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Parameter Estimation with Latent Variables

Model p(X,Z|#), observed data X, latent variables Z, model parameters 6

@ Recall GMM, Z: cluster assignments, : GMM parameters {ﬁk,uk,}:k},’le

Goal: Estimate the model parameters 6 via MLE

0= I X|0) = | X, Z|0
arg max log p(X|0) arg max OgZZ:P( ,Z|0)

Doing MLE in such models can be difficult because of the log-sum

o /fwe "knew" Z, sum over all possible Z not needed. Just define “complete
data” {X,Z}, and do MLE on the complete data log-lik. log p(X, Z|9)

Assumption: MLE on log p(X, Z|0) is easy

o It often indeed is, especially when p(X, Z|0) is exponential family distribution
(or product of exponential family distributions)
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Parameter Estimation with Latent Variables

@ If MLE on log p(X, Z|0) is easy then let's do it!

Problem: Well, we don't actually know Z, so we are still stuck. ®

@ Solution: Use the posterior p(Z|X, #) over latent variables Z to compute the
expected complete data log-likelihood and do MLE on that objective.

6 = arg max E[log p(X, Z|6)]

arg max XZ: p(Z|X, 0)log p(X, Z|6)

@ But now we have a chicken-and-egg problem: the posterior p(Z|X, ) over Z
itself depends on the parameters 6
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Solution: An lterative Scheme (EM Algorithm)

Initialize the parameters: #°¢. Then alternate between these steps:

o E (Expectation) step:
o Compute the posterior p(Z|X,#°?) over latent variables Z using 6°
o Compute the expected complete data log-likelihood w.r.t. this posterior

Q(6,6) = E,7x goid)llog p(X, Z|6)] = > p(Z|X, 6°7) log p(X, Z|6)
z

e M (Maximization) step:
o Maximize the expected complete data log-likelihood w.r.t. 0

grew  — argmgaxQ(OﬁOId) (if doing MLE)

0" arg max{Q(0, 0°?) +log p(#)}  (if doing MAP)

o If the log-likelihood or the parameter values not converged then set
6°d = "™ and go to the E step.

Why is this doing the right thing?
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Illustration: EM for GMM

@ Recall that the GMM parameters 0 = {m, u, £} = {mx, pux, To };
@ The complete data likelihood
K N K
p(X, Z|m, 1, £) = [ [ [[ p(zn = K)p(xnl 20 = k) = T T 7 N (xnl sk, Ti )
n=1 k=1 n=1 k=1
@ Taking the log, we get:
N K
log p(X, Z|7, p, X) = Z Zznk{bgﬂ'k + log N (xn |k, ) }
n=1 k=1

@ E-step computes the expected complete data log-likelihood:
N K
Euzix,0)llog p(X, Z|7, p, X)] = Z Z E[zx]{log 7k + log N'(xn| ek, i)}
n=1 k=1

where E[z,,] is the expected value of z,, under the posterior
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lllustration: EM for GMM (Contd.)

@ The only expectation we need to compute E,zx,q)llog p(X, Z|7, p, E)] iS
TN (X ik,
E[zn] = Z ZokP(Znk | X0y T4 oy ) = p(zok = L|xp, 7y 1y T) = M = Yok
Zpk={0,1} J 1 N (Xalpjs X5)

@ Thus the expected complete data log-likelihood

N K
Epzix,0)[log P(X, Z|7, g1, T)] = D > vo{log mi + log N (xalpes, T4)}
=1 k=1

@ M-step maximizes the the exp. complete data log-likelihood w.r.t. 7y, fix, 2«

@ The update equations for these will be (shown on the board)
Ly = i i X Z — W L )T T = &
Ik—NkHZI"/nkm Yok (% i) (xn = i) s k=N

where N, = 3>V, is “effective” num. of examples assigned to k' Gaussian
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Why does EM work?
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Justification 1

@ Consider the log likelihood on “incomplete” data X

X,Z|6
log p(X|0) = log Z p(X,Z|0) = log Z q(Z) p( | ) (where g(Z) is some distribution)
z
X,Z
> Z q(Z) log % (using Jensen’s inequality for concave log)
q
z
log p(X|0) > Z q(Z) log p(X, Z|0) — Z q(Z) log g(Z) = Z q(Z) log p(X, Z|0) + const.
z z z

doesn’t depend on 6

o If we set q(z) = p(z|X, 0) then the above inequality becomes equality

p(X,Z|0) p(X, Z|0) PZPX%T) p(X|6)
ijq(Z)logW = sz p(Z|X, e)logm szp(2|x ) log SZXTT

