Some Essentials of Probability for Probabilistic Machine Learning

Piyush Rai IIT Kanpur

Probabilistic Machine Learning (CS772A)

Jan 4, 2016

向下 イヨト イヨト

- A random variable (r.v.) X denotes possible outcomes of an event
- Can be discrete (i.e., finite many possible outcomes) or continuous

- ∢ ≣ →

- A random variable (r.v.) X denotes possible outcomes of an event
- Can be discrete (i.e., finite many possible outcomes) or continuous

- Some examples of discrete r.v.
 - A random variable $X \in \{0, 1\}$ denoting outcomes of a coin-toss
 - A random variable $X \in \{1, 2, \dots, 6\}$ denoteing outcome of a dice roll

一日、

- A random variable (r.v.) X denotes possible outcomes of an event
- Can be discrete (i.e., finite many possible outcomes) or continuous

- Some examples of **discrete r.v.**
 - A random variable $X \in \{0, 1\}$ denoting outcomes of a coin-toss
 - A random variable $X \in \{1, 2, \dots, 6\}$ denoteing outcome of a dice roll
- Some examples of continuous r.v.
 - A random variable $X \in (0,1)$ denoting the bias of a coin
 - A random variable X denoting heights of students in CS772
 - A random variable X denoting time to get to your hall from the department

- 4 回 ト - 4 回 ト

- A random variable (r.v.) X denotes possible outcomes of an event
- Can be discrete (i.e., finite many possible outcomes) or continuous

- Some examples of **discrete r.v.**
 - A random variable $X \in \{0, 1\}$ denoting outcomes of a coin-toss
 - A random variable $X \in \{1, 2, \dots, 6\}$ denoteing outcome of a dice roll
- Some examples of continuous r.v.
 - A random variable $X \in (0,1)$ denoting the bias of a coin
 - A random variable X denoting heights of students in CS772
 - A random variable X denoting time to get to your hall from the department
- An r.v. is associated with a probability mass function or prob. distribution

(人間) トイヨト イヨト

Discrete Random Variables

- For a discrete r.v. X, p(x) denotes the probability that p(X = x)
- p(x) is called the probability mass function (PMF)

Picture courtesy: johndcook.com

Continuous Random Variables

• For a continuous r.v. X, a probability p(X = x) is meaningless

Picture courtesy: PRML (Bishop, 2006)

Continuous Random Variables

- For a continuous r.v. X, a probability p(X = x) is meaningless
- Instead we use p(x) to denote the probability density function (PDF)

$$p(x) \ge 0$$
 and $\int_x p(x) dx = 1$

• Probability that a cont. r.v. $X \in (x, x + \delta x)$ is $p(x)\delta x$ as $\delta x \to 0$

Picture courtesy: PRML (Bishop, 2006)

- 4 同 ト 4 国 ト - 4 国 ト

Continuous Random Variables

- For a continuous r.v. X, a probability p(X = x) is meaningless
- Instead we use p(x) to denote the probability density function (PDF)

$$p(x) \ge 0$$
 and $\int_x p(x) dx = 1$

• Probability that a cont. r.v. $X \in (x, x + \delta x)$ is $p(x)\delta x$ as $\delta x \to 0$

Probability that X lies between (−∞, z) is given by the cumulative distribution function (CDF) P(z) where

$$P(z)=p(X\leq z)=\int_{-\infty}^z p(x)dx$$
 and $p(x)=|P'(z)|_{z=x}$

Picture courtesy: PRML (Bishop, 2006)

(人間) システン イラン

A word about notation..

• p(.) can mean different things depending on the context

- p(X) denotes the PMF/PDF of an r.v. X
- p(X = x) or p(x) denotes the **probability** or **probability density** at point x
- Actual meaning should be clear from the context (but be careful)

くぼう くほう くほう

A word about notation..

- p(.) can mean different things depending on the context
 - p(X) denotes the PMF/PDF of an r.v. X
 - p(X = x) or p(x) denotes the **probability** or **probability density** at point x
- Actual meaning should be clear from the context (but be careful)
- Exercise the same care when p(.) is a specific distribution (Bernoulli, Beta, Gaussian, etc.)

