Exponential Family and
Generalized Linear Models

Piyush Rai
IIT Kanpur

Probabilistic Machine Learning (CS772A)

Jan 20, 2016
Generalized Linear Models

- Models we have seen so far..
 - (Probabilistic) Linear regression: when \(y \) is real-valued
 \[
p(y|x, \mathbf{w}) = \mathcal{N}(\mathbf{w}^\top x, \beta^{-1})
 \]
 - Logistic regression: when \(y \) is binary (0/1)
 \[
p(y|x, \mathbf{w}) = \text{Bernoulli}(\sigma(\mathbf{w}^\top x)) = [\sigma(\mathbf{w}^\top x)]^y [1 - \sigma(\mathbf{w}^\top x)]^{1-y}
 \]
 where \(\sigma(\mathbf{w}^\top x) = \frac{1}{1+\exp(-\mathbf{w}^\top x)} = \frac{\exp(\mathbf{w}^\top x)}{1+\exp(\mathbf{w}^\top x)} \)
- In both, the model depends on the inputs \(x \) linearly via \(\mathbf{w}^\top x \)
- Both are special cases of a more general class: Generalized Linear Models
 \[
p(y|\eta) = h(y) \exp(\eta y - A(\eta))
 \]
 .. a special type of exponential family distribution
- GLM can be used to also model responses that aren’t reals/binary (can be any exponential family distribution in general)
An exponential family distribution is of the form

$$p(y|\eta) = h(y) \exp(\eta^\top T(y) - A(\eta))$$

- η is called the natural parameter
- $h(y)$ is usually a constant w.r.t. η
- $T(y)$ is the sufficient statistics: $p(y|\eta)$ depends on y only through $T(y)$
- $A(\eta)$: log partition function or cumulant function

$$A(\eta) = \log \int h(y) \exp(\eta^\top T(y))dy$$

.. can also be seen as the log of a normalization factor
Bernoulli as Exponential Family

- Bernoulli in the usual form:
 \[\text{Bernoulli}(y|p) = p^y (1 - p)^{1-y} = \exp \left(y \log \left(\frac{p}{1-p} \right) + \log(1-p) \right) \]

- Comparing it as \(p(y|\eta) = h(y) \exp(\eta^\top T(y) - A(\eta)) \), we have
 - \(h(y) = 1 \)
 - \(\eta = \log \left(\frac{p}{1-p} \right) \)
 - \(T(y) = y \)
 - \(A(\eta) = -\log(1 - p) \)
Gaussian as Exponential Family

- Gaussian in the usual form:

\[
\mathcal{N}(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(y - \mu)^2}{2\sigma^2} \right) = \frac{1}{\sqrt{2\pi}} \exp \left(\frac{\mu}{\sigma^2} y - \frac{1}{2\sigma^2} y^2 - \frac{\mu^2}{2\sigma^2} - \log \sigma \right)
\]

- Comparing it as \(p(y|\eta) = h(y) \exp(\eta^\top T(y) - A(\eta)) \), we have
 - \(h(y) = \frac{1}{\sqrt{2\pi}} \)
 - \(\eta = \left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2} \right)^T \)
 - \(T(y) = (y, y^2)^T \)
 - \(A(\eta) = \frac{\mu^2}{2\sigma^2} + \log \sigma \)
Some Useful Properties

- The log partition function $A(\eta)$ has several useful properties.
- First derivative of $A(\eta)$ w.r.t. η is the expectation of the sufficient statistics
 \[
 \frac{dA(\eta)}{d\eta} = \mathbb{E}[T(y)] \quad \text{(proof done on board)}
 \]
- Second derivative of $A(\eta)$ w.r.t. η is the variance of sufficient statistics
 \[
 \frac{d^2A(\eta)}{d\eta^2} = \text{var}[T(y)]
 \]
- Note: $A(\eta)$ is also convex (because second derivative is non-negative)
MLE for Exponential Family Distributions

The log-likelihood is given by

\[L(\eta) = \log p(Y | \eta) = \log \prod_{n=1}^{N} p(y_n | \eta) = \log \prod_{n=1}^{N} h(y_n) \exp(\eta^\top T(y_n) - A(\eta)) \]

\[= \log \prod_{n=1}^{N} h(y_n) + \eta^\top (\sum_{n=1}^{N} T(y_n)) - NA(\eta) \]

