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1 Motivation and Basic Principles of the Monte Carlo
Method

The modern history of Monte Carlo techniques dates back from the 1940’s and
the Manhattan project. There are earlier descriptions of Monte Carlo experi-
ments, Buffon’s famous needle experiment is one them, but examples have been
traced back to Babylonian and old testament times [13]. As we shall see these
techniques are particularly useful in scenarios where it is of interest to perform
calculations that involve - explicitly or implicitly - a probability distribution π
on a space X (typically X ⊂ R

nx for some integer nx), for which closed-form
calculations cannot be carried out due to the algebraic complexity of the prob-
lem. As we shall see the main principle of Monte Carlo techniques consists of
replacing the algebraic representation of π, e.g. 1/

√
2π exp(−1

2 x2) with a sample

or population representation of π, e.g. a set of samples X1, X2, . . . , XN
iid∼ π(x) =

1/
√

2π exp(−1
2 x2). This proves in practice to be extremely powerful as difficult -

if not impossible - exact algebraic calculations are typically replaced with simple
calculations in the sample domain. One should however bear in mind that these
are random approximations of the true quantity of interest. An important sce-
nario where Monte Carlo methods can be of great help is when one is interested
in evaluating expectations of functions, say f , of the type Eπ (f(X)) where π
is the probability distributions that defines the expectation. The nature of the
approach, where algebraic quantities are approximated by random quantities,
requires one to quantify the random fluctuations around the true desired value.
As we shall see, the power of Monte Carlo techniques lies in the fact that the
rate at which the approximation converges towards the true value of interest
is immune to the dimension nx of the space X where π is defined. This is the
second interest of Monte Carlo techniques.

These numerical techniques have been widely used in physics over the last 50
years, but their interest in the context of Bayesian statistics and more generally
statistics was only fully realized in the late eighties early nineties. Although we
will here mostly focus on their application in statistics, one should bear in mind
that the material presented in this introduction to the topic has applications far
beyond statistics.

The prerequisites for this introduction are a basic first year undergraduate
background in probability and statistics. Keywords include random variable,
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114 C. Andrieu

law of large numbers, estimators, central limit theorem and basic notions about
Markov chains.

1.1 Motivating Example

In this section we motivate and illustrate the use of Monte Carlo methods with a
toy example. We then point out the power of the approach on a “real” example.

Calculating π with the Help of Rain and the Law of Large Numbers

A Physical Experiment Consider the 2 × 2 square, say S ⊂ R
2, with inscribed

disc D of radius 1 as in Figure 1.
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Imagine that an “idealized” rain falls uniformly on the square S, i.e. the
probability for a drop to fall in a region A is proportional to the area of A.
More precisely, let D be the random variable defined on X = S representing the
location of a drop and A a region of the square, then

P(D ∈ A) =

∫
A dxdy
∫

S dxdy
. (1)

where x and y are the Cartesian coordinates. Now assume that we have observed
N such independent drops, say {Di, i = 1, . . . , N} as in Figure 2.

Fig. 1. A 2× 2 square S with inscribed disk D of radius 1
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Intuitively, without any knowledge of elementary statistics, a sensible tech-
nique to estimate the probability P(D ∈ A) of falling in a given region A ⊂ S
(and think for example of A = D) would consist of using the following formula

P(D ∈ A) � number of drops that fell in A
N

.

This formula certainly makes sense, but we would like to be more rigorous
and give a statistical justification to it.

P(D ∈ A) as an Expectation. Let us first introduce the indicator function of a
set A, defined as follows,

IA(x, y) =
{

1 if point D = (x, y) ∈ A,
0 otherwise, .

We define the random variable V (D) := IA(D) := IA(X, Y ), where X, Y are
the random variables that represent the Cartesian coordinates of a uniformly
distributed point on S, denoted D ∼ US . Using V , it is not hard to show that

P(D ∈ A) =
∫

S
IA(x, y)

1
4
dxdy = EUS (V ),

where for a probability distribution π we will denote Eπ the expectation with
respect to π.

Fig. 2. A 2× 2 square S with inscribed disk D of radius 1
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The Law of Large Numbers. Now, similarly, let us introduce {Vi := V (Di), i =
1, . . . , N} the random variables associated to the drops {Di, i = 1, . . . , N} and
consider the sum

SN =
∑N

i=1 Vi

N
. (2)

We notice that an alternative expression for SN is

SN =
number of drops that fell in A

N
,

which corresponds precisely to the formula which we intuitively suggested to
approximate P(D ∈ A). However Eq. (2) is statistically more explicit, in the
sense that it tells us that our suggested approximation of P(D ∈ A) is the
empirical average of independent and identically distributed random variables,
{Vi, i = 1, . . . , N}. Assuming that the rain lasts forever and therefore that N →
+∞, then one can apply the law of large numbers (since EUS (|V |) < +∞ here)
and deduce that

lim
N→+∞

SN = EUS (V ), (almost surely).

As we have already proved that P(D ∈ A) = EUS (V ), the law of large
numbers mathematically justifies our intuitive method of estimating P(D ∈ A),
provided that N is large enough.

A Method of Approximating π. We note that as a special case we have defined
a method of calculating π. Indeed,

P(D ∈ D) =
∫

D

1
4
dxdy =

π

4
.

SN as defined in Eq. (2) with A = D is an unbiased estimator of π/4, which
is also ensured to converge towards π/4 for N very large. The quantity SN −
π/4 for a day of rain as a function of the number of drops for one rainfall
is presented in Figure 3. However in practice one is interested in obtaining a
result in finite time, i.e. for N finite. SN is a random variable which can be
rewritten as SN = π/4 + EN where EN is a random error term. It is naturally
of interest to characterize the precision of our estimator, i.e. characterize the
average magnitude of the fluctuations of the random error EN , as illustrated in
Figure 4. A simple measure of the average magnitude of EN is its variance,

var(EN ) = var(SN ) =
1
N

var(V1),

as the {Vi, i = 1, . . . , N} are independent. It is worth remembering that since
SN is unbiased,

√
var(SN ) =

√
E [(SN − P(D ∈ D))2],

which using the result above implies that the mean square error between SN and
P(D ∈ D) decreases as 1/

√
N . This is illustrated in Figure 5 where the dotted
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lines represent ±√var(V )/N and the dashed lines represent the empirical mean
square error SN − π/4 estimated from the 100 realizations in Figure 4. One can
be slightly more precise and first invoke here an asymptotic result, the central
limit theorem (which can be applied here as var(V ) < +∞). As N → +∞,

√
NSN →d N (π/4, var(V )),

which implies that for N large enough the probability of the error being larger
than 2