>~ p(ZIX, 6) log p(X|6)
z

log p(X|6) > p(Z|X, 6) = log p(X|0)
z

@ Thus for g(z) = p(z|X, 6), we have

log p(X|0) = Z p(Z|X, 0) log p(X, Z|0) + const. = E[log p(X, Z|0)] + const.
z
@ EM maximizes E[log p(X, Z|0)] , a tight lower-bound on log p(X|0)
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Justification 2

@ We can also write the incomplete log likelihood

| log p(X[6) = L(q,6) + KL(ql|p.)

where g is some distr. on Z, p, = p(Z|X, 0) is the posterior over Z, and
£(q,0) = > q(Z) |0g{p(x’z‘9)}

Z a(Z)
p(Z|X, 0)
Kl(qllp:) = —) a(Z)log
‘ Zz: a(z)
KL(g]lp)
£(q,0) Inp(X|0)

(to verify, use log p(X, Z|8) = log p(Z|X, ) + log p(X|6) in the expression of L(q, 0))

@ Since KL(ql|pz) > 0, L(q,0) is a lower-bound on log p(X|6) for any g

Picture courtesy: PRML (Bishop, 2006)
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Justification 2 (contd.)

Recall log p(X|0) = L(q,0) + KL(q||p.). EM can also be seen as:

o With 6 fixed to 6°, maximize £(q,0°") w.r.t. q

§ = argmax £(q, 6°)
q

which is equivalent to making KL(q||p;) = 0 or setting § = p(Z|X, §°/%)
(This step makes £(§,0°) = log p(X|6°/?); see next slide)

e With § fixed at p(Z|X, §°), maximize £(§,0) w.r.t. 6, where

£g,0) = > pzIx, 07 logp(X,Z|0) = > p(ZIX, 6°) log p(Z|X, 6°)
Y4 z

constant w.r.t. 6

(6, 6°”) + const

0™" = arg max (0, 0°)

(This step ensures that log p(X|0"®*) > log p(X|6°/?); see next slide)
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Justification 2 (contd.)

E-step: £(qg,0°9) increases and becomes equal to log p(X|6°¢), KL(q||p.) becomes 0
because we set g = p(Z|X, )

£(g,6°%) Inp(X[6°')

KL(q|lp) =0

M-step: 0" makes L(q,8™") go further up, makes KL(g||p,) > 0 again
because g # p(Z|X,6™") and thus ensures that log p(X|0"") > log p(X|6°/)

KL(qllp)
_—— I ___

L(q.6") Inp(X[6"")

Thus the E and M steps never decrease the log-likelihood p(X|6)

Picture courtesy: PRML (Bishop, 2006)
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A View in the Parameter Space

o E-step: Update of g makes the £(q,0) curve touch the log p(X|0) curve
@ M-step gives the maxima 6" of £(q, 6)
o Next E-step readjusts £(q, ) curve (green) to meet log p(X|#) curve again

@ This continues until a local maxima of log p(X|#) is reached

' 901‘5{ gnew ‘
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Some EM Variants

o Generalized EM: M step doesn't require maximization w.r.t. 8; even if the
new 6 just increases the lower bound, we will still converge to a local optima

@ Variational EM and MCMC EM: If the E step of computing the posterior
p(Z|X, 0) is intractable, we can use variational Bayes (VB) or MCMC to
approximate the posterior

o Expectation Conditional Maximization: Parameters are partitioned in
groups. M step consists of multiple steps (each optimizing one group of
parameters, treating all other groups as fixed)

@ Online/incremental EM: E step only processes one (or a small number of)
observation, computing posteriors/expectations only w.r.t. that minibatch of
data. For exponential famility distributions, the sufficient statistics needed in
the M step can be easily updated incrementally, leading to simple form of
incremental parameter updates. Very useful for scalable inference. See:

(1) Online EM Algorithm for Latent Data Models (Cappé & Moulines, 2009)
(2) Online EM for Unsupervised Models (Liang & Kilein, 2009)
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Next up: Probabilistic PCA and

Factor Analysis
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