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Parameter Estimation

Given: data X = {x1, x2, . . . , xN} generated i.i.d. from a probabilistic model

xn ∼ p(x |θ) ∀n = 1, . . . ,N

Goal: estimate parameter θ from the observed data D

First, recall the Bayes rule: The posterior probability p(θ|X) is

p(θ|X) =
p(X|θ)p(θ)

p(X)
=

p(X|θ)p(θ)∫
θ
p(X|θ)p(θ)dθ

=
likelihood× prior

marginal probability

p(X|θ): probability of data X (or “likelihood”) for a specific θ

p(θ): prior distribution (our prior belief about θ without seeing any data)

p(X): marginal probability (or “evidence”) - likelihood averaged over all θ’s
(also normalizes the numerator to make p(θ|X) a probability distribution)
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Maximum Likelihood Estimation (MLE)

Perhaps the simplest (but widely used) parameter estimation method

Finds the parameter θ that maximizes the likelihood p(X|θ)

L(θ) = p(X|θ) = p(x1, . . . , xN | θ) =
N∏

n=1

p(xn | θ)

Note: Likelihood is a function of θ
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Maximum Likelihood Estimation (MLE)

MLE typically maximizes the log-likelihood instead of the likelihood (doesn’t
affect the estimation because log is monotonic)

Log-likelihood:

logL(θ) = log p(X | θ) = log
N∏

n=1

p(xn | θ) =
N∑

n=1

log p(xn | θ)

Maximum Likelihood parameter estimation

θ̂MLE = arg max
θ

logL(θ) = arg max
θ

N∑
n=1

log p(xn | θ)
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MLE: Consistency

If the assumed model p(x |θ) has the same form as the true underlying model,
then the MLE is consistent as the number of observations N →∞

θ̂MLE → θ∗

where θ∗ is the parameter of the true underlying model p(x |θ∗) that
generated the data

A rough informal proof: In the limit N →∞

L(θ) = E
x∼p(x|θ∗)[log p(x |θ)]

= −KL(p(x |θ∗)||p(x |θ)) + E
x∼p(x|θ∗)[log p(x |θ∗)]

(proof on the board)

Thus θ̂MLE , the maximizer of L(θ), minimizes the KL divergence between
p(x |θ∗) and p(x |θ∗). Since both have the same form, θ = θ∗
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MLE via a simple example

Consider a sequence of N coin tosses (call head = 0, tail = 1)

Each outcome xn is a binary random variable ∈ {0, 1}

Assume θ to be probability of a head (parameter we wish to estimate)

Each likelihood term p(xn | θ) is Bernoulli: p(xn | θ) = θxn(1− θ)1−xn

Log-likelihood:
∑N

n=1 log p(xn | θ) =
∑N

n=1 xn log θ + (1− xn) log(1− θ)

Taking derivative of the log-likelihood w.r.t. θ, and setting it to zero gives

θ̂MLE =

∑N
n=1 xn

N

θ̂MLE in this example is simply the fraction of heads!

MLE doesn’t have a way to express our prior belief about θ. Can be
problematic especially when the number of observations is very small (e.g.,
suppose we only observed heads in a small number of coin-tosses).
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Maximum-a-Posteriori Estimation (MAP)

Allows incorporating our prior belief (without having seen any data) about θ
via a prior distribution p(θ)

p(θ) specifies what the parameter looks like a priori

Finds the parameter θ that maximizes the posterior probability of θ (i.e.,
probability in the light of the observed data)

θ̂MAP = arg max
θ

p(θ|X)
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Maximum-a-Posteriori (MAP) Estimation

Maximum-a-Posteriori parameter estimation: Find the θ that maximizes the
(log of) posterior probability of θ

θ̂MAP = arg max
θ

p(θ|X) = arg max
θ

p(X|θ)p(θ)

p(X)

= arg max
θ

p(X|θ)p(θ)

= arg max
θ

log p(X|θ)p(θ)

= arg max
θ
{log p(X|θ) + log p(θ)}

θ̂MAP = arg max
θ
{

N∑
n=1

log p(xn|θ) + log p(θ)}

Same as MLE except the extra log-prior-distribution term!

