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Probabilistic Classification

Given: N labeled training examples {xn, yn}Nn=1, xn ∈ RD , yn ∈ {0, 1}

X : N × D feature matrix, y : N × 1 label vector

yn = 1: positive example, yn = 0: negative example

Goal: Learn a classifier that predicts the binary label y∗ for a new input x∗

Want a probabilistic model to be able to also predict the label probabilities

p(yn = 1|xn,w) = µn

p(yn = 0|xn,w) = 1− µn

µn ∈ (0, 1) is the probability of yn being 1

Note: Features xn assumed fixed (given). Only labels yn being modeled

w is the model parameter (to be learned)

How do we define µn (want it to be a function of w and input xn)?
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Logistic Regression

Logistic regression defines µ using the sigmoid function

µ = σ(w>x) =
1

1 + exp(−w>x)
=

exp(w>x)

1 + exp(w>x)

Sigmoid computes a real-valued “score” (w>x) for input x and “squashes” it
between (0,1) to turn this score into a probability (of x ’s label being 1)

Thus we have

p(y = 1|x,w) = µ = σ(w>x) =
1

1 + exp(−w>x)
=

exp(w>x)

1 + exp(w>x)

p(y = 0|x,w) = 1− µ = 1− σ(w>x) =
1

1 + exp(w>x)

Note: If we assume y ∈ {−1,+1} instead of y ∈ {0, 1} then p(y |x,w) = 1

1+exp(−yw>x)
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Logistic Regression: A Closer Look..

What’s the underlying decision rule in Logistic Regression?

At the decision boundary, both classes are equiprobable. Thus:

p(y = 1|x,w) = p(y = 0|x,w)

exp(w>x)

1 + exp(w>x)
=

1

1 + exp(w>x)

exp(w>x) = 1

w
>
x = 0

Thus the decision boundary of LR is nothing but a linear hyperplane, just like
Perceptron, Support Vector Machine (SVM), etc.

Therefore y = 1 if w>x ≥ 0, otherwise y = 0

Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification: Logistic Regression 4



Interpreting the probabilities..

Recall that

p(y = 1|x ,w) = µ =
1

1 + exp(−w>x)

Note that the “score” w
>
x is also a measure of distance of x from the

hyperplane (score is positive for pos. examples, negative for neg. examples)

High positive score w>x : High probability of label 1

High negative score w>x : Low prob. of label 1 (high prob. of label 0)
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Logistic Regression: Parameter Estimation

Recall, each label yn is binary with prob. µn. Assume Bernoulli likelihood:

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =
N∏

n=1

µ
yn
n (1− µn)1−yn

where µn = exp(w>xn)

1+exp(w>xn)

Negative log-likelihood

NLL(w) = − log p(Y|X,w) = −
N∑

n=1

(yn log µn + (1− yn) log(1− µn))

Plugging in µn = exp(w>xn)

1+exp(w>xn)
and chugging, we get (verify yourself)

NLL(w) = −
N∑

n=1

(ynw
>
xn − log(1 + exp(w>xn)))

To do MLE for w , we’ll minimize negative log-likelihood NLL(w) w.r.t. w

Important note: NLL(w) is convex in w , so global minima can be found
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MLE Estimation for Logistic Regression

We have NLL(w) = −
∑N

n=1(ynw
>
xn − log(1 + exp(w>xn)))

Taking the derivative of NLL(w) w.r.t. w

∂NLL(w)

∂w
=

∂

∂w
[−

N∑
n=1

(ynw
>
xn − log(1 + exp(w>xn)))]

= −
N∑

n=1

(
ynxn −

exp(w>xn)

(1 + exp(w>xn))
xn

)

Can’t get a closed form estimate for w by setting the derivative to zero

One solution: Iterative minimization via gradient descent. Gradient is:

g =
∂NLL(w)

∂w
= −

N∑
n=1

(yn − µn)xn = X>(µ− y)

Intuitively, a large error on xn ⇒ (yn − µn) will be large ⇒ large contribution
(positive/negative) of xn to the gradient
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MLE Estimation via Gradient Descent

Gradient descent (GD) or steepest descent

w t+1 = w t − ηtgt

where ηt is the learning rate (or step size), and gt is gradient at step t

GD can converge slowly and is also sensitive to the step size

Several ways to remedy this1. E.g.,

Choose the optimal step size ηt by line-search

Add a momentum term to the updates

w t+1 = w t − ηtgt + αt(w t − w t−1)

Use methods such as conjugate gradient

Use second-order methods (e.g., Newton’s method) to exploit the curvature
of the objective function NLL(w): Require the Hessian matrix

1
Also see: “A comparison of numerical optimizers for logistic regression” by Tom Minka
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MLE Estimation via Newton’s Method

