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Parameter Estimation with Latent Variables

Model p(X,Z|θ), observed data X, latent variables Z, model parameters θ

Recall GMM, Z: cluster assignments, θ: GMM parameters {πk ,µk ,Σk}Kk=1

Goal: Estimate the model parameters θ via MLE

θ̂ = arg max
θ

log p(X|θ) = arg max
θ

log
∑

Z

p(X,Z|θ)

Doing MLE in such models can be difficult because of the log-sum

If we “knew” Z, sum over all possible Z not needed. Just define “complete
data” {X,Z}, and do MLE on the complete data log-lik. log p(X,Z|θ)

Assumption: MLE on log p(X,Z|θ) is easy

It often indeed is, especially when p(X,Z|θ) is exponential family distribution
(or product of exponential family distributions)
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Parameter Estimation with Latent Variables

If MLE on log p(X,Z|θ) is easy then let’s do it!

Problem: Well, we don’t actually know Z, so we are still stuck. /

Solution: Use the posterior p(Z|X, θ) over latent variables Z to compute the
expected complete data log-likelihood and do MLE on that objective.

θ̂ = arg max
θ

E[log p(X,Z|θ)]

= arg max
θ

∑
Z

p(Z|X, θ) log p(X,Z|θ)

But now we have a chicken-and-egg problem: the posterior p(Z|X, θ) over Z
itself depends on the parameters θ
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Solution: An Iterative Scheme (EM Algorithm)

Initialize the parameters: θold . Then alternate between these steps:

E (Expectation) step:

Compute the posterior p(Z|X, θold) over latent variables Z using θold

Compute the expected complete data log-likelihood w.r.t. this posterior

Q(θ, θold ) = E
p(Z|X,θold )

[log p(X,Z|θ)] =
∑

Z

p(Z|X, θold ) log p(X,Z|θ)

M (Maximization) step:

Maximize the expected complete data log-likelihood w.r.t. θ

θnew = argmax
θ

Q(θ, θold) (if doing MLE)

θnew = argmax
θ

{Q(θ, θold) + log p(θ)} (if doing MAP)

If the log-likelihood or the parameter values not converged then set
θold = θnew and go to the E step.

Why is this doing the right thing?
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Illustration: EM for GMM

Recall that the GMM parameters θ = {π, µ,Σ} = {πk , µk ,Σk}Kk=1

The complete data likelihood

p(X,Z|π, µ,Σ) =
N∏

n=1

K∏
k=1

p(zn = k)p(xn|zn = k) =
N∏

n=1

K∏
k=1

π
znk
k N (xn|µk ,Σk )znk

Taking the log, we get:

log p(X,Z|π, µ,Σ) =
N∑

n=1

K∑
k=1

znk{log πk + logN (xn|µk ,Σk )}

E-step computes the expected complete data log-likelihood:

Ep(Z|X,θ)[log p(X,Z|π, µ,Σ)] =
N∑

n=1

K∑
k=1

E[znk ]{log πk + logN (xn|µk ,Σk )}

where E[znk ] is the expected value of znk under the posterior
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Illustration: EM for GMM (Contd.)

The only expectation we need to compute Ep(Z|X,θ)[log p(X,Z|π, µ,Σ)] is

E[znk ] =
∑

znk={0,1}

znkp(znk |xn,π, µ,Σ) = p(znk = 1|xn,π, µ,Σ) =
πkN (xn|µk ,Σk )∑K
j=1 πjN (xn|µj ,Σj )

= γnk

Thus the expected complete data log-likelihood

Ep(Z|X,θ)[log p(X,Z|π, µ,Σ)] =
N∑

n=1

K∑
k=1

γnk{log πk + logN (xn|µk ,Σk )}

M-step maximizes the the exp. complete data log-likelihood w.r.t. πk , µk ,Σk

The update equations for these will be (shown on the board)

µk =
1

Nk

N∑
n=1

γnkxn, Σk =
1

Nk

N∑
n=1

γnk (xn − µk )(xn − µk )>, πk =
Nk

N

where Nk =
∑N

n=1 γnk is “effective” num. of examples assigned to k th Gaussian
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Why does EM work?
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Justification 1

Consider the log likelihood on “incomplete” data X

log p(X|θ) = log
∑

Z

p(X,Z|θ) = log
∑

Z

q(Z)
p(X,Z|θ)

q(Z)
(where q(Z) is some distribution)

≥
∑

Z

q(Z) log
p(X,Z|θ)

q(Z)
(using Jensen’s inequality for concave log)

log p(X|θ) ≥
∑

Z

q(Z) log p(X,Z|θ)−
∑

Z

q(Z) log q(Z)

︸ ︷︷ ︸
doesn’t depend on θ

=
∑

Z

q(Z) log p(X,Z|θ) + const.