A word about notation..

- p(.) can mean different things depending on the context
 - p(X) denotes the PMF/PDF of an r.v. X
 - p(X = x) or p(x) denotes the **probability** or **probability density** at point x
- Actual meaning should be clear from the context (but be careful)
- Exercise the same care when p(.) is a specific distribution (Bernoulli, Beta, Gaussian, etc.)
- The following means drawing a sample from the distribution p(X)

 $x \sim p(X)$

★@ > ★ E > ★ E > E

Joint Probability

Joint probability p(X, Y) models probability of co-occurrence of two r.v. X, Y For discrete r.v., the joint PMF p(X, Y) is like a table (that sums to 1)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Joint Probability

Joint probability p(X, Y) models probability of co-occurrence of two r.v. X, Y For discrete r.v., the joint PMF p(X, Y) is like a table (that sums to 1)

For continuous r.v., we have joint PDF p(X, Y)

$$\int_{X}\int_{Y}p(X=x,Y=y)dxdy=1$$

Marginal Probability

• For discrete r.v.

$$p(X) = \sum_{y} p(X, Y = y), \quad p(Y) = \sum_{x} p(X = x, Y)$$

2

Marginal Probability

• For discrete r.v.

$$p(X) = \sum_{y} p(X, Y = y), \quad p(Y) = \sum_{x} p(X = x, Y)$$

• For discrete r.v. it is the sum of the PMF table along the rows/columns

伺 ト イヨト イヨト

Marginal Probability

• For discrete r.v.

$$p(X) = \sum_{y} p(X, Y = y), \quad p(Y) = \sum_{x} p(X = x, Y)$$

• For discrete r.v. it is the sum of the PMF table along the rows/columns

• For continuous r.v.

$$p(X) = \int_{Y} p(X, Y = y) dy, \quad p(Y) = \int_{X} p(X = x, Y) dx$$

Probabilistic Machine Learning (CS772A)

伺 ト イヨト イヨト

Conditional Probability

- Meaning: Probability of one event when we know the outcome of the other
- Conditional probability p(X|Y) or p(Y|X): like taking a slice of p(X, Y)

イロト 不得下 イヨト イヨト 二日

¹Picture courtesy: Computer vision: models, learning and inference (Simon Price)

Conditional Probability

- Meaning: Probability of one event when we know the outcome of the other
- Conditional probability p(X|Y) or p(Y|X): like taking a slice of p(X, Y)
- For a discrete distribution:

(日) (周) (王) (王)

¹Picture courtesy: Computer vision: models, learning and inference (Simon Price)

Conditional Probability

- Meaning: Probability of one event when we know the outcome of the other
- Conditional probability p(X|Y) or p(Y|X): like taking a slice of p(X, Y)
- For a discrete distribution:

- For a continuous distribution¹:

¹Picture courtesy: Computer vision: models, learning and inference (Simon Price)

(日) (周) (王) (王)

• Sum rule: Gives the marginal probability

- For discrete r.v.: $p(X) = \sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X) = \int_Y p(X, Y) dY$

• Sum rule: Gives the marginal probability

- For discrete r.v.: $p(X) = \sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X) = \int_Y p(X, Y) dY$

• Product rule: p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y)

• Sum rule: Gives the marginal probability

- For discrete r.v.: $p(X) = \sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X) = \int_Y p(X, Y) dY$
- **Product rule:** p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y)
- Bayes rule: Gives conditional probability

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

(本間) (本語) (本語) (語)

• Sum rule: Gives the marginal probability

- For discrete r.v.: $p(X) = \sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X) = \int_Y p(X, Y) dY$
- **Product rule:** p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y)
- Bayes rule: Gives conditional probability

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

- For discrete r.v.: $p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_{Y} p(X|Y)p(Y)}$
- For continuous r.v.: $p(Y|X) = \frac{p(X|Y)p(Y)}{\int_Y p(X|Y)p(Y)dY}$

• Bayes rule is also central to parameter estimation (more on this later)

(日) (周) (王) (王) (王)