√
var(V )/N is

Fig. 3. Convergence of SN − π/4 as a function of the number of samples, for one
realization (or rainfall)

Fig. 4. Convergence of SN − π/4 for 100 realizations of the rain
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P

(
|SN − π/4| > 2

√
var(V )/N

)
� 0.05,

with 2
√

var(V ) = 0.8211. In the present case (we are sampling here from a
Bernoulli distribution) one can be much more precise and use a non-asymptotic
result. Indeed, using a Bernstein type inequality, one can prove [22, p. 69] that
for any integer N ≥ 1 and ε > 0,

P (|SN − π/4| > ε) ≤ 2 exp
(−2Nε2)

which tells us that for any α ∈ (0, 1] ,

P (|SN − π/4| > ε) < α

which on the one hand provides us with a minimum number of samples in order
to achieve a given precision of α,

N =
[
log (2/α)

2ε2

]

,

where for a real x the quantity [x] denotes the integer part of x, or alternatively
tells us that for any N ≥ 1,

P

(

|SN − π/4| >

√
log (40)

2N

)

≤ 0.05

with
√

log (40) /2 = 1.3541.
Both results tell us that in some sense the approximation error is inversely

proportional to
√

N .

A General and Powerful Method. Now consider the case where X = R
nx for any

integer nx, and in particular large values of nx. Replace now S and D above
with a hypercube Snx and an inscribed hyperball Dnx in X. If we could observe
a hyper-rain, then it would not be difficult to see that the method described
earlier to estimate the area of D could be used to estimate the volume of Dnx .
The only requirement is that one should be able to tell if a drop fell in Dnx or not:
in other words one should be able to calculate IDnx (D) point-wise. Now a very
important result is that the arguments that lead earlier to the formal validation
of the Monte Carlo approach to estimate π/4 remain identical here (check it to
convince yourself!). In particular the rate of convergence of the estimator in the
mean square sense is again independent of the dimension nx.

This would not be the case if we were using a deterministic method on a grid of
regularly spaced points. Typically, the rate of convergence of such deterministic
methods is of the form 1/Nr/nx where r is related to the smoothness of the
contours of region A, and is N the number of function (here IA) evaluations.
Monte Carlo methods are thus extremely attractive when nx is large.
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A More General Context. In the previous subsection, we have seen that a
simple experience involving the rain can help us to evaluate an expectation in
an extremely simple way. In this subsection we generalist the ideas developed
earlier in order to tackle the generic problem of estimating

Eπ(f(x)) �
∫

X
f(x)π(x)dx,

where f : X → R
nf and π is a probability distribution on X ⊂ R

nx . We will
assume that Eπ(|f(x)|) < +∞ but that it is difficult to obtain an analytical
expression for Eπ(f(x)).

1.2 Generalization of the Rain Experiment

In the light of the square/circle example, assume that N >> 1 i.i.d. samples
X(i) ∼ π (i = 1, . . . , N) are available to us (since it is unlikely that rain can
generate samples from any distribution π, we will address the problem of sample
generation in the next section). Now consider any set A ⊂ X and assume that we
are interested in calculating π(A) = P(X ∈ A) for X ∼ π. We naturally choose
the following estimator

π(A) � number of samples in A
total number of samples

,

which by the law of large numbers is a consistent estimator of π(A) since

lim
N→+∞

1
N

N∑

i=1

IA(Xi) = Eπ(IA(X)) = π(A).

A way of generalizing this in order to evaluate Eπ(f(x)) consists of considering
the estimator

SN (f) =
1
N

N∑

i=1

f(Xi),

which is unbiased. From the law of large numbers SN (f) will converge and

lim
N→+∞

1
N

N∑

i=1

f(Xi) = Eπ(f(X)) a.s.

Here again a good measure of the approximation is the variance of SN (f),

varπ [SN (f)] = varπ

[
1
N

N∑

i=1

f(X(i))

]

=
varπ [f(X)]

N
.

Now the central limit theorem applies if varπ [f(X)] < ∞ and tells us that

SN (f) N→+∞→ d N
(√

NEπ(f(X)), varπ [f(X)]
)

,
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and the conclusions drawn in the rain example are still valid here:

1. The rate of convergence is immune to the dimension of X.
2. It is easy to take complex integration domains into account.
3. It is easily implementable and general. The requirements are

(a) to be able to evaluate f(x) for any x ∈ X,
(b) to be able to produce samples distributed according to π.

1.3 From the Algebraic to the Sample Representation

In this subsection we make explicit the - approximate - sample representation
of π. Let us first introduce the delta-Dirac function δx0 for x0 ∈ X, defined as
follows

∫

X
f(x)δx0(x)dx = f(x0),

for any f : X → R
nf . Note that this implies in particular that for A ⊂ X,
∫

X
IA(x)δx0(x)dx =

∫

A
δx0(x)dx = IA(x0).

Now, for Xi ∼ π for i = 1, . . . , N , we can introduce the following mixture of
delta-Dirac functions

π̂N (x) :=
1
N

N∑

i=1

δXi
(x) ,

which is the empirical measure of the sample, and consider for any A ⊂ X

π̂N (A) �
∫

A
π̂N (x) dx =

N∑

i=1

∫

A

1
N

δXi (x) =
N∑

i=1

1
N

IA(x).

which is precisely SN (IA). What we have touched upon here is simply the sample
representation of π, of which an illustration can be found in Figure 6 for a
Gaussian distribution. The concentration of points in a given region of
the space represents π. Note that this approach is in contrast with what is
usually done in parametric statistics, i.e. start with samples and then introduce a
distribution with an algebraic representation for the underlying population. Note
that here each sample Xi has a weight of 1/N , but that it is also possible to
consider weighted sample representations of π: the approach is called importance
sampling and will be covered later on.

Now consider the problem of estimating Eπ(f). We simply replace π with its
sample representation π̂N and obtain

Eπ(f) �
∫

X
f (x)

N∑

i=1

1
N

δXi (x) dx =
N∑

i=1

1
N

∫

X
f (x) δXi (x) dx =

1
N

N∑

i=1

f(Xi),

which is precisely SN (f), the Monte Carlo estimator suggested earlier. The
interest of this approximating representation of π will become clearer later, in
particular in the context of importance sampling.
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1.4 Expectations in Statistics

The aim of this subsection is to illustrate why it is important to compute expec-
tations in statistics, in particular in the Bayesian context.