Note: When p(θ) is a uniform prior, MAP reduces to MLE
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MAP via a simple example

Let’s again consider the coin-toss problem (estimating the bias of the coin)

Each likelihood term is Bernoulli: p(xn|θ) = θxn(1− θ)1−xn

Since θ ∈ (0, 1), we assume a Beta prior: θ ∼ Beta(α, β)

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

α, β are called hyperparameters of the prior
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MAP via a simple example

The log posterior probability =
∑N

n=1 log p(xn|θ) + log p(θ)

Ignoring the constants w.r.t. θ, the log posterior probability:∑N
n=1{xn log θ + (1− xn) log(1− θ)}+ (α− 1) log θ + (β − 1) log(1− θ)

Taking derivative w.r.t. θ and setting to zero gives

θ̂MAP =

∑N
n=1 xn + α− 1

N + α + β − 2

Note: For α = 1, β = 1, i.e., p(θ) = Beta(1, 1) (which is equivalent to a
uniform prior), we get the same solution as θ̂MLE

Note: Hyperparameters of the prior (in this case α, β) can often be thought
of as “pseudo-observations”. E.g., in the coin-toss example, α− 1, β − 1 are
the expected numbers of heads and tails, respectively, before seeing any data
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Point Estimation vs Full Posterior

Note that MLE and MAP only provide us with a best “point estimate” of θ

MLE gives θ that maximizes p(X|θ) (likelihood, or probability of data given θ)

MAP gives θ that maximizes p(θ|X) (posterior probability of the parameter θ)

MLE does not incorporate any prior knowledge about parameters

MAP does incorporate prior knowledge but still only gives a point estimate

Point estimate doesn’t capture the uncertainty about the parameter θ

The full posterior p(θ|X) gives a more complete picture (e.g., gives an
estimate of uncertaintly in the learned parameters, gives more robust
predictions/undertainty in predictions, and many other benefits that we will
see later during the semester)
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Point Estimation vs Full Posterior

Estimating (or “inferring”) the full posterior can be hard in general

In some cases, however, we can analytically compute the full posterior (e.g.,
when the prior distribution is “conjugate” to the likelihood)

In other cases, it can be approximated via approximate Bayesian inference
(more on this later during the semester)
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Estimating the Full Posterior: A Simple Example

Let’s come back once more to the coin-toss example

Recall that each likelihood term was Bernoulli: p(xn|θ) = θxn(1− θ)1−xn

The prior p(θ) was Beta: p(θ) = Beta(α, β) = Γ(α+β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1

The posterior is given by

p(θ|X) ∝
N∏

n=1

p(xn|θ)p(θ)

∝ θα+
∑N

n=1 xn−1(1− θ)β+N−
∑N

n=1 xn−1

It can be verified (exercise) that the normalization constant in the above is a

Beta function
Γ(α+

∑N
n=1 xn)Γ(β+N−

∑N
n=1 xn)

Γ(α+β+N)

Thus the posterior p(θ|X) = Beta(α +
∑N

n=1 xn, β + N −
∑N

n=1 xn)

Here, the posterior has the same form as the prior (both Beta)

Also very easy to perform online inference (posterior can be used as a prior
for the next batch of data)
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Posterior Evolution with Observed Data

Assume starting with a uniform prior (equivalent to Beta(1,1)) in the
coin-toss example and observing a sequence of heads and tails
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Conjugate Priors

If the prior distribution is conjugate to the likelihood, posterior inference is
simplified significantly

When the prior is conjugate to the likelihood, posterior also belongs to the
same family of distributions as the prior

Many pairs of distributions are conjugate to each other. E.g.,

Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior
Binomial (likelihood) + Beta (prior) ⇒ Beta posterior
Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior
Poisson (likelihood) + Gamma (prior) ⇒ Gamma posterior
Gaussian (likelihood) + Gaussian (prior) ⇒ Gamma posterior
and many other such pairs ..

Easy to identify if two distributions are conjugate to each other: their
functional forms are similar. E.g., multinomial and Dirichlet

multinomial ∝ px1
1 . . . pxKK , Dirichlet ∝ pα1

1 . . . pαK

K
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Conjugate Priors and Exponential Family

Recall the exponential family of distributions

p(x |θ) = h(x)eη(θ)>T (x)−A(θ)

θ: parameter of the family. h(x), η(θ), T (x), and A(θ) are known functions

p(.) depends on data x only through its sufficient statistics T (x)

For each exp. family distribution p(x |θ), there is a conjugate prior of the form

p(θ) ∝ eη(θ)>α−γA(θ)

where α, γ are the hyperparameters of the prior

Updated posterior: posterior will also have the same form as the prior

p(θ|x) ∝ p(x |θ)p(θ) ∝ eη(θ)>[T (x)+α]−[γ+1]A(θ)

Updates by adding the sufficient statistics T (x) to prior’s hyperparameters
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Next Class:
Probabilistic Linear Regression
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