Update via Newton’s method:

w t+1 = w t − H−1
t gt

where Ht is the Hessian matrix at step t

Hessian: double derivative of the objective function (NLL(w) in this case)

H =
∂2NLL(w)

∂w∂w>
=
∂g>

∂w

Recall that the gradient is: g = −
∑N

n=1(yn − µn)xn = X>(µ− y)

Thus H = ∂g>
∂w = − ∂

∂w

∑N
n=1(yn − µn)x>n =

∑N
n=1

∂µn
∂w x

>
n

Using the fact that ∂µn

∂w = ∂
∂w

(
exp(w>xn)

1+exp(w>xn)

)
= µn(1− µn)xn, we have

H =
N∑

n=1

µn(1− µn)xnx
>
n = X>SX

where S is a diagonal matrix with its nth diagonal element = µn(1− µn)
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MLE Estimation via Newton’s Method

Update via Newton’s method:

w t+1 = w t − H−1
t gt

= w t − (X>StX)−1X>(µt − y)

= w t + (X>StX)−1X>(y − µt)

= (X>StX)−1[(X>StX)w t + X>(y − µt)]

= (X>StX)−1X>[StXw t + y − µt ]

= (X>StX)−1X>St [Xw t + S−1(y − µt)]

= (X>StX)−1X>St ŷ t

Interpreting the solution found by Newton’s method:

It basically solves an Iteratively Reweighted Least Squares (IRLS) problem

arg min
w

N∑
n=1

Stn(ŷtn − w
>
xn)2

Note that the (redefined) response vector ŷ t changes in each iteration

Each term in the objective has weight Stn (changes in each iteration)

The weight Stn is the nth diagonal element of St
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MAP Estimation for Logisic Regression

MLE estimate of w can lead to overfitting. Solution: use a prior on w

Just like the linear regression case, let’s put a Gausian prior on w

p(w) = N (0, λ−1ID ) ∝ exp(−
λ

2
w
>
w)

MAP objective: MLE objective + log p(w)

Leads to the objective (negative of log posterior, ignoring constants):

NLL(w) +
λ

2
w
>
w

Estimation of w proceeds the same way as MLE excepet that now we have

Gradient: g = X>(µ− y) + λw

Hessian: H = X>SX + λID

Can now apply iterative optimization (gradient des., Newton’s method, etc.)

Note: MAP estimation for log. reg. is equivalent to regularized log. reg.
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Fully Bayesian Estimation for Logistic Regression

What about the full posterior on w?

Not as easy to estimate as in the linear regression case!

Reason: likelihood (logistic-Bernoulli) and prior (Gaussian) not conjugate

Need to approximate the posterior in this case

A crude approximation: Laplace approximation: Approximate a posterior by
a Gaussian with mean = MAP estimate and covariance = inverse hessian

p(w |X, y) = N (wMAP ,H
−1)

Will see other ways of approximating the posterior later during the semester
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Derivation of the Laplace Approximation

The posterior p(w |X, y) = p(y|X,w)p(w)
p(y|X) . Let’s approximate it as

p(w |X, y) =
exp(−E(w))

Z

where E (w) = − log p(y |X,w)p(w) and Z is the normalizer

Expand E (w) around its minima (w∗ = wMAP) using 2nd order Taylor exp.

E(w) ≈ E(w∗) + (w − w∗)>g +
1

2
(w − w∗)>H(w − w∗)

= E(w∗) +
1

2
(w − w∗)>H(w − w∗) (because g = 0 at w∗))

Thus the posterior

p(w |X, y) ≈
exp(−E(w∗)) exp(− 1

2 (w − w∗)>H(w − w∗)))

Z

Using
∫
w
p(w |X, y)dw = 1, we get Z = exp(−E(w∗))(2π)D/2|H|−1/2. Thus

p(w |X, y) = N (w∗,H
−1)
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Multinomial Logistic Regression

Logistic reg. can be extended to handle K > 2 classes)

In this case, yn ∈ {0, 1, 2, . . . ,K − 1} and label probabilities are defined as

p(yn = k|xn,W) =
exp(w>k xn)∑K
`=1 exp(w>` xn)

= µnk

µnk : probability that example n belongs to class k . Also,
∑K
`=1 µn` = 1

W = [w 1 w 2 . . . wK ] is D × K weight matrix (column k for class k)

Likelihood for the multinomial (or multinoulli) logistic regression model

p(y |X,W) =
N∏

n=1

K∏
`=1

µ
yn`
n`

where yn` = 1 if true class of example n is ` and yn`′ = 0 for all other `′ 6= `

Can do MLE/MAP/fully Bayesian estimation for W similar to the binary case

Decision rule: y∗ = arg max`=1,...,K w
>
` x∗, i.e., predict the class whose

weight vector gives the largest score (or, equivalently, the largest probability)
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Next class:
Generalized Linear Models
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