Assume that we are given a Bayesian model, i.e. a likelihood p(y|θ) and a
prior distribution p(θ). We observe some data y and wish to estimate θ. In a
Bayesian framework, all the available information about θ is summarized by the
posterior distribution, given by Bayes’ rule,

Fig. 5. Variance of SN − π/4 across 100 realizations as a function of the number of
samples and the theoretical variance

Fig. 6. Sample representation of a Gaussian distribution
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p(θ|y) =
p(y|θ)p(θ)

∫
Θ

p(y|θ)p(θ)dθ
.

The expression looks simple, but the bottom of the fraction is an integral,
and more precisely an expectation

Ep(θ)(p(y|θ)) =
∫

Θ

p(y|θ)p(θ)dθ.

In many situations this integral typically does not admit a closed-form ex-
pression.

Example 1. We observe y=(y1, y2, . . . , yT ) which are iid such that yi ∼N (µj , σ
2
j )

with probability pj for j = 1, 2. Here θ = (µ1, µ2, σ
2
1 , σ2

2 , p1). The likelihood in
this case is

p(y|θ) =
T∏

i=1

[

p1
1

√
2πσ2

1

e
− (yi−µ1)2

2σ2
1 + (1 − p1)

1
√

2πσ2
2

e
− (yi−µ2)2

2σ2
2

]

.

The normalizing constant of the posterior can be complicated, e.g. impose a
priori constraints on the parameters σ2

1 < 10σ2
2 +

√
µ1µ2 and µ2 < π.

Other important examples include the evaluation of the posterior mean square
estimate of θ,

θ̂MSE := Ep(θ|y)(θ) =
∫

Θ

θp(θ|y)dθ,

the median, i.e. the solution θ̂median of

Ep(θ|y)(I(θ ≤ θ̂median)) =
∫ +∞

−∞
I(θ ≤ θ̂median)p(θ|y)dθ = 1/2.

but also the evaluation of the marginal posterior distribution p(θ1|y) of p(θ1, θ2|y),

p(θ1|y) =
∫

Θ

p(θ1, θ2|y)dθ2

=
∫

Θ

p(θ1|θ2, y)p(θ2|y)dθ2

= Ep(θ2|y)(p(θ1|θ2, y)) . . .

Similar problems are encountered when computing, marginal posterior means,
posterior variances, posterior credibility regions.

1.5 A Simple Application

In 1786 Laplace was interested in determining if the probability θ of a male
birth in Paris over a certain period of time was above 0.5 or not. The official
figures gave y1 = 251, 527 males birth for y2 = 241, 945 female births. The ob-
served proportion was therefore 0.509,. We choose a uniform distribution as prior
distribution for θ the proportion of male births. The posterior distribution is
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p(θ|y) = Be(θ; 251528, 241946).

Imagine that we have no table and are interested in the posterior mean of
this posterior distribution. Furthermore, imagine that we can sample (using a
computer) a large number N of independent samples (θi, i = 1, . . . , N) from this
distribution. One could propose the following estimator

1
N

N∑

i=1

θi

as from the law of large numbers,

lim
N→+∞

1
N

N∑

i=1

θi = Ep(θ|y)(θ).

We could also estimate the posterior variance as

lim
N→+∞

1
N

N∑

i=1

θ2
i = Ep(θ|y)(θ2).

Now consider the following more challenging problems: we want to find esti-
mates of the median of this posterior distribution, as well as a 95% credibility
interval. We start with the median, and assume that we have ordered the sam-
ples, that is for any i < j, θi < θj and for simplicity that N is an even number.
Let θ̄ be the median of the posterior distribution. Then we know that

P(θi ≥ θ̄) =
∫ +∞

−∞
I(θ̄ < θ)p(θ|y)dθ = 1/2

P(θi ≤ θ̄) =
∫ +∞

−∞
I(θ̄ < θ)p(θ|y)dθ = 1/2

so that (assuming for simplicity that N is even and that we have ordered (θi, i =
1, . . . , N)), it is sensible to chose an estimate for θ̄ between θN/2 and θN/2+1.
Now assume that we are looking for θ− and θ+ such that

P(θ− ≤ θ ≤ θ+) =
∫ +∞

−∞
I(θ− ≤ θ ≤ θ+)p(θ|y)dθ = 0.95

or

P(0 ≤ θ ≤ θ−) = 0.025 and P(θ+ ≤ θ ≤ 1) = 0.025

and assuming again for simplicity that N = 1000 and that the samples have
been ordered. We find that a reasonable estimate of θ− is between θ25 and θ26
and an estimate of θ+ between θ975 and θ976. Finally we might be interested in
calculating

P(θ < 0.5) =
∫ 0.5

0
p(θ|y)dθ =

∫ 1

0
I(θ ≤ 0.5)p(θ|y)dθ
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which suggests the following estimator of this probability

P(θ < 0.5) � 1
N

N∑

i=1

I(θi ≤ 0.5).

(one can in fact find that P(θ ≤ 0.5|y1, y2) = 1.146058490255674 × 10−42).

1.6 Further Topic: Importance Sampling

In this subsection we explore the important method of importance sampling.1

This method is of interest either in the case where samples from the desired
distribution π are not available, but samples from a distribution q are, or as a
way of possibly reducing the variance of an estimator.

Importance Sampling. Consider a probability distribution q such that π(x) >
0 ⇒ q(x) > 0. Then one can write

Eπ(f(x)) =
∫

X
f(x)π(x)dx =

∫

X
f(x)

π(x)
q(x)
︸ ︷︷ ︸
w(x)

q(x)dx = Eq(w(x)f(x))

We are now integrating the function w(x)f(x) with respect to the distribution
q. Now provided that we can produce N i.i.d. samples X1, . . . , XN from q, then
one can suggest the following estimator

1
N

N∑

i=1

π(Xi)
q(Xi)

f(Xi) =
∫

X
f(x)

1
N

N∑

i=1

π(Xi)
q(Xi)

δXi(x)dx.

It is customary to call wi = π(Xi)
q(Xi)

the importance weight and q the importance
distribution. Now it is natural to introduce a delta-Dirac approximation of π is
of the form

π̂N (x) =
1
N

N∑

i=1

wiδXi
(dx)

The interpretation of this weighted empirical measure is rather simple. Large
wi’s indicate an underrepresentation of π by samples from q around Xi. Small
wi’s indicate an overrepresentation of π by samples from q around Xi. This
phenomenon is illustrated in Figure 1 where the importance weights required
to represent a double exponential with samples from either a Gaussian or a t-
Student are presented. Note that in the case where q = π then wi = 1/N and
we recover the representation presented earlier.

It is also worth noticing that if the normalizing constants of π and/or q are
not known, then it is possible to define (with π∗(x) ∝ π(x) and q∗(x) ∝ q(x))

wi =
π∗(Xi)/q∗(Xi)

∑N
j=1 π∗(Xj)/q∗(Xj)

.