• Sum rule: Gives the marginal probability

- For discrete r.v.: $p(X) = \sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X) = \int_Y p(X, Y) dY$
- **Product rule:** p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y)
- Bayes rule: Gives conditional probability

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

- For discrete r.v.: $p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_{Y} p(X|Y)p(Y)}$
- For continuous r.v.: $p(Y|X) = \frac{p(X|Y)p(Y)}{\int_Y p(X|Y)p(Y)dY}$
- Bayes rule is also central to parameter estimation (more on this later)
- Also remember the chain rule

$$p(X_1, X_2, \ldots, X_N) = p(X_1)p(X_2|X_1) \ldots p(X_N|X_1, \ldots, X_{N-1})$$

Independence

• X and Y are independent $(X \perp \!\!\!\perp Y)$ when one tells nothing about the other

$$p(X|Y) = p(X)$$

 $p(Y|X) = p(Y)$
 $p(X,Y) = p(X)p(Y)$

• $X \perp \!\!\!\perp Y$ is also called marginal independence

伺 ト イヨト イヨト

Independence

• X and Y are independent $(X \perp H Y)$ when one tells nothing about the other

$$p(X|Y) = p(X)$$

 $p(Y|X) = p(Y)$
 $p(X,Y) = p(X)p(Y)$

- $X \perp Y$ is also called marginal independence
- Conditional independence $(X \perp | Y | Z)$: independence when another event Z is observed

$$p(X, Y|Z) = p(X|Z)p(Y|Z)$$

くぼう くほう くほう

• Expectation or mean μ of an r.v. with PMF/PDF p(X)

$$\mathbb{E}[X] = \sum_{x} xp(x) \quad \text{(for discrete distributions)}$$
$$\mathbb{E}[X] = \int_{x} xp(x)dx \quad \text{(for continuous distributions)}$$

• Note: The definition applies to functions of r.v. too (e.g., $\mathbb{E}[f(x)]$)

・ 同 ト ・ ヨ ト ・ ヨ ト

• **Expectation** or mean μ of an r.v. with PMF/PDF p(X)

$$\mathbb{E}[X] = \sum_{x} xp(x) \quad \text{(for discrete distributions)}$$
$$\mathbb{E}[X] = \int_{x} xp(x)dx \quad \text{(for continuous distributions)}$$

- Note: The definition applies to functions of r.v. too (e.g., $\mathbb{E}[f(x)]$)
- Linearity of expectation (very important/useful property)

$$\mathbb{E}[\alpha f(x) + \beta g(x)] = \alpha \mathbb{E}[f(x)] + \beta \mathbb{E}[g(x)]$$

・ 何 ト ・ ヨ ト ・ ヨ ト

• Variance σ^2 (or "spread" around mean) of an r.v. with PMF/PDF p(X)

$$\operatorname{var}[X] = \mathbb{E}[(X - \mu)^2]$$

• Variance σ^2 (or "spread" around mean) of an r.v. with PMF/PDF p(X)

$$\mathsf{var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

• Standard deviation: $std[X] = \sqrt{var[X]} = \sigma$

• Variance σ^2 (or "spread" around mean) of an r.v. with PMF/PDF p(X)

$$\operatorname{var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

- Standard deviation: $std[X] = \sqrt{var[X]} = \sigma$
- Note: The definition applies to functions of r.v. too (e.g., var[f(X)])

• Variance σ^2 (or "spread" around mean) of an r.v. with PMF/PDF p(X)

$$\operatorname{var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

- Standard deviation: $std[X] = \sqrt{var[X]} = \sigma$
- Note: The definition applies to functions of r.v. too (e.g., var[f(X)])
- For r.v. x and y, the **covariance** is defined by

 $\operatorname{cov}[x, y] = \mathbb{E}_{x, y} \left[\{ x - \mathbb{E}[x] \} \{ y - \mathbb{E}[y] \} \right]$

