Refresher: Basics of Probability and Statistics

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Some Basic Concepts You Should Know About

- Random variables (discrete/continuous), probability distributions over discrete/continuous r.v.'s
- Notions of joint, conditional, and marginal distributions
- Properties of random variables (and of functions of random variables)
 - Expectation and variance/covariance
- Examples of various probability distributions (and when is each appropriate) and their properties
 - Mean/mode/variance etc of a probability distribution
- Multivariate Gaussian distribution and its properties (very important)
- Functions of distributions, e.g., KL divergence, Entropy, etc.
- **Note:** Today's session is only a (very!) quick review of these things. Please refer to a text such as PRML (Bishop) Chapter 2 + Appendix B, or MLAPP (Murphy) Chapter 2 for more details
- **Note:** Some other pre-requisites (e.g., concepts from information theory, linear algebra, optimization, etc.) will be introduced as and when they are required

Random Variables

Informally, a random variable (r.v.) X denotes possible outcomes of an event
Can be discrete (i.e., finite many possible outcomes) or continuous

• Some examples of **discrete r.v.**

- ${\scriptstyle \circ }$ A random variable $X \in \{0,1\}$ denoting outcomes of a coin-toss
- A random variable $X \in \{1, 2, \dots, 6\}$ denoteing outcome of a dice roll
- Some examples of continuous r.v.
 - \circ A random variable $X \in (0,1)$ denoting the bias of a coin
 - A random variable X denoting heights of students in CS698S
 - A random variable X denoting time to get to your hall from the department

Discrete Random Variables

For a discrete r.v. X, p(x) denotes the probability that p(X = x)
p(x) is called the probability mass function (PMF)

Continuous Random Variables

• For a continuous r.v. X, a probability p(X = x) is meaningless

• Instead we use p(X = x) or p(x) to denote the probability density at X = x

• For a continuous r.v. X, we can only talk about probability within an interval $X \in (x, x + \delta x)$

• $p(x)\delta x$ is the probability that $X\in (x,x+\delta x)$ as $\delta x
ightarrow 0$

• The probability density p(x) satisfies the following

$$p(x) \ge 0$$
 and $\int_x p(x) dx = 1$ (note: for continuous r.v., $p(x)$ can be > 1)

- p(.) can mean different things depending on the context
 - p(X) denotes the distribution (PMF/PDF) of an r.v. X
 - p(X = x) or p(x) denotes the **probability** or **probability density** at point x
- Actual meaning should be clear from the context (but be careful)
- Exercise the same care when p(.) is a specific distribution (Bernoulli, Beta, Gaussian, etc.)
- The following means drawing a random sample from the distribution p(X)

 $x \sim p(X)$

Joint Probability Distribution

Joint probability distribution p(X, Y) models probability of co-occurrence of two r.v. X, Y For discrete r.v., the joint PMF p(X, Y) is like a table (that sums to 1)

For continuous r.v., we have joint PDF p(X, Y)

$$\int_{x}\int_{y}p(X=x,Y=y)dxdy=1$$

Marginal Probability Distribution

• Intuitively, the probability distribution of one r.v. regardless of the value the other r.v. takes

• For discrete r.v.'s: $p(X) = \sum_{y} p(X, Y = y)$, $p(Y) = \sum_{x} p(X = x, Y)$

• For discrete r.v. it is the sum of the PMF table along the rows/columns

• For continuous r.v.: $p(X) = \int_{Y} p(X, Y = y) dy$, $p(Y) = \int_{X} p(X = x, Y) dx$

• Note: Marginalization is also called "integrating out" (especially in Bayesian learning)

Conditional Probability Distribution

- Probability distribution of one r.v. given the value of the other r.v.
- Conditional probability p(X|Y = y) or p(Y|X = x): like taking a slice of p(X, Y)
- For a discrete distribution:

- For a continuous distribution¹:

¹Picture courtesy: Computer vision: models, learning and inference (Simon Price)

Topics in Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

Some Basic Rules

- Sum rule: Gives the marginal probability distribution from joint probability distribution
 - For discrete r.v.: $p(X) = \sum_{Y} p(X, Y)$
 - For continuous r.v.: $p(X) = \int_Y p(X, Y) dY$
- **Product rule:** p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y)
- Bayes rule: Gives conditional probability