1 This material can be skipped at first.
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Fig. 7. Top: The three distributions. Middle: importance weights to represent a double
exponential with samples from a Gaussian. Bottom: importance weights to represent
a double exponential with samples from a t-Student

And consider the following estimator

IN (f) =
N∑

i=1

wif(Xi) =
N∑

i=1

π∗(Xi)/q∗(Xi)
∑N

j=1 π∗(Xj)/q∗(Xj)
f(Xi).



126 C. Andrieu

This estimator is biased, but

lim
N→∞

N∑

i=1

π∗(Xi)/q∗(Xi)
∑N

j=1 π∗(Xj)/q∗(Xj)
f(Xi) =

limN→∞ 1
N

∑N
i=1 π∗(Xi)/q∗(Xi)f(Xi)

limN→∞ 1
N

∑N
j=1 π∗(Xj)/q∗(Xj)

=

∫
X f (x) w (x) q (x) dx
∫
X w (x) q (x) dx

as the unknown normalizing constants cancel.

Example 2 (Naive). In a Bayesian framework the target distribution is π (θ) �
p(θ|y), the posterior distribution. One can suggest (and this is not necessarily a
good choice) q (θ) � p (θ). In this case the weights will be proportional to the
likelihood since

w (θ) = p (θ|y) /p (θ) ∝ p (y|θ) p(θ)
p(θ)

∝ p (y|θ) .

Unfortunately this technique is not as general as it might seem. Let us con-
sider the variance of the importance sampling estimator in the simple case where
the normalizing constants are known and where f = C, i.e. is a constant. In this
case

varq(IN (f)) =
C

N

[
Eq

(
w2

1
)− Eq (w1)

2
]

which suggests that even in the simplest case the variance of the weights should
be finite and as small as possible for the variance of IN (f) to be small. The
examples provided earlier in Figure 1, where π was a double exponential and q
either a normal or t-Student distribution, illustrates the possibly large variations
of the weights.

Zero Variance Estimator. Here we illustrate a possible interest of importance
sampling, which is however specialized. We start with the trivial remark that the
variance of a constant function is null, i.e. varπ [f ] = 0 if f is a constant. We seek
here to exploit this property in the context of Monte Carlo integration, although
this might seem of little interest at first sight since no numerical method is
needed to evaluate Eπ(f) for a constant function f . However we are going to use
this as a motivation to describe a method of reducing the variance of a Monte
Carlo estimator for a fixed number of samples. Now assume that Eπ(f) and that
for simplicity f ≥ 0. Using the convention 0/0 = 1 we can rewrite Eπ(f) as

Eπ(f) =
∫

X
f(x)π(x)dx =

∫

X

f(x)
f(x)

π(x)f(x)dx

=
∫

X
1 ×

∫

X
π(x′′)f(x′′)dx′′ π(x)f(x)

∫
X π(x′)f(x′)dx′ dx,

that is

Eπ(f) = Eq(Eπ(f))
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where

q(x) :=
π(x)f(x)

∫
X π(x′)f(x′)dx′

can be thought of as being a probability density. If we could sample from q then
we could integrate the constant function

∫
X π(x′′)f(x′′)dx′′ and obtain a zero

variance estimator. Naturally we have not solved the problem since the constant
is precisely the integral that we are seeking to calculate!

The calculations above can be generalized to functions f that are not every-
where positive, with in this case,

q (x) =
|f (x)| π (x)

∫
X π(x′)|f(x′)|dx′ .

Despite our disappointing/absurd results, the strategy however suggests ways
to improve the constant varπ(f), by trying to sample from a distribution close to
q. Note however that q depends on f , and that as a consequence such a method
is therefore very specialized.

Conclusions. To summaries, the pros and cons of importance sampling are as
follows:
– Advantages. Easy to implement, parallelizable, sequential version are pos-

sible (particle filter etc.). If q is a clever approximation of π, then we typically
expect good results. It can be used a specialized way of reducing the variance
of estimators.

– Drawbacks. If we do not have varπ(w(x)) < +∞, then typically ÎN (f)
can be a poor estimator since its variance is large. This poses the problem
of the choice of q (x)? Where are the modes of π (x)? Importance sampling
is typically limited to small dimensions for the parameter space, say nx =
10−50 depending on the application.

Despite the possible drawbacks, importance sampling has proved to be ex-
tremely useful in the context of sequential importance sampling.

2 Classical “Exact” Simulation Methods

In this section we review some classical simulation techniques. We call those
techniques “exact” as they allow one to generate samples in a finite number of
iterations of a procedure. Note that the instant when a sample from the distri-
bution of interest is produced is identifiable, that is we can stop the procedure
and be sure that we have generated a sample from the distribution of interest.
As we shall see in the next section this is not always the case. Unfortunately
the simulation techniques presented in this chapter cannot typically be used in
order to sample from complex distributions as they tend not to scale well with
the dimension nx and cases where little is known about π. However these tech-
niques can be thought of as being building blocks of more complex algorithms
that will be presented in the next chapter.
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From now on we will assume that a computer can generate independent uni-
formly distributed random variables, or at least that it can generate a good
approximation of such random variables (indeed computers should usually fol-
low a deterministic behavior, and one must find ways around in order to produce
something that looks random).

2.1 The cdf Inversion Method

We present here this method in the case where X = R for simplicity. The multi-
variate generalization is not difficult. First we consider a simple discrete example
where X ∈ X = {1, 2, 3} and such that

P(X = 1) =
1
6
, P(X = 2) =

2
6
, P(X = 3) =

1
2
.

Define the cumulative probability distribution (cdf) of X as

FX(x) = P(X ≤ x) =
3∑

i=1

P(X = i)I(i ≤ x)

for x ∈ [0, 3] and its inverse

F−1
X (u) = inf {x ∈ X; FX (x) ≥ u} ,

for u ∈ [0, 1]. The cdf corresponding to our example is represented in Figure 8. A
method of sampling from this distribution consists of sampling u ∼ U(0, 1) and
find x = F−1

X (u). The probability of u falling in the vertical interval i is precisely
equal to the probability P(X = i). The method indeed produces samples from
the distribution of interest.

Now in the continuous case, and assuming that the distribution has a density
the cdf takes the form

FX (x) = P (X≤x) =
∫ +∞

−∞
π (u) I(u ≤ x)du =

∫ x

−∞
π (u) du.

A normal distribution and its cdf are presented in Figure 9. Intuitively the
algorithm suggested in the discrete case should be valid here, since modes of
π mean large variations of FX and therefore a large probability for a uniform
distribution to fall in these regions.