• Variance σ^2 (or "spread" around mean) of an r.v. with PMF/PDF p(X)

$$\operatorname{var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

- Standard deviation: $std[X] = \sqrt{var[X]} = \sigma$
- Note: The definition applies to functions of r.v. too (e.g., var[f(X)])
- For r.v. x and y, the **covariance** is defined by

$$\operatorname{cov}[x, y] = \mathbb{E}_{x, y} \left[\{ x - \mathbb{E}[x] \} \{ y - \mathbb{E}[y] \} \right] = \mathbb{E}_{x, y} [xy] - \mathbb{E}[x] \mathbb{E}[y]$$

• Variance σ^2 (or "spread" around mean) of an r.v. with PMF/PDF p(X)

$$\mathsf{var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

- Standard deviation: $std[X] = \sqrt{var[X]} = \sigma$
- Note: The definition applies to functions of r.v. too (e.g., var[f(X)])
- For r.v. x and y, the **covariance** is defined by

$$\operatorname{cov}[x,y] = \mathbb{E}_{x,y}\left[\{x - \mathbb{E}[x]\}\{y - \mathbb{E}[y]\}\right] = \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

• For vector r.v. x and y, the covariance matrix is defined as

$$\operatorname{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^{T} - \mathbb{E}[\mathbf{y}^{T}] \} \right]$$

• Variance σ^2 (or "spread" around mean) of an r.v. with PMF/PDF p(X)

$$\mathsf{var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

- Standard deviation: $std[X] = \sqrt{var[X]} = \sigma$
- Note: The definition applies to functions of r.v. too (e.g., var[f(X)])
- For r.v. x and y, the **covariance** is defined by

$$\operatorname{cov}[x,y] = \mathbb{E}_{x,y}\left[\{x - \mathbb{E}[x]\}\{y - \mathbb{E}[y]\}\right] = \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

• For vector r.v. x and y, the covariance matrix is defined as

$$\operatorname{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^T - \mathbb{E}[\mathbf{y}^T] \} \right] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^T] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^T]$$

Variance and Covariance

• Variance σ^2 (or "spread" around mean) of an r.v. with PMF/PDF p(X)

$$\mathsf{var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

- Standard deviation: $std[X] = \sqrt{var[X]} = \sigma$
- Note: The definition applies to functions of r.v. too (e.g., var[f(X)])
- For r.v. x and y, the **covariance** is defined by

$$\operatorname{cov}[x,y] = \mathbb{E}_{x,y}\left[\{x - \mathbb{E}[x]\}\{y - \mathbb{E}[y]\}\right] = \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

• For vector r.v. x and y, the covariance matrix is defined as

$$\mathsf{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^T - \mathbb{E}[\mathbf{y}^T] \} \right] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^T] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^T]$$

• Cov. of components of a vector r.v. x with each other: cov[x] = cov[x, x]

Suppose $\mathbf{y} = f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ be a linear function of an r.v. \mathbf{x} Suppose $\mathbb{E}[\mathbf{x}] = \mu$ and $\operatorname{cov}[\mathbf{x}] = \mathbf{\Sigma}$

3

Suppose $\mathbf{y} = f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ be a linear function of an r.v. \mathbf{x} Suppose $\mathbb{E}[\mathbf{x}] = \mu$ and $\operatorname{cov}[\mathbf{x}] = \mathbf{\Sigma}$

• Expectation of y

$$\mathbb{E}[\mathbf{y}] = \mathbb{E}[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\mathbf{\mu} + \mathbf{b}$$

- 4 同 ト - 4 国 ト - 4 国 ト

Suppose $\mathbf{y} = f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ be a linear function of an r.v. \mathbf{x} Suppose $\mathbb{E}[\mathbf{x}] = \mu$ and $\operatorname{cov}[\mathbf{x}] = \mathbf{\Sigma}$

• Expectation of y

$$\mathbb{E}[y] = \mathbb{E}[\mathsf{A}x + \mathsf{b}] = \mathsf{A}\mu + \mathsf{b}$$

• Covariance of y

$$\operatorname{cov}[\mathbf{y}] = \operatorname{cov}[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{T}$$

Suppose $\mathbf{y} = f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ be a linear function of an r.v. \mathbf{x} Suppose $\mathbb{E}[\mathbf{x}] = \mu$ and $\operatorname{cov}[\mathbf{x}] = \mathbf{\Sigma}$

• Expectation of **y**

$$\mathbb{E}[\mathbf{y}] = \mathbb{E}[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\boldsymbol{\mu} + \mathbf{b}$$

• Covariance of y

$$\operatorname{cov}[\mathbf{y}] = \operatorname{cov}[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathsf{T}}$$

Likewise if $y = f(x) = a^T x + b$ is a scalar-valued linear function of an r.v. x:

Suppose $\mathbf{y} = f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ be a linear function of an r.v. \mathbf{x} Suppose $\mathbb{E}[\mathbf{x}] = \mu$ and $\operatorname{cov}[\mathbf{x}] = \mathbf{\Sigma}$

• Expectation of **y**

$$\mathbb{E}[y] = \mathbb{E}[Ax + b] = A\mu + b$$

• Covariance of y

$$\operatorname{cov}[\mathbf{y}] = \operatorname{cov}[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathsf{T}}$$

Likewise if $y = f(x) = a^T x + b$ is a scalar-valued linear function of an r.v. x:

• $\mathbb{E}[y] = \mathbb{E}[\boldsymbol{a}^T \boldsymbol{x} + b] = \boldsymbol{a}^T \boldsymbol{\mu} + b$

Suppose $\mathbf{y} = f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ be a linear function of an r.v. \mathbf{x} Suppose $\mathbb{E}[\mathbf{x}] = \mu$ and $\operatorname{cov}[\mathbf{x}] = \mathbf{\Sigma}$

• Expectation of y

$$\mathbb{E}[\mathbf{y}] = \mathbb{E}[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\boldsymbol{\mu} + \mathbf{b}$$

• Covariance of y

$$\operatorname{cov}[\boldsymbol{y}] = \operatorname{cov}[\boldsymbol{\mathsf{A}}\boldsymbol{x} + \boldsymbol{\mathsf{b}}] = \boldsymbol{\mathsf{A}}\boldsymbol{\Sigma}\boldsymbol{\mathsf{A}}^{\mathsf{T}}$$

Likewise if $y = f(x) = a^T x + b$ is a scalar-valued linear function of an r.v. x:

•
$$\mathbb{E}[y] = \mathbb{E}[\boldsymbol{a}^T \boldsymbol{x} + b] = \boldsymbol{a}^T \boldsymbol{\mu} + b$$

•
$$\operatorname{var}[y] = \operatorname{var}[a^T x + b] = a^T \Sigma a$$

Common Probability Distributions

Important: We will use these extensively to model data as well as parameters

Common Probability Distributions

Important: We will use these extensively to model **data** as well as **parameters** Some **discrete distributions** and what they can model:

- Bernoulli: Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss
- **Binomial:** Bounded non-negative integers, e.g., # of heads in *n* coin tosses
- Multinomial: One of K (>2) possibilities, e.g., outcome of a dice roll
- \bullet Poisson: Non-negative integers, e.g., # of words in a document
- .. and many others

Common Probability Distributions

Important: We will use these extensively to model **data** as well as **parameters** Some **discrete distributions** and what they can model:

- Bernoulli: Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss
- **Binomial:** Bounded non-negative integers, e.g., # of heads in *n* coin tosses
- Multinomial: One of K (>2) possibilities, e.g., outcome of a dice roll
- Poisson: Non-negative integers, e.g., # of words in a document
- .. and many others

Some continuous distributions and what they can model:

- Uniform: numbers defined over a fixed range
- Beta: numbers between 0 and 1, e.g., probability of head for a biased coin
- Gamma: Positive unbounded real numbers
- Dirichlet: vectors that sum of 1 (fraction of data points in different clusters)
- Gaussian: real-valued numbers or real-valued vectors
- .. and many others

(ロ) (回) (E) (E) (E) (O)(O)

Discrete Distributions

(日) (周) (三) (三)

