of the empirical distribution is
K K
Pemp(A) = Z Widg, (A) (where Z we = 1)
k=1 k=1

and the weights and points (wk, ¢x)K_; together define this discrete distribution
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Continuous Distributions
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Uniform Distribution

o Models a continuous r.v. x distributed uniformly over a finite interval [a, b]

1
Unif ;a,b) =
niform(x; a, b) bh_ A
f(x)
1 . "
b-a
0 a b X
o Mean: E[x] = (b;a)
o Variance: var[x] = (bI22)2
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Beta Distribution

o Used to model an r.v. p between 0 and 1 (e.g., a probability)
o Defined by two shape parameters « and 3

Beta(p; o, 8) = mﬁ)“‘l(l -p)°

o Mean: E[p] = ;%5
o Variance: var[p] = W

o Often used to model the probability parameter of a Bernoulli or Binomial (also conjugate to these
distributions)
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Gamma Distribution

o Used to model positive real-valued r.v. x

o Defined by a shape parameters k and a scale parameter ¢

xk—le=%
Gamma X'k 9 = =N
(x; k. 6) OKT (k)
0.5 T T T T
—— k=100 =20
k=206 =20
0.4 k=306 =20
k=500 =10
03 g b ol
k=050 =10

o Mean: E[x] = k6
o Variance: var[x] = k6?

o Often used to model the rate parameter of Poisson or exponential distribution (conjugate to both),
or to model the inverse variance (precision) of a Gaussian (conjuate to Gaussian if mean known)

Note: There is another equivalent parameterization of gamma in terms of shape and rate parameters (rate = 1/scale). Another related distribution: Inverse gamma.
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Dirichlet Distribution

o Used to model non-negative r.v. vectors p = [py,. .., px] that sum to 1

K
0<p <1, Vk=1,...,K and > pe=1
k=1

o Equivalent to a distribution over the K — 1 dimensional simplex
o Defined by a K size vector a = [, . .., ak]| of positive reals
o Distribution defined as Dirichlet(p: &) — r(%:le ) K p?kfl
[Tezs Tlaw) 121
o Often used to model the probability vector parameters of Multinoulli/Multinomial distribution
o Dirichlet is conjugate to Multinoulli/Multinomial

o Note: Dirichlet can be seen as a generalization of the Beta distribution. Normalizing a bunch of
Gamma r.v.’s gives an r.v. that is Dirichlet distributed.
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Dirichlet Distribution

- For p =[p1,p2,- .., pk] drawn from Dirichlet(ay, az, . .., ak)
o Mean: E[pi] = =%—
k

ZK:I Xk

: _ K
o Variance: var[py] = % where ag = Y, _; ax

- Note: p is a point on (K — 1)-simplex

Note: o = Zle o controls how peaked the distribution is
- Note: ay's control where the peak(s) occur

Plot of a 3 dim. Dirichlet (2 dim. simplex) for various values of a:

AALA

(0.90,0.90,0.90) (1.00,1.00,1.00) (2.00,2.00,2.00) (4.00,4.00,4.00)
(0.85,1.50,2.00) (1.00,1.76,2.35) (1.70,3.00,4.00) (3.40,6.00,8.00)
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Now comes the
Gaussian (Normal) distribution..
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Univariate Gaussian Distribution

o Distribution over real-valued scalar r.v. x
o Defined by a scalar mean p and a scalar variance o

o Distribution defined as

o Mean: E[x] = u
o Variance: var[x] = o2

o Precision (inverse variance) 3 = 1/02
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Multivariate Gaussian Distribution

o Distribution over a multivariate r.v. vector x € RP of real numbers

o Defined by a mean vector p € RP and a D x D covariance matrix X
1

V/(2m)P x|

e 3(x—1) TET (x—p)

N(x;p,X) =

o The covariance matrix X must be symmetric and positive definite
o All eigenvalues are positive
o z'Xz > 0 for any real vector z
o Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix, i.e., the
precision matrix A = ¥ 1
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Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full

Spherical covariances Diagonal covariances Full covariances

20 00 00] 10 0.0

B z
00 20 0.0 00 18

I -£ I 5 -5
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Some nice properties of the
Gaussian distribution..
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Multivariate Gaussian: Marginals and Conditionals

o Given x having multivariate Gaussian distribution A(x|u, X) with A = £~ Suppose
e (m.) . (m)
Xp oy
Yoo Bab Ao Aap
2 — ada a . A — aa (e}
(Eba Ebb) (Abn Abb)
o The marginal distribution is simply

P(xa) = N(Xalpty Xaa)
o The conditional distribution is given by

p(Xe|xp) = -"'V-(X“‘qu- ALD
H(LH’) = Hg;— AH_UIAGE](X!? T lu“h)

Thus marginals and conditionals
of Gaussians are Gaussians
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Multivariate Gaussian: Marginals and Conditionals

o Given the conditional of an r.v. y and marginal of r.v. x, y is conditioned on

p(y|x) = N(y\Ax+b7L_1)
px) = N (xlp. A7)

o Marginal of y and “reverse” conditional are given by
plxly) = NEE{ATL(y —b)+Au}3)
p(y) = N(ylAp+b L7+ AATIAT)

where £ = (A + ATLA)!
o Note that the “reverse conditional” p(x|y) is basically the posterior of x is the prior is p(x)
o Also note that the marginal p(y) is the predictive distribution of y after integrating out x

o Very useful property for probabilistic models with Gaussian likelihoods and/or priors. Also very

handly for computing marginal likelihoods.
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Gaussians: Product of Gaussians

o Pointwise multiplication of two Gaussians is another (unnormalized) Gaussian

N pu, )N (v, P) = %/\/’(X:w. T).

where
T=(Z"+P !
w=TE 'u+P 1)
Zl1 =N, 2+ P) =N p, % +P)
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Multivariate Gaussian: Linear Transformations

o Given a x € R? with a multivariate Gaussian distribution
N(x; p, X)
o Consider a linear transform of x into y € RP
y=Ax+b
where A'is D x d and b € RP

o y € RP will have a multivariate Gaussian distribution

N(y;Ap+b,AZAT)
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Some Other Important Distributions

o Wishart Distribution and Inverse Wishart (IW) Distribution: Used to model D x D p.s.d. matrices
o Wishart often used as a conjugate prior for modeling precision matrices, IW for covariance matrices
o For D =1, Wishart is the same as gamma dist., IW is the same as inverse gamma (IG) dist.

o Normal-Wishart Distribution: Used to model mean and precision matrix of a multivar. Gaussian
o Normal-Inverse Wishart (NIW): : Used to model mean and cov. matrix of a multivar. Gaussian
o For D =1, the corresponding distr. are Normal-Gamma and Normal-Inverse Gamma (NIG)

o Student-t Distribution (a more robust version of Normal distribution)

o Can be thought of as a mixture of infinite many Gaussians with different precisions (or a single
Gaussian with its precision/precision matrix given a gamma/Wishart prior and integrated out)

Please refer to PRML (Bishop) Chapter 2 + Appendix B, or MLAPP (Murphy) Chapter 2 for more
details
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