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

- For discrete r.v.: $p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_{Y} p(X|Y)p(Y)}$
- For continuous r.v.: $p(Y|X) = \frac{p(X|Y)p(Y)}{\int_Y p(X|Y)p(Y)dY}$
- Also remember the chain rule

$$p(X_1, X_2, \ldots, X_N) = p(X_1)p(X_2|X_1) \ldots p(X_N|X_1, \ldots, X_{N-1})$$

- Cumulative distribution function (CDF): $F(x) = p(X \le x)$
- $\alpha \leq 1$ quantile is defined as the x_{α} s.t.

$$p(X \leq x_{\alpha}) = \alpha$$

Independence

• X and Y are independent $(X \perp H Y)$ when knowing one tells nothing about the other

• $X \perp Y$ is also called marginal independence

• **Conditional independence** $(X \perp Y | Z)$: independence given the value of another r.v. Z

$$p(X, Y|Z = z) = p(X|Z = z)p(Y|Z = z)$$

Expectation

• **Expectation** or mean μ of an r.v. with PMF/PDF p(X)

$$\mathbb{E}[X] = \sum_{x} xp(x) \quad \text{(for discrete distributions)}$$
$$\mathbb{E}[X] = \int_{x} xp(x)dx \quad \text{(for continuous distributions)}$$

- Note: The definition applies to functions of r.v. too (e.g., $\mathbb{E}[f(X)]$)
- **Note:** Expectations are always w.r.t. the underlying probability distribution of the random variable involved, so sometimes we'll write this explicitly as $\mathbb{E}_{p()}[.]$, unless it is clear from the context
- Linearity of expectation

$$\mathbb{E}[\alpha f(X) + \beta g(Y)] = \alpha \mathbb{E}[f(X)] + \beta \mathbb{E}[g(Y)]$$

(a very useful property, true even if X and Y are not independent)

• Rule of iterated/total expectation

$$\mathbb{E}_{\rho(X)}[X] = \mathbb{E}_{\rho(Y)}[\mathbb{E}_{\rho(X|Y)}[X|Y]]$$

Variance and Covariance

• Variance σ^2 (or "spread" around mean μ) of an r.v. with PMF/PDF p(X)

$$\mathsf{var}[X] = \mathbb{E}[(X-\mu)^2] = \mathbb{E}[X^2] - \mu^2$$

• Standard deviation: $std[X] = \sqrt{var[X]} = \sigma$

• For two scalar r.v.'s x and y, the **covariance** is defined by

$$\operatorname{cov}[x,y] = \mathbb{E}\left[\{x - \mathbb{E}[x]\}\{y - \mathbb{E}[y]\}\right] = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

• For vector r.v. x and y, the covariance matrix is defined as

$$\mathsf{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}\left[\{\mathbf{x} - \mathbb{E}[\mathbf{x}]\}\{\mathbf{y}^{\mathsf{T}} - \mathbb{E}[\mathbf{y}^{\mathsf{T}}]\}\right] = \mathbb{E}[\mathbf{x}\mathbf{y}^{\mathsf{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathsf{T}}]$$

• Cov. of components of a vector r.v. \mathbf{x} : $\operatorname{cov}[\mathbf{x}] = \operatorname{cov}[\mathbf{x}, \mathbf{x}]$

- Note: The definitions apply to functions of r.v. too (e.g., var[f(X)])
- Note: Variance of sum of independent r.v.'s: var[X + Y] = var[X] + var[Y]

KL Divergence

• KullbackLeibler divergence between two probability distributions p(X) and q(X)

$$\begin{aligned} \mathcal{K}L(p||q) &= \int p(X) \log \frac{p(X)}{q(X)} dX = -\int p(X) \log \frac{q(X)}{p(X)} dX \qquad \text{(for continuous distributions)} \\ \mathcal{K}L(p||q) &= \sum_{k=1}^{K} p(X=k) \log \frac{p(X=k)}{q(X=k)} \qquad \text{(for discrete distributions)} \end{aligned}$$