More rigorously, consider the algorithm

Sample u ∼ U(0, 1) and set Y =F−1
π (u).

We prove that this algorithm produces samples from π. We calculate the cdf
of X produced by the algorithm above. For any y ∈ X we have

P (Y ≤y) = P
(
Y =F−1

X (u) ≤y
)

= P (u≤FX (y)) since FX is non decreasing

=
∫ 1

0
I(u≤FX (y)) × 1du =

∫ FX(y)

0
du = FX (y) ,



Monte Carlo Methods for Absolute Beginners 129

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

Interval 1 

Interval 2 

Interval 3 

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Gaussian 

Cumulative distribution 

u~U(0,1) 

x=F−1(u) 

which shows that the cdf of Y produced by the algorithm above is precisely the
cdf of X ∼ π.

Example 3. Consider the exponential distribution with parameter 1, i.e. X ∼
π (x) = exp (−x) I[0,+∞) (x). The cdf of X is FX (x) = 1 − exp (−x). Now the
inverse cdf is F−1

X (u) = − log (1 − u), and for u ∼ U(0, 1) then − log (1 − u) ∼ π.

This example is interesting as it illustrates one of the fundamental idea of
most simulation methods: sample from a distribution from which it is easy to
sample (here the uniform distribution) and then transform this random variable

Fig. 8. The distribution and cdf of a discrete random variable

Fig. 9. The distribution and cdf of a normal distribution
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(here through F−1
X ). However this method is only applicable to a limited number

of cases as it requires a closed form expression of the inverse of the cdf, which
is not explicit even for a distribution as simple and common as the normal
distribution.

2.2 The Rejection Method

The rejection method allows one to sample according to a distribution π which
is only known up to a proportionality constant, say π∗ ∝ π. It relies again on the
assumption that samples can be generated from a so-called proposal distribution
q defined on X, which might as well be known only up to a normalizing constant,
say q∗ ∝ q. Then, instead of being transformed by a deterministic function as
in the inverse cdf method, the samples produced from π are either rejected or
accepted. More precisely, assume that for any x ∈ X, C = supx∈X

π∗(x)
q∗(x) < +∞

(note that this imposes that for any x ∈ X, π∗(x) > 0 ⇒ q∗(x) > 0) and consider
C ′ ≥ C. Then the accept/reject procedure proceeds as follows:

Accept/Reject procedure
1. Sample Y ∼q and u ∼ U (0, 1).
2. If u < π∗(Y )

C′q∗(Y ) then return Y ; otherwise return to step 1.

The intuition behind the method can be understood from Figure 10.
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Beta(1.5,5) 

x~q=U(0,1) 

Reject 
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cq(x)u where u~U(0,1) 

c U(0,1) 

Now we prove that P(Y ≤ x|Y accepted) = P(X ≤ x). We will extensively
use the trivial identity

q(x) =
q∗(x)

∫
X q∗(y)dy

.

Fig. 10. The idea behind the rejection method
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For any x ∈ X, consider the joint distribution

P (Y ≤ x and Y accepted) =
∫ 1

0

∫ x

−∞
I(u ≤ π∗(y)

C ′q∗(y)
)q(y) × 1dydu

=
∫ x

−∞

π∗(y)
C ′q∗(y)

q(y)dy

=

∫ x

−∞ π∗(y)dy

C ′ ∫
X q∗(y)dy

,

and the probability of being accepted is the marginal of P (Y ≤ x andY accepted),
that is

P (Y accepted) =
∫

X

π∗ (y)
C ′q∗ (y)

q (y) dy=

∫
X π∗ (y) dy

C ′ ∫
X q∗ (y) dy

. (3)

Consequently

P(Y ≤ x|Y accepted) =

∫ x

−∞ π∗ (y) dy
∫
X π∗ (y) dy

=
∫ x

−∞
π (y) dy.

The expression for the probability of being accepted in Eq. (3) tells us that in
order to design an efficient algorithm, C ′ should be chosen as small as possible,
and that the optimal choice corresponds to C. However this constant might be
very large, in particular for large nx and C might not even be known. In the
most favorable scenarios, at best an upper bound might be known.

Example 4. We want to sample from a Be(x; α, β) ∝ xα−1(1 − x)β−1 distribu-
tion. We can generate samples from U(0, 1). One can find supx∈[0,1]

xα−1(1−x)β−1

1
analytically for α, β > 1! Note that we do not assume known the normalizing
constant!

Example 5. Let us assume that one wants to simulate samples from π (θ) �
p(θ|y) ∝ p(y|θ)p (θ). We assume that p(y|θ) is known analytically and p(y|θ) ≤ C
for any θ, where C is known. We also assume that we are able to simulate from
p (θ). Thus one can choose q (θ) = p (θ) and use the accept/reject procedure to
sample from p(θ|y). Indeed

p(θ|y)
p (θ)

=
p(y|θ)
p(y)

≤ C

p(y)
= M (4)

is bounded and
π (θ)

Mq (θ)
=

p(θ|y)
C

p(y)p (θ)
=

p(y|θ)
C

(5)

can be evaluated analytically. However, the acceptance rate 1/M is usually
unknown as it involves p(y) which is itself usually unknown.
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We can summaries the pros and cons of the accept/reject procedure:

– Advantages:
1. seems rather universal, and compared to the inverse cdf method requires

less algebraic properties.
2. in principle neither the normalization constant of π nor that of q are

needed.
– Drawbacks:

1. how to construct the proposal q (x) to minimize C?
2. typically C increases exponentially with nx.

2.3 Deterministic Transformations

These methods rely on clever changes of variables, which transform one distri-
bution to another. A typical setup is the following: consider Y ∼ q from which
it is easy to sample, and consider g : X → X a differentiable and one-to-one
transformation. Now define the transformed random variable

X = g(Y ).

We know that the density, say π, of X can be expressed in terms of q and
the Jacobian

∣
∣
∣∂g−1(x)

∂x

∣
∣
∣ of the transformation g as follows

π(x) = q
(
g−1(x)

)
∣
∣
∣
∣
∂g−1(x)

∂x

∣
∣
∣
∣ .

Naturally for a predefined π it is not always obvious to find proper g and
q, but we present here a celebrated example. The Box-Muller transformation is
a method of transforming two i.i.d. uniformly distributed random variables Y1
and Y2 on [0, 1] into two i.i.d. normally distributed random variables X1 and X2
with distribution N (0, 1). The transformation is as follows

X1 =
√

−2 log (Y1) cos (2πY2)

X2 =
√

−2 log (Y1) sin (2πY2) . (6)

We compute the inverse transformation and find that

Y1 = exp
(−(X2

1 + X2
2 )/2

)

Y2 =
1
4

+
1
2π

arctan
(

X2

X1

)

Now one can check that the Jacobian of the transformation is
1

(√
2π
)2 exp

(−(x2
1 + x2

2)/2
)
.

