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Generalized Linear Models

Models we have seen so far..

(Probabilistic) Linear regression: when y is real-valued

p(y |x ,w) = N (w>x , β−1)

Logistic regression: when y is binary (0/1)

p(y |x ,w) = Bernoulli(σ(w>x)) = [σ(w>x)]y [1− σ(w>x)]1−y

where σ(w>x) = 1
1+exp(−w>

x)
= exp(w>

x)

1+exp(w>
x)

In both, the model depends on the inputs x linearly via w>x

Both are special cases of a more general class: Generalized Linear Models

p(y |η) = h(y) exp(ηy − A(η))

.. a special type of exponential family distribution

GLM can be used to also model responses that aren’t reals/binary (can be
any exponential family distribution in general)
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Exponential Family Distributions

An exponential family distribution is of the form

p(y |η) = h(y) exp(η>T (y)− A(η))

η is called the natural parameter

h(y) is usually a constant w.r.t. η

T (y) is the sufficient statistics: p(y |η) depends on y only through T (y)

A(η): log partition function or cumulant function

A(η) = log

∫
h(y) exp(η>T (y))dy

.. can also be seen as the log of a normalization factor
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Bernoulli as Exponential Family

Bernoulli in the usual form:

Bernoulli(y |p) = py (1− p)1−y = exp

(
y log

(
p

1− p

)
+ log(1− p)

)
Comparing it as p(y |η) = h(y) exp(η>T (y)− A(η)), we have

h(y) = 1

η = log
(

p
1−p

)
T (y) = y
A(η) = − log(1− p)
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Gaussian as Exponential Family

Gaussian in the usual form:

N (y |µ, σ2) =
1

√
2πσ2

exp

(
−

(y − µ)2

2σ2

)
=

1
√
2π

exp

(
µ

σ2
y −

1

2σ2
y2 −

µ2

2σ2
− log σ

)

Comparing it as p(y |η) = h(y) exp(η>T (y)− A(η)), we have

h(y) = 1√
2π

η =
(

µ
σ2 ,− 1

2σ2

)T
T (y) = (y , y 2)T

A(η) = µ2

2σ2 + log σ
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Some Useful Properties

The log partition function A(η) has several useful properties

First derivative of A(η) w.r.t. η is the expectation of the sufficient statistics

dA(η)

dη
= E[T (y)] (proof done on board)

Second derivative of A(η) w.r.t. η is the variance of sufficient statistics

d2A(η)

dη2
= var[T (y)]

Note: A(η) is also convex (because second derivative is non-negative)
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MLE for Exponential Family Distributions

The log-likelihood is given by

L(η) = log p(Y |η) = log
N∏

n=1

p(yn|η) = log
N∏

n=1

h(yn) exp(η
>T (yn)− A(η))

= log
N∏

n=1

h(yn) + η
>(

N∑
n=1

T (yn))− NA(η)

Taking derivative w.r.t. η and setting it to zero

N
dA(η)

dη
=

N∑
n=1

T (yn)

Defining µ = E[T (y)] = dA(η)
dη , we get

µ̂MLE =
1

N

N∑
n=1

T (yn) (can be used for parameter estimation via moment-matching)

Note that the estimate only depends on data via the sufficient statistics T (y)
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Generalized Linear Models

An exp. fam. model for x → y is a Generalized Linear Model if:

1 Observed inputs xn enter the model via linear combination w
>
xn

2 Conditional mean of response yn depends on w
>
xn via a response function f

µn = E[yn] = f (w>xn)

- for linear regression µn = f (w>xn) = w
>
xn,

- for logistic regression µn = f (w>xn) = exp(w>xn)/(1 + exp(w>xn))
3 T (y) = y

Form of a GLM
p(y |η) = h(y) exp(ηy − A(η))

where natural parameter η = ψ(µ), µ: conditional mean, ψ: link function

Note: Some GLM can be represented as p(y |η, φ) = h(y , φ) exp(ηy−A(η)φ )

where φ is a dispersion parameter (Gaussian/gamma GLMs use this rep.)
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GLM with Canonical Response Function

A GLM has a canonical response function f if f = ψ−1

For such a GLM, ηn = ψ(µn) = ψ(f (w>xn)) = w
>
xn

E.g., for logistic regression ηn = log µn

1−µn
= w

>
xn (exercise: verify by

recalling the exponential family representation of Bernoulli distribution)

Thus, for Canonical GLMs

p(y |η) = h(y) exp(ηy − A(η))

= h(y) exp(yw>x − A(η))

Such design choices in the canonical GLM make parameter estimation easy
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MLE for Generalized Linear Models

Log likelihood

L(η) = log p(Y |η) = log
N∏

n=1

h(yn) exp(ynw
>
xn − A(ηn)) =

N∑
n=1

log h(yn) + w
>

N∑
n=1

ynxn −
N∑

n=1

A(ηn)

Convexity of A(η) guarantees a global optima. Taking derivative w.r.t. w

N∑
n=1

(
ynxn − A′(ηn)

dηn

dw

)
=

N∑
n=1

(ynxn − µnxn) =
N∑

n=1

(yn − µn)xn

where µn = f (w>xn) and ’f ’ (= ψ−1) depends on type of response y , e.g.,

Real-valued y (linear regression): f is identity, i.e., µn = w
>
xn

Binary y (logistic regression): f is logistic function, i.e., µn = exp(w>
xn)

1+exp(w>
xn)

Count-valued y (Poisson regression): µn = exp(w>xn)
Positive reals y (gamma regression): µn = −(w>xn)

−1

To estimate w , either set the derivative to zero or use iterative methods
(e.g., gradient descent, iteratively reweighted least squares, etc.)
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Next class:
Clustering via Gaussian Mixture Models

Probabilistic Machine Learning (CS772A) Exponential Family and Generalized Linear Models 11