• It is non-negative, i.e., $KL(p||q) \ge 0$, and zero if and only if p(X) and q(X) are the same

- For some distributions, e.g., Gaussians, KL divergence has a closed form expression
- KL divergence is not symmetric, i.e., $KL(p||q) \neq KL(q||p)$

Entropy

• Entropy of a continuous/discrete distribution p(X)

$$H(p) = -\int p(X) \log p(X) dX$$

$$H(p) = -\sum_{k=1}^{K} p(X = k) \log p(X = k)$$

• In general, a peaky distribution would have a smaller entropy than a flat distribution

• Note that the KL divergence can be written in terms of expetation and entropy terms

$$KL(p||q) = \mathbb{E}_{p(X)}[-\log q(X)] - H(p)$$

Some other definition to keep in mind: conditional entropy, joint entropy, mutual information, etc.

Transformation of Random Variables

Suppose $\mathbf{y} = f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ be a linear function of an r.v. \mathbf{x} Suppose $\mathbb{E}[\mathbf{x}] = \mu$ and $\operatorname{cov}[\mathbf{x}] = \mathbf{\Sigma}$

• Expectation of \boldsymbol{y}

$$\mathbb{E}[\mathbf{y}] = \mathbb{E}[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\mathbf{\mu} + \mathbf{b}$$

• Covariance of **y**

$$\operatorname{cov}[\mathbf{y}] = \operatorname{cov}[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathsf{T}}$$

Likewise if $y = f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b$ is a scalar-valued linear function of an r.v. \mathbf{x} :

•
$$\mathbb{E}[y] = \mathbb{E}[\boldsymbol{a}^T \boldsymbol{x} + b] = \boldsymbol{a}^T \boldsymbol{\mu} + b$$

• $\operatorname{var}[y] = \operatorname{var}[\boldsymbol{a}^T \boldsymbol{x} + b] = \boldsymbol{a}^T \boldsymbol{\Sigma} \boldsymbol{a}$

Another very useful property worth remembering

Common Probability Distributions

Important: We will use these extensively to model **data** as well as **parameters**

Some **discrete distributions** and what they can model:

- Bernoulli: Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss
- **Binomial:** Bounded non-negative integers, e.g., # of heads in *n* coin tosses
- Multinomial: One of K (>2) possibilities, e.g., outcome of a dice roll
- $\, \bullet \,$ Poisson: Non-negative integers, e.g., # of words in a document
- .. and many others

Some continuous distributions and what they can model:

- Uniform: numbers defined over a fixed range
- Beta: numbers between 0 and 1, e.g., probability of head for a biased coin
- Gamma: Positive unbounded real numbers
- Dirichlet: vectors that sum of 1 (fraction of data points in different clusters)
- Gaussian: real-valued numbers or real-valued vectors
- ${\scriptstyle \bullet }$.. and many others

Discrete Distributions

Bernoulli Distribution

- Distribution over a binary r.v. $x \in \{0, 1\}$, like a coin-toss outcome
- Defined by a probability parameter $p \in (0,1)$

$$P(x=1)=p$$

• Distribution defined as: Bernoulli $(x; p) = p^{x}(1-p)^{1-x}$

- Mean: $\mathbb{E}[x] = p$
- Variance: var[x] = p(1-p)

Binomial Distribution

- Distribution over number of successes m (an r.v.) in a number of trials
- Defined by two parameters: total number of trials (N) and probability of each success $p \in (0,1)$
- Can think of Binomial as multiple independent Bernoulli trials
- Distribution defined as

Binomial(*m*; *N*, *p*) =
$$\binom{N}{m} p^m (1-p)^{N-m}$$

Binomial distribution with n = 15 and p = 0.2

• Mean: $\mathbb{E}[m] = Np$

• Variance: var[m] = Np(1-p)

Multinoulli Distribution

• Also known as the categorical distribution (models categorical variables)

• Think of a random assignment of an item to one of K bins - a K dim. binary r.v. x with single 1 (i.e., $\sum_{k=1}^{K} x_k = 1$): Modeled by a multinoulli

$$\underbrace{\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \end{bmatrix}}_{\text{length} = K}$$