Consequently

π(x1, x2) =
1

(√
2π
)2 exp

(−(x2
1 + x2

2)/2
)× 1,
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which proves the result. This method is simple to implement on a computer,
and is to a certain extent efficient in the sense that two uniformly distributed
random variables Y1 and Y2 give two normally distributed random variables X1
and X2 through the deterministic transformation in Eq. (6). In this sense no
computation is wasted in producing samples that are ultimately rejected. Note
however that this transformation requires the evaluation of log and cos which
can be costly in terms of computer time, and even more efficient alternatives
have been proposed in the literature.

Although apparently limited, this type of transformation can be very useful in
practice to sample from simple distributions that are then fed into more complex
algorithms. Most of the efficient algorithms to sample from gamma’s, beta’s etc.
are a mixture of such deterministic transformations and the accept/rejection
method.

3 MCMC Methods

3.1 Motivation

So far we have seen methods of sampling from relatively low dimensional dis-
tributions, which in fact collapse for even modest dimensions. For example con-
sider the following -over-used- Bayesian example, the nuclear pump data example
(Gaver and O’Muircheartaigh, 1987). This example describes multiple failures
in a nuclear plant with the data, say y, given in the following table:

Pump 1 2 3 4 5 6 7 8 9 10
Failures 5 1 5 14 3 19 1 1 4 22
Times 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

The modeling is based on the assumption that the failures of the i−th pump
follow a Poisson process with parameter λi (1 ≤ i ≤ 10). For an observed time
ti, the number of failures pi is thus a Poisson P(λiti) random variable. The
unknowns here consist therefore of θ := (λ1, . . . , λ10, β) and the aim here is to
estimate quantities related to p(θ|y). For reasons invoked by the authors one
chooses the following prior distributions,

λi
iid∼ Ga(α, β) and β ∼ Ga(γ, δ)

with α = 1.8 and γ = 0.01 and δ = 1. Note that this introduces a hierarchical
parameterization of the problem, as the hyperparameter β is considered unknown
here. A prior distribution is therefore ascribed to this hyperparameter, therefore
robustifying the inference. The posterior distribution is proportional to

10∏

i=1

{(λiti)pi exp(−λiti)λα−1
i exp(−βλi)}β10αβγ−1 exp(−δβ)

∝
10∏

i=1

{λpi+α−1
i exp(−(ti + β)λi)}β10α+γ−1 exp(−δβ).
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This multidimensional distribution is rather complex, and it is not obvious
how the inverse cdf method, the rejection method or importance sampling could
be used in this context. However one notices that the following conditionals have
a familiar form,

λi|(β, ti, pi) ∼ Ga(pi + α, ti + β) for 1 ≤ i ≤ 10

β|(λ1, . . . , λ10) ∼ Ga(γ + 10α, δ +
10∑

i=1

λi), (7)

and instead of directly sampling the vector θ = (λ1, . . . , λ10, β) at once, one could
suggest sampling it progressively and iteratively, starting for example with the
λi’s for a given guess of β, followed by an update of β given the new samples
λ1, . . . , λ10. More precisely, given a sample, at iteration t, θt := (λt

1, . . . , λ
t
10, β

t)
one could proceed as follows at iteration t + 1,

1. λt+1
i |(βt, ti, pi) ∼ Ga(pi + α, ti + βt) for 1 ≤ i ≤ 10,

2. βt+1|(λt+1
1 , . . . , λt+1

10 ) ∼ Ga(γ + 10α, δ +
∑10

i=1 λt+1
i ).

This suggestion is of great interest: indeed instead of directly sampling in
a space with 11 dimensions one samples in spaces of dimension 1, which can
be achieved using either of the methods reviewed in previous sections. However
the structure of the algorithm calls for many questions: by sampling from these
conditional distributions are we sampling from the desired joint distribution? If
yes, how many times should the iteration above be repeated? In fact the validity
of the approach described here stems from the fact that the sequence {θt} defined
above is a Markov chain and, as we shall see, some Markov chains have very nice
properties.

3.2 Intuitive Approach to MCMC

Basic Concepts. Assume that we wish to sample from a distribution π. The
idea of MCMC consists of running an ergodic Markov chain. In order to illustrate
this intuitively, consider Figure 11. The target distribution corresponds to the
continuous line. It is a normal distribution. We consider here 1000 Markov chains
run in parallel, and independent. We assume that the initial distribution of these
Markov chains is a uniform distribution on [0, 20]. We then apply a (specially
designed) Markov transition probability to all of the 1000 samples, in an inde-
pendent manner. Observe how the histograms of these samples evolve with the
iterations. Obviously the normal distribution seems to “attract” the distribution
of the samples and even to be a fixed point of the algorithm. This is is what we
wanted to achieve, i.e. it seems that we have produced 1000 independent sam-
ples from the normal distribution. The numbers 1, 2, 3, 4 and 5 correspond to
the location of samples 1, 2, 3, 4 and 5 along the iterations. In fact one can show
that in many situations of interest it is not necessary to run N Markov chains
in parallel in order to obtain 1000 samples, but that one can consider a unique
Markov chain, and build the histogram from this single Markov chain by forming
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Fig. 11. From top left to bottom right: histograms of 1000 independent Markov chains
with a normal distribution as target distribution

histograms from one trajectory. This idea is illustrated in Figure 12. The target
distribution is here a mixture of normal distributions. Notice that the estimate
of the target distribution, through the series of histograms, improves with the
number of iterations. Assume that we have stored {Xi, 1 ≤ i ≤ N} for N large
and wish to estimate

∫
X f(x)π(x)dx. In the light of the numerical experiments

above, one can suggest the estimator

1
N

N∑

i=1

f(Xi),

which is exactly the estimator that we would use if {Xi, 1 ≤ i ≤ N} were
independent. In fact, it can be proved, under relatively mild conditions, that
such an estimator is consistent despite the fact that the samples are NOT in-
dependent! Under additional conditions, a central limit theorem also holds for
this estimator, and the rate of convergence is again 1/

√
N . Note however that

the constant involved in the CLT will be different from the constant in the in-
dependent case, as it will take into account the fact that the samples are not
independent.