If we set q(Z) = p(Z|X, θ) then the above inequality becomes equality

∑
Z

q(Z) log
p(X,Z|θ)

q(Z)
=

∑
Z

p(Z|X, θ) log
p(X,Z|θ)

p(Z|X, θ)
=

∑
Z

p(Z|X, θ) log �
���p(Z|X, θ)p(X|θ)

����p(Z|X, θ)

=
∑

Z

p(Z|X, θ) log p(X|θ)

= log p(X|θ)
∑

Z

p(Z|X, θ) = log p(X|θ)

Thus for q(Z) = p(Z|X, θ), we have

log p(X|θ) =
∑

Z

p(Z|X, θ) log p(X,Z|θ) + const. = E[log p(X,Z|θ)] + const.

EM maximizes E[log p(X,Z|θ)] , a tight lower-bound on log p(X|θ)
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Justification 2

We can also write the incomplete log likelihood

log p(X|θ) = L(q, θ) + KL(q||pz )

where q is some distr. on Z, pz = p(Z|X, θ) is the posterior over Z, and

L(q, θ) =
∑

Z

q(Z) log

{
p(X,Z|θ)

q(Z)

}

KL(q||pz ) = −
∑

Z

q(Z) log

{
p(Z|X, θ)

q(Z)

}

(to verify, use log p(X,Z|θ) = log p(Z|X, θ) + log p(X|θ) in the expression of L(q, θ))

Since KL(q||pz) ≥ 0, L(q, θ) is a lower-bound on log p(X|θ) for any q

Picture courtesy: PRML (Bishop, 2006)
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Justification 2 (contd.)

Recall log p(X|θ) = L(q, θ) + KL(q||pz). EM can also be seen as:

With θ fixed to θold , maximize L(q, θold) w.r.t. q

q̂ = arg max
q
L(q, θold)

which is equivalent to making KL(q||pz) = 0 or setting q̂ = p(Z|X, θold)

(This step makes L(q̂, θold) = log p(X|θold); see next slide)

With q̂ fixed at p(Z|X, θold), maximize L(q̂, θ) w.r.t. θ, where

L(q̂, θ) =
∑

Z

p(Z|X, θold ) log p(X,Z|θ)−
∑

Z

p(Z|X, θold ) log p(Z|X, θold )

︸ ︷︷ ︸
constant w.r.t. θ

= Q(θ, θold ) + const

θ
new = arg max

θ
Q(θ, θold )

(This step ensures that log p(X|θnew ) ≥ log p(X|θold); see next slide)
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Justification 2 (contd.)

E-step: L(q, θold) increases and becomes equal to log p(X|θold ), KL(q||pz ) becomes 0
because we set q = p(Z|X, θ)

M-step: θnew makes L(q, θnew ) go further up, makes KL(q||pz) > 0 again
because q 6= p(Z|X, θnew ) and thus ensures that log p(X|θnew ) ≥ log p(X|θold)

Thus the E and M steps never decrease the log-likelihood p(X|θ)

Picture courtesy: PRML (Bishop, 2006)
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A View in the Parameter Space

E-step: Update of q makes the L(q, θ) curve touch the log p(X|θ) curve

M-step gives the maxima θnew of L(q, θ)

Next E-step readjusts L(q, θ) curve (green) to meet log p(X|θ) curve again

This continues until a local maxima of log p(X|θ) is reached

Probabilistic Machine Learning (CS772A) Expectation Maximization (wrap-up) and Intro to Probabilistic PCA 12



Some EM Variants

Generalized EM: M step doesn’t require maximization w.r.t. θ; even if the
new θ just increases the lower bound, we will still converge to a local optima

Variational EM and MCMC EM: If the E step of computing the posterior
p(Z|X, θ) is intractable, we can use variational Bayes (VB) or MCMC to
approximate the posterior

Expectation Conditional Maximization: Parameters are partitioned in
groups. M step consists of multiple steps (each optimizing one group of
parameters, treating all other groups as fixed)

Online/incremental EM: E step only processes one (or a small number of)
observation, computing posteriors/expectations only w.r.t. that minibatch of
data. For exponential famility distributions, the sufficient statistics needed in
the M step can be easily updated incrementally, leading to simple form of
incremental parameter updates. Very useful for scalable inference. See:
(1) Online EM Algorithm for Latent Data Models (Cappé & Moulines, 2009)
(2) Online EM for Unsupervised Models (Liang & Klein, 2009)
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Next up: Probabilistic PCA and
Factor Analysis
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