• Let vector $\boldsymbol{p} = [p_1, p_2, \dots, p_K]$ define the probability of going to each bin

•
$$p_k \in (0,1)$$
 is the probability that $x_k = 1$ (assigned to bin k)
• $\sum_{k=1}^K p_k = 1$

- The multinoulli is defined as: Multinoulli($\boldsymbol{x}; \boldsymbol{p}$) = $\prod_{k=1}^{K} p_k^{x_k}$
- Mean: $\mathbb{E}[x_k] = p_k$
- Variance: $var[x_k] = p_k(1 p_k)$

Multinomial Distribution

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_k is count in bin k

$$0 \leq x_k \leq N \quad \forall \ k = 1, \dots, K, \qquad \sum_{k=1}^n x_k = N$$

- Assume probability of going to each bin: $\boldsymbol{p} = [p_1, p_2, \dots, p_K]$
- Multonomial models the bin allocations via a discrete vector \boldsymbol{x} of size K

$$\begin{bmatrix} x_1 & x_2 & \ldots & x_{k-1} & x_k & x_{k-1} & \ldots & x_K \end{bmatrix}$$

Distribution defined as

Multinomial(
$$\boldsymbol{x}; N, \boldsymbol{p}$$
) = $\binom{N}{x_1 x_2 \dots x_K} \prod_{k=1}^K p_k^{x_k}$

- Mean: $\mathbb{E}[x_k] = Np_k$
- Variance: $var[x_k] = Np_k(1 p_k)$
- Note: For N = 1, multinomial is the same as multinoulli

Poisson Distribution

- Used to model a non-negative integer (count) r.v. k
- Examples: number of words in a document, number of events in a fixed interval of time, etc.
- $\bullet\,$ Defined by a positive rate parameter λ
- Distribution defined as

$$\mathsf{Poisson}(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad k = 0, 1, 2, \dots$$

Mean: E[k] = λ
Variance: var[k] = λ

The Empirical Distribution

• Given a set of points ϕ_1, \ldots, ϕ_K , the empirical distribution is a discrete distribution defined as

$$p_{emp}(A) = rac{1}{K}\sum_{k=1}^K \delta_{\phi_k}(A)$$

where $\delta_{\phi}(.)$ is the **dirac function** located at ϕ , s.t.

$$\delta_{\phi}(\mathcal{A}) = egin{cases} 1 & ext{if } \phi \in \mathcal{A} \ 0 & ext{if } \phi \in \mathcal{A} \end{cases}$$

• The "weighted" version of the empirical distribution is

$$p_{emp}(A) = \sum_{k=1}^{K} w_k \delta_{\phi_k}(A)$$
 (where $\sum_{k=1}^{K} w_k = 1$)

and the weights and points $(w_k, \phi_k)_{k=1}^K$ together define this discrete distribution

Continuous Distributions

Uniform Distribution

• Models a continuous r.v. x distributed uniformly over a finite interval [a, b]

$$\mathsf{Uniform}(x; a, b) = \frac{1}{b-a}$$

Beta Distribution

• Used to model an r.v. p between 0 and 1 (e.g., a probability)

 $\bullet\,$ Defined by two shape parameters α and β

• Mean: $\mathbb{E}[p] = \frac{\alpha}{\alpha+\beta}$ • Variance: $\operatorname{var}[p] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

• Often used to model the probability parameter of a Bernoulli or Binomial (also **conjugate** to these distributions)

Gamma Distribution

• Used to model positive real-valued r.v. x

• Defined by a shape parameters k and a scale parameter θ

• Mean: $\mathbb{E}[x] = k\theta$

• Variance: $var[x] = k\theta^2$

• Often used to model the rate parameter of Poisson or exponential distribution (conjugate to both), or to model the inverse variance (precision) of a Gaussian (conjuate to Gaussian if mean known)

Note: There is another equivalent parameterization of gamma in terms of shape and rate parameters (rate = 1/scale). Another related distribution: Inverse gamma.