Taking derivative w.r.t. \(\eta \) and setting it to zero

\[N \frac{dA(\eta)}{d\eta} = \sum_{n=1}^{N} T(y_n) \]

Defining \(\mu = \mathbb{E}[T(Y)] = \frac{dA(\eta)}{d\eta} \), we get

\[\hat{\mu}_{MLE} = \frac{1}{N} \sum_{n=1}^{N} T(y_n) \quad \text{(can be used for parameter estimation via moment-matching)} \]

Note that the estimate only depends on data via the sufficient statistics \(T(y) \)
Generalized Linear Models

- An exp. fam. model for \(x \rightarrow y \) is a Generalized Linear Model if:
 1. Observed inputs \(x_n \) enter the model via linear combination \(w^\top x_n \)
 2. Conditional mean of response \(y_n \) depends on \(w^\top x_n \) via a response function \(f \)

\[
\mu_n = \mathbb{E}[y_n] = f(w^\top x_n)
\]
- for linear regression \(\mu_n = f(w^\top x_n) = w^\top x_n \),
- for logistic regression \(\mu_n = f(w^\top x_n) = \exp(w^\top x_n)/(1 + \exp(w^\top x_n)) \)
 3. \(T(y) = y \)

- Form of a GLM

\[
p(y|\eta) = h(y) \exp(\eta y - A(\eta))
\]
where natural parameter \(\eta = \psi(\mu) \), \(\mu \): conditional mean, \(\psi \): link function

\[
\begin{align*}
w \quad \xrightarrow{\xi} \quad f \quad \xrightarrow{\mu} \quad \psi \quad \xrightarrow{\eta}
\end{align*}
\]

- Note: Some GLM can be represented as \(p(y|\eta, \phi) = h(y, \phi) \exp(\frac{\eta y - A(\eta)}{\phi}) \)
where \(\phi \) is a dispersion parameter (Gaussian/gamma GLMs use this rep.)
GLM with Canonical Response Function

- A GLM has a canonical response function f if $f = \psi^{-1}$
- For such a GLM, $\eta_n = \psi(\mu_n) = \psi(f(w^\top x_n)) = w^\top x_n$
- E.g., for logistic regression $\eta_n = \log \frac{\mu_n}{1-\mu_n} = w^\top x_n$ (exercise: verify by recalling the exponential family representation of Bernoulli distribution)
- Thus, for Canonical GLMs

$$p(y|\eta) = h(y) \exp(\eta y - A(\eta))$$
$$= h(y) \exp(yw^\top x - A(\eta))$$

- Such design choices in the canonical GLM make parameter estimation easy
MLE for Generalized Linear Models

- Log likelihood

\[L(\eta) = \log p(Y|\eta) = \log \prod_{n=1}^{N} h(y_n) \exp(y_n w^\top x_n - A(\eta_n)) = \sum_{n=1}^{N} \log h(y_n) + w^\top \sum_{n=1}^{N} y_n x_n - \sum_{n=1}^{N} A(\eta_n) \]

- Convexity of \(A(\eta) \) guarantees a global optima. Taking derivative w.r.t. \(w \)

\[\sum_{n=1}^{N} \left(y_n x_n - A'(\eta_n) \frac{d\eta_n}{dw} \right) = \sum_{n=1}^{N} (y_n x_n - \mu_n x_n) = \sum_{n=1}^{N} (y_n - \mu_n) x_n \]

where \(\mu_n = f(w^\top x_n) \) and \(f' (= \psi^{-1}) \) depends on type of response \(y \), e.g.,

- Real-valued \(y \) (linear regression): \(f \) is identity, i.e., \(\mu_n = w^\top x_n \)
- Binary \(y \) (logistic regression): \(f \) is logistic function, i.e., \(\mu_n = \frac{\exp(w^\top x_n)}{1+\exp(w^\top x_n)} \)
- Count-valued \(y \) (Poisson regression): \(\mu_n = \exp(w^\top x_n) \)
- Positive reals \(y \) (gamma regression): \(\mu_n = -(w^\top x_n)^{-1} \)

- To estimate \(w \), either set the derivative to zero or use iterative methods (e.g., gradient descent, iteratively reweighted least squares, etc.)
Next class:
Clustering via Gaussian Mixture Models