136 C. Andrieu

0

200

400

600

800

1000 −100

−50

0

50

100

0

0.01

0.02

0.03

0.04

X−axisIterations

0

2000

4000

6000

8000

10000 −100

−50

0

50

100

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

X−axisIterations

Fig. 12. Sampling from a mixture of normal distributions following the path of a single
Markov chain. Full line: the target distribution - Dashed line: histogram of the path.
Top: 1000 iterations only. Bottom: 10000 iterations

Unfortunately not all Markov chains, with transition probability say P , will
have the following three important properties observed above:

1. The desired distribution π is a “fixed point” of the algorithm or, in more
appropriate terms, an invariant distribution of the Markov chain, i.e.

∫

X
π(x)P (x, y) = π(y).
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2. The successive distributions of the Markov chains are “attracted” by π, or
converge towards π.

3. The estimator
1
N

N∑

i=1

f(Xi)

is consistent, and converges towards Eπ(f(X)).

The first point is easily solved: the Metropolis-Hastings algorithm provides
us with a generic mechanism of building Markov chains that admit a given dis-
tribution π as invariant distribution, whose density is known only up to a nor-
malizing constant. Note that this later property is very convenient in a Bayesian
framework! The reason for which the Metropolis-Hastings algorithm admits any
desired distribution π as invariant distributions stems from the fact that it is
reversible with respect to π, i.e. for any x, y ∈ X,

π(x)P (x, y) = π(y)P (y, x)

and therefore automatically admits π as invariant distribution (indeed integrate
the equality above with respect to x over X). In order to answer the second and
third points one needs to introduce two notions: irreducibility and aperiodic-
ity. The notion of reducibility (i.e. non-irreducibility) is illustrated in Figure 13:
the Markov chain cannot reach a region of the space X where the distribution
π has positive mass. Therefore irreducibility means that two arbitrarily chosen
points in X with positive densities, can always communicate in a finite number
of iterations. It is quit remarkable that under this simple condition, provided
that π is an invariant distribution of the Markov chain and Eπ(|f(x)|) < +∞,
then N−1∑N

i=1 f(xi) is consistent (see [24]). In order to ensure that the se-
ries of distributions of the Markov chain converges it is furthermore necessary
to ensure aperiodicity. To illustrate this, consider the following toy example.
X = {1, 2} and P (1, 2) = 1 and P (2, 1) = 1. One easily checks that

πTP = πT

(
0 1
1 0

)

= πT,

admits the solution π = (1/2, 1/2)T, i.e. π is an invariant distribution of the
Markov chain. Clearly this chain has a periodic behavior, with period 2, so that
if at iteration i = 0 the chain always starts in 1, i.e. µ = (1, 0)T, then the
distributions of the Markov chain are

µTP 2k = µT

µTP 2k+1 = (0, 1)T k ≥ 0,

that is the distributions do not converge. On the other hand the proportions of
time spent in state 1 and 2 converge to 1/2, 1/2 and we expect N−1∑N

i=1 f(Xi)
to be consistent.
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Fig. 13. In this case the Markov chain cannot explore the complete distribution: this
is an illustration of reducibility (or in fact here quasi-reducibility)

The Gibbs Sampler. In the light of the appendix on Markov chains, one can
ask if the following algorithm is likely to produce samples from the required
posterior distribution,

λi|(β, ti, pi) ∼ Ga(pi + α, ti + β) for 1 ≤ i ≤ 10

β|(λ1, . . . , λ10) ∼ Ga(γ + 10α, δ +
10∑

i=1

λi).

There are many ways of sampling from these unidimensional distribution (in-
cluding rejection sampling, but there are even much more efficient ways). The
idea of the Gibbs sampler consists of replacing a difficult global update of θ,
with successive updates of the components of θ (or in fact in general groups of
components of θ). Given the simple and familiar expressions of the conditional
distributions above, one can suggest the following algorithm

1. λt+1
i |(βt, ti, pi) ∼ Ga(pi + α, ti + βt) for 1 ≤ i ≤ 10,

2. βt+1|(λt+1
1 , . . . , λt+1

10 ) ∼ Ga(γ + 10α, δ +
∑10

i=1 λt+1
i ).

Maybe surprisingly, this algorithm produces samples from the posterior dis-
tribution p(θ|y), provided that the required distribution is invariant and the
Markov chain irreducibility and aperiodicity are satisfied. We start with a re-
sult, in a simple case for simplicity. The generalization is trivial.

Proposition 1. Let p(a, b) be a probability density. Consider the Gibbs sampler
which updates (a, b) using the conditional distributions p(a|b) and p(b|a). The
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Markov chain generated by this algorithm admits p(a, b) as invariant distribu-
tion.

Proof. From the definition of invariance, we want to prove that for any a′, b′,
∫

X
p(a, b)p(a′|b)p(b′|a′)dadb

?= p(a′, b′).

We start from the left hand side, and apply basic probability rules
∫

X
p(a, b)p(a′|b)p(b′|a′)dadb =

∫

X
p(b)p(a′|b)p(b′|a′)db

=
∫

X
p(a′, b)p(b′|a′)db

=
∫

X
p(b|a′)p(a′)p(b′|a′)db

= p(a′, b′) × 1.

Now, in order to ensure the convergence of estimators of the type N−1∑N
i=1

f(Xi), it is sufficient to ensure irreducibility. This is not automatically veri-
fied for a Gibbs sampler, as illustrated in Figure 14 with a simple example.
However in the nuclear pumps failure data, irreducibility is automatic: all the
conditional distributions are strictly positive on the domain of definition of the
parameters ((0, +∞) for each of them). One can therefore reach any set A from
any starting point x with positive probability in one iteration of the Gibbs
sampler.
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It is relatively easy to prove aperiodicity as well, but we will not stress
on this here, as we are in practice mostly interested in estimators of the type
N−1∑N

i=1 f(Xi).

Fig. 14. A distribution that can lead to a reducible Gibbs sampler
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Although natural, generally easy to implement, the Gibbs sampler does not
come without problems. First it is clear that it requires one to be able to iden-
tify conditional distributions in the model, from which it is routine to sample.
This is in fact rarely the case with realistic models. It is however generally the
case when distributions from an exponential family are involved in the mod-
eling. Another problem of the Gibbs sampler, is that its speed of convergence
is directly influenced by the correlation properties of the target distribution
π. Indeed, consider the toy two-dimensional example in Figure 15. This is a
bidimensional normal distribution with strong correlation between x and y. A
Gibbs sampler along the x and y axis will require many iterations to go from
one point to another point that is far apart, and is somehow strongly con-
strained by the properties (both in terms of shape and algebraic properties)
of π.