Dirichlet Distribution

• Used to model non-negative r.v. vectors $\boldsymbol{p} = [p_1, \dots, p_K]$ that sum to 1

$$0 \leq p_k \leq 1, \quad \forall k = 1, \dots, K \quad \text{and} \quad \sum_{k=1}^{K} p_k = 1$$

• Equivalent to a distribution over the K-1 dimensional simplex

• Defined by a K size vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_K]$ of positive reals

• Distribution defined as
Dirichlet(
$$\boldsymbol{p}$$
; $\boldsymbol{\alpha}$) = $\frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} p_k^{\alpha_k - 1}$

• Often used to model the probability vector parameters of Multinoulli/Multinomial distribution

- Dirichlet is conjugate to Multinoulli/Multinomial
- **Note:** Dirichlet can be seen as a generalization of the Beta distribution. Normalizing a bunch of Gamma r.v.'s gives an r.v. that is Dirichlet distributed.

Dirichlet Distribution

For p = [p₁, p₂,..., p_K] drawn from Dirichlet(α₁, α₂,..., α_K)
Mean: E[p_k] = ^{α_k}/_{∑^K_{k=1} α_k}
Variance: var[p_k] = ^{α_k(α₀-α_k}/_{α²₀(α₀+1)} where α₀ = ∑^K_{k=1} α_k
Note: p is a point on (K - 1)-simplex
Note: α₀ = ∑^K_{k=1} α_k controls how peaked the distribution is
Note: α_k's control where the peak(s) occur

Plot of a 3 dim. Dirichlet (2 dim. simplex) for various values of α :

Now comes the Gaussian (Normal) distribution..

Univariate Gaussian Distribution

- Distribution over real-valued scalar r.v. x
- \bullet Defined by a scalar mean μ and a scalar variance σ^2
- Distribution defined as

- Mean: $\mathbb{E}[x] = \mu$
- Variance: $var[x] = \sigma^2$
- Precision (inverse variance) $\beta = 1/\sigma^2$

Multivariate Gaussian Distribution

 ${}_{\bullet}$ Distribution over a multivariate r.v. vector $\pmb{x} \in \mathbb{R}^{D}$ of real numbers

• Defined by a mean vector $\boldsymbol{\mu} \in \mathbb{R}^D$ and a D imes D covariance matrix $\boldsymbol{\Sigma}$

$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

 $\,\circ\,$ The covariance matrix $\pmb{\Sigma}$ must be symmetric and positive definite

- All eigenvalues are positive
- $z^{\top} \Sigma z > 0$ for any real vector z

• Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix, i.e., the precision matrix $\Lambda = \Sigma^{-1}$

Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full

Topics in Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

Refresher: Basics of Probability and Statistics

Some nice properties of the Gaussian distribution..

Multivariate Gaussian: Marginals and Conditionals

• Given **x** having multivariate Gaussian distribution $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Lambda} = \boldsymbol{\Sigma}^{-1}$. Suppose

$$\mathbf{x} = egin{pmatrix} \mathbf{x}_a \ \mathbf{x}_b \end{pmatrix}, \quad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix}$$
 $\mathbf{\Sigma} = egin{pmatrix} \mathbf{\Sigma}_{aa} & \mathbf{\Sigma}_{ab} \ \mathbf{\Sigma}_{ba} & \mathbf{\Sigma}_{bb} \end{pmatrix}, \quad oldsymbol{\Lambda} = egin{pmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{pmatrix}$

• The marginal distribution is simply

$$p(oldsymbol{x}_{a}) = \mathcal{N}(oldsymbol{x}_{a}|oldsymbol{\mu}_{a},oldsymbol{\Sigma}_{aa})$$

• The conditional distribution is given by

$$p(\mathbf{x}_a | \mathbf{x}_b) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_{a|b}, \boldsymbol{\Lambda}_{aa}^{-1})$$
$$\boldsymbol{\mu}_{a|b} = \boldsymbol{\mu}_a - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab}(\mathbf{x}_b - \boldsymbol{\mu}_b)$$

Thus marginals and conditionals of Gaussians are Gaussians

Topics in Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)

Multivariate Gaussian: Marginals and Conditionals

• Given the conditional of an r.v. **y** and marginal of r.v. **x**, **y** is conditioned on

$$egin{array}{rcl} p(\mathbf{y}|\mathbf{x}) &=& \mathcal{N}\left(\mathbf{y}|\mathbf{A}\mathbf{x}+\mathbf{b},\mathbf{L}^{-1}
ight) \ p(\mathbf{x}) &=& \mathcal{N}\left(\mathbf{x}|oldsymbol{\mu},oldsymbol{\Lambda}^{-1}
ight) \end{array}$$

• Marginal of **y** and "reverse" conditional are given by

$$\begin{array}{lll} p(\mathbf{x}|\mathbf{y}) &=& \mathcal{N}(\mathbf{x}|\boldsymbol{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Lambda}\boldsymbol{\mu}\},\boldsymbol{\Sigma})\\ p(\mathbf{y}) &=& \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu}+\mathbf{b},\mathbf{L}^{-1}+\mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}}) \end{array}$$

where $\pmb{\Sigma} = (\pmb{\Lambda} + \pmb{\mathsf{A}}^\top \pmb{\mathsf{L}} \pmb{\mathsf{A}})^{-1}$

- Note that the "reverse conditional" p(x|y) is basically the posterior of x is the prior is p(x)
- Also note that the marginal p(y) is the predictive distribution of y after integrating out x
- Very useful property for probabilistic models with Gaussian likelihoods and/or priors. Also very handly for computing **marginal likelihoods**.

• Pointwise multiplication of two Gaussians is another (unnormalized) Gaussian

$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \mathcal{N}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \frac{1}{Z} \mathcal{N}(\mathbf{x}; \boldsymbol{\omega}, \mathbf{T}),$$

where

$$\begin{split} \mathbf{T} &= (\mathbf{\Sigma}^{-1} + \mathbf{P}^{-1})^{-1} \\ \boldsymbol{\omega} &= \mathbf{T} (\mathbf{\Sigma}^{-1} \boldsymbol{\mu} + \mathbf{P}^{-1} \boldsymbol{\nu}) \\ Z^{-1} &= \mathcal{N}(\boldsymbol{\mu}; \boldsymbol{\nu}, \mathbf{\Sigma} + \mathbf{P}) = \mathcal{N}(\boldsymbol{\nu}; \boldsymbol{\mu}, \mathbf{\Sigma} + \mathbf{P}) \end{split}$$

Multivariate Gaussian: Linear Transformations

 ${\scriptstyle \bullet }$ Given a ${\it \textbf{x}} \in \mathbb{R}^{d}$ with a multivariate Gaussian distribution

 $\mathcal{N}(\pmb{x}; \pmb{\mu}, \pmb{\Sigma})$

• Consider a linear transform of \boldsymbol{x} into $\boldsymbol{y} \in \mathbb{R}^D$

y = Ax + b

where **A** is $D \times d$ and $\mathbf{b} \in \mathbb{R}^{D}$

• $\mathbf{y} \in \mathbb{R}^D$ will have a multivariate Gaussian distribution

 $\mathcal{N}(\mathbf{y}; \mathbf{A} \boldsymbol{\mu} + \mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{ op})$

Some Other Important Distributions

- Wishart Distribution and Inverse Wishart (IW) Distribution: Used to model $D \times D$ p.s.d. matrices
 - Wishart often used as a conjugate prior for modeling precision matrices, IW for covariance matrices
 - For D = 1, Wishart is the same as gamma dist., IW is the same as inverse gamma (IG) dist.
- Normal-Wishart Distribution: Used to model mean and precision matrix of a multivar. Gaussian
 - Normal-Inverse Wishart (NIW): : Used to model mean and cov. matrix of a multivar. Gaussian
 - For D = 1, the corresponding distr. are Normal-Gamma and Normal-Inverse Gamma (NIG)
- Student-t Distribution (a more robust version of Normal distribution)
 - Can be thought of as a mixture of infinite many Gaussians with different precisions (or a single Gaussian with its precision/precision matrix given a gamma/Wishart prior and integrated out)

Please refer to PRML (Bishop) Chapter 2 + Appendix B, or MLAPP (Murphy) Chapter 2 for more details