Bernoulli Distribution

- Distribution over a binary r.v. $x \in \{0, 1\}$, like a coin-toss outcome
- Defined by a probability parameter $p \in (0,1)$

$$P(x=1)=p$$

• Distribution defined as: Bernoulli $(x; p) = p^{x}(1-p)^{1-x}$

- Mean: $\mathbb{E}[x] = p$
- Variance: var[x] = p(1-p)

★ 圖 ▶ ★ 図 ▶ ★ 図 ▶ … 図

Binomial Distribution

- Distribution over number of successes m (an r.v.) in a number of trials
- Defined by two parameters: total number of trials (N) and probability of each success p ∈ (0, 1)
- Can think of Binomial as multiple independent Bernoulli trials
- Distribution defined as

Binomial(m; N, p) =
$$\binom{N}{m} p^m (1-p)^{N-m}$$

- Mean: $\mathbb{E}[m] = Np$
- Variance: var[m] = Np(1-p)

一日、

- Also known as the **categorical distribution** (models categorical variables)
- Think of a random assignment of an item to one of K bins a K dim. binary r.v. x with single 1 (i.e., $\sum_{k=1}^{K} x_k = 1$): Modeled by a multinoulli

$$\underbrace{\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \end{bmatrix}}_{\text{length} = K}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Also known as the **categorical distribution** (models categorical variables)
- Think of a random assignment of an item to one of K bins a K dim. binary r.v. x with single 1 (i.e., $\sum_{k=1}^{K} x_k = 1$): Modeled by a multinoulli

$$\underbrace{\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \end{bmatrix}}_{\text{length} = K}$$

- Let vector $\boldsymbol{p} = [p_1, p_2, \dots, p_{\mathcal{K}}]$ define the probability of going to each bin
 - $p_k \in (0,1)$ is the probability that $x_k = 1$ (assigned to bin k)
 - $\sum_{k=1}^{K} p_k = 1$

- Also known as the **categorical distribution** (models categorical variables)
- Think of a random assignment of an item to one of K bins a K dim. binary r.v. x with single 1 (i.e., $\sum_{k=1}^{K} x_k = 1$): Modeled by a multinoulli

$$\underbrace{\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \end{bmatrix}}_{\text{length} = K}$$

- Let vector $\boldsymbol{p} = [p_1, p_2, \dots, p_{\mathcal{K}}]$ define the probability of going to each bin
 - $p_k \in (0,1)$ is the probability that $x_k = 1$ (assigned to bin k)

•
$$\sum_{k=1}^{K} p_k = 1$$

• The multinoulli is defined as: Multinoulli(x; p) = $\prod_{k=1}^{K} p_k^{x_k}$

(本語) (本語) (本語) (二語)

- Also known as the **categorical distribution** (models categorical variables)
- Think of a random assignment of an item to one of K bins a K dim. binary r.v. x with single 1 (i.e., $\sum_{k=1}^{K} x_k = 1$): Modeled by a multinoulli

$$\underbrace{\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \end{bmatrix}}_{\text{length} = K}$$

• Let vector $\boldsymbol{p} = [p_1, p_2, \dots, p_{\mathcal{K}}]$ define the probability of going to each bin

•
$$p_k \in (0,1)$$
 is the probability that $x_k = 1$ (assigned to bin k)

•
$$\sum_{k=1}^{K} p_k = 1$$

- The multinoulli is defined as: Multinoulli(x; p) = $\prod_{k=1}^{K} p_k^{x_k}$
- Mean: $\mathbb{E}[x_k] = p_k$
- Variance: $var[x_k] = p_k(1 p_k)$

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_k is count in bin k

$$0 \leq x_k \leq N \quad \forall \ k = 1, \dots, K, \qquad \sum_{k=1}^{N} x_k = N$$

K

• Assume probability of going to each bin: $\boldsymbol{p} = [p_1, p_2, \dots, p_K]$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_k is count in bin k

$$0 \leq x_k \leq N \quad \forall \ k = 1, \dots, K, \qquad \sum_{k=1}^{N} x_k = N$$

- Assume probability of going to each bin: $\boldsymbol{p} = [p_1, p_2, \dots, p_K]$
- Multonomial models the bin allocations via a discrete vector \boldsymbol{x} of size K

$$\begin{bmatrix} x_1 & x_2 & \dots & x_{k-1} & x_k & x_{k-1} & \dots & x_K \end{bmatrix}$$

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_k is count in bin k

$$0 \leq x_k \leq N \quad \forall \ k = 1, \dots, K, \qquad \sum_{k=1}^{N} x_k = N$$

- Assume probability of going to each bin: $\boldsymbol{p} = [p_1, p_2, \dots, p_K]$
- Multonomial models the bin allocations via a discrete vector \boldsymbol{x} of size K

$$\begin{bmatrix} x_1 & x_2 & \dots & x_{k-1} & x_k & x_{k-1} & \dots & x_K \end{bmatrix}$$

• Distribution defined as

$$\mathsf{Multinomial}(\boldsymbol{x}; N, \boldsymbol{p}) = \binom{N}{x_1 x_2 \dots x_K} \prod_{k=1}^K \rho_k^{x_k}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_k is count in bin k

$$0 \leq x_k \leq N \quad \forall \ k = 1, \dots, K, \qquad \sum_{k=1}^{N} x_k = N$$

- Assume probability of going to each bin: $\boldsymbol{p} = [p_1, p_2, \dots, p_K]$
- Multonomial models the bin allocations via a discrete vector \boldsymbol{x} of size K

$$\begin{bmatrix} x_1 & x_2 & \dots & x_{k-1} & x_k & x_{k-1} & \dots & x_K \end{bmatrix}$$

• Distribution defined as

Multinomial(
$$\boldsymbol{x}; N, \boldsymbol{p}$$
) = $\binom{N}{x_1 x_2 \dots x_K} \prod_{k=1}^K p_k^{x_k}$

- Mean: $\mathbb{E}[x_k] = Np_k$
- Variance: $var[x_k] = Np_k(1 p_k)$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_k is count in bin k

$$0 \leq x_k \leq N \quad \forall \ k = 1, \dots, K, \qquad \sum_{k=1}^{N} x_k = N$$

- Assume probability of going to each bin: $\boldsymbol{p} = [p_1, p_2, \dots, p_K]$
- Multonomial models the bin allocations via a discrete vector \boldsymbol{x} of size K

$$\begin{bmatrix} x_1 & x_2 & \dots & x_{k-1} & x_k & x_{k-1} & \dots & x_K \end{bmatrix}$$

• Distribution defined as

Multinomial(
$$\boldsymbol{x}; N, \boldsymbol{p}$$
) = $\begin{pmatrix} N \\ x_1 x_2 \dots x_K \end{pmatrix} \prod_{k=1}^K p_k^{x_k}$

- Mean: $\mathbb{E}[x_k] = Np_k$
- Variance: $var[x_k] = Np_k(1 p_k)$
- Note: For N = 1, multinomial is the same as multinoulli

く 同 ト く ヨ ト く ヨ ト

Multinoulli/Multinomial: Pictorially

Poisson Distribution

- Used to model a non-negative integer (count) r.v. k
- Examples: number of words in a document, number of events in a fixed interval of time, etc.
- \bullet Defined by a positive rate parameter λ
- Distribution defined as

- Mean: $\mathbb{E}[k] = \lambda$
- Variance: $var[k] = \lambda$

向下 イヨト イヨト

Continuous Distributions

Uniform Distribution

• Models a continuous r.v. x distributed uniformly over a finite interval [a, b]

Uniform
$$(x; a, b) = \frac{1}{b-a}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Beta Distribution

• Used to model an r.v. p between 0 and 1 (e.g., a probability)

• Defined by two shape parameters α and β

$$\mathsf{Beta}(p;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}p^{\alpha-1}(1-p)^{\beta-1}$$

0.2 0.4 0.6 0.8

• Variance:
$$\operatorname{var}[p] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

• Mean: $\mathbb{F}[\mathbf{n}] = \alpha$

- 4 回 ト - 4 回 ト - 4 回 ト

Beta Distribution

• Used to model an r.v. p between 0 and 1 (e.g., a probability)

• Defined by two shape parameters α and β

$$