In contrast the Metropolis-Hastings algorithm which is presented in the next
subsection possesses an extra degree of freedom, its proposal distribution which
will determine how π is explored. This is illustrated in Figure 16, where for a
good choice of the proposal distribution, the distribution π is better explored
than in Figure 15, for the same number of iterations.
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Fig. 15. A distribution for which the Gibbs sampler along the x and y axis might be
very slow

The Metropolis-Hastings Algorithm. Let π be the density of a probabil-
ity distribution on X and let {θ ∈ X : q (θ, ·)} be a family of probability densities
from which it is possible to sample. The Metropolis-Hastings algorithm proceeds
as follows.
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Fig. 16. A distribution for which the Gibbs sampler might be very slow, but here
explored with an appropriate Metropolis-Hastings algorithm

Metropolis-Hastings Algorithm
1. Initialization, i = 0. Set randomly or deterministically θ0.
2. Iteration i, i ≥ 1.

– Propose a candidate θ ∼ q(θi−1, ·).
– Evaluate the acceptance probability

α(θi−1, θ) = min
{

1,
π(θ)/q(θi−1, θ)

π(θi−1)/q(θ, θi−1)

}

(8)

– Then θi = θ with probability α(θi−1, θ) otherwise θi = θi−1.
�

Example 6. Let us assume that we want to simulate a set of samples from p(θ|y).
Using Bayes’ theorem we have p(θ|y) ∝ p(y|θ)p (θ). A MH procedure consists
of simulating some candidates θ′ according to q (θ,θ′), evaluating some quanti-

ties α (θ, θ′) = min
{

1,
p(y|θ′)p(θ′)q(θ′,θ)
p(y|θ)p(θ)q(θ,θ′)

}

, and accepting these candidates with

probability α (θ,θ′).

As pointed out earlier, q is to a certain extent an extra degree of freedom
compared to the Gibbs sampler and an infinite number of possible choices for q
is possible. We here briefly review two classical choices.
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Random Walk: A simple choice consists of proposing as candidate a perturba-
tion of the current state, i.e. θ′ = θ+z where z is a random increment of density
ϕ (z).

– This algorithm corresponds to the particular case q (θ, θ′) = ϕ (θ′ − θ). We
obtain the following acceptance probability:

α (θ, θ′) = min
{

1,
π (θ′) ϕ (θ − θ′)
π (θ) ϕ (θ′ − θ)

}

(9)

– If q (θ, θ′) = ϕ (θ − θ′) = ϕ (θ′ − θ) then we obtain

α (θ, θ′) = min
{

1,
π (θ′)
π (θ)

}

(10)

This algorithm is called the Metropolis algorithm [15].

Independent Metropolis-Hastings: In this case, we select the candidate
independently of the current state according to a distribution ϕ (θ′). Thus
q (θ, θ′) = ϕ (θ′) and we obtain the following acceptance probability:

α (θ, θ′) = min
{

1,
π (θ′) ϕ (θ)
π (θ) ϕ (θ′)

}

(11)

In the case where π (θ) /ϕ (θ) is bounded, i.e. we could also apply the ac-
cept/reject procedure, this procedure shows (fortunately) better asymptotic per-
formance in terms of variance of ergodic averages.

Example 7. In a Bayesian framework, if we want to sample from p(θ|y) ∝
p(y|θ)p (θ) then one can take p (θ) as candidate distribution. Then the acceptance
reduces to

α (θ, θ′) = min
{

p(y|θ′)
p(y|θ) , 1

}

(12)

There are many possible variations on this theme, see [24] and [2].

Metropolis-Hastings One-at-a-Time. It should not be surprising if the prob-
lems encountered with classical sampling techniques are also problems with the
plain MH algorithm. In particular, when θ is high-dimensional, it typically be-
comes very difficult to select a good proposal distribution: either the acceptance
probability is very low or very large and the chain does not explore π very
rapidly, or the chain explores only one mode of the distribution. To solve this
problem one can use the strategy adopted by the Gibbs sampler. Define a par-
tition of θ := (θ1, . . . , θp). Then each component θk can be updated according
to a MH update with proposal distribution, say qk which admits the conditional
distribution π (θk|θ−k) (where θ−k := (θ1, . . . , θk−1, θk+1, . . . , θp)) as invariant
distribution.
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MH One-at-a-Time

1. Initialization, i = 0. Set randomly or deterministically θ(0) = θ0.
2. Iteration i, i ≥ 1.

– For k = 1 to p

– Sample θ
(i)
k according to a MH step with proposal distribution

qk((θ(i)
−k, θ

(i−1)
k ), θk) (13)

and invariant distribution π(θk|θ(i)
−k).

End For.

�

This algorithm includes the Gibbs sampler as a special case. Indeed, this lat-
ter corresponds to the particular case where the proposal distributions of the MH
steps are equal to the full conditional distributions, i.e. qk((θ(i)

−k, θ
(i−1)
k ), θk) =

π(θk|θ(i)
−k), so that the acceptance probabilities are equal to 1 and no candidate

is rejected.

Theoretical Aspects of the MH Algorithm. In this subsection we establish
that the MH transition probability admits π as invariant distribution, and then
briefly discuss the irreducibility and aperiodicity issues. The transition proba-
bility of the Metropolis-Hastings algorithm is for x, A ∈ X, B(X)

P (x, A) =
∫

A

α(x, y)q(x, y)dy + IA(x)
∫

X
(1 − α(x, y))q(x, y)dy

=
∫

A

α(x, y)q(x, y)dy + IA(x)[1 −
∫

X
α(x, y)q(x, y)dy].

We now prove that P is reversible with respect to π. First notice that

α(x, y)π(x)q(x, y) = min{1,
π(y)q(y, x)
π(x)q(x, y)

}π(x)q(x, y)

= min{π(x)q(x, y), π(y)q(y, x)}

= π(y)q(y, x) min{π(x)q(x, y)
π(y)q(y, x)

, 1}

= π(y)q(y, x)α(y, x).
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Consequently for any A, B ∈ B(X),
∫

B

π(x)P (x, A)dx =
∫

B

∫

A

π(x)α(x, y)q(x, y)dxdy

+
∫

B

IA(x)π(x)[1 −
∫

X
α(x, y)q(x, y)dy]dx

=
∫

A

∫

B

π(y)q(y, x)α(y, x)dxdy

+
∫

X
IA∩B(x)π(x)[1 −

∫

X
α(x, y)q(x, y)dy]dx

=
∫

A

∫

B

π(y)q(y, x)α(y, x)dxdy

+
∫

A

IB(x)π(x)[1 −
∫

X
α(x, y)q(x, y)dy]dx

=
∫

A

π(y)P (y, B)dy.

A simple condition which ensures the irreducibility and the aperiodicity of the
MH algorithm is that q (x,y) is continuous and strictly positive on the support
of π for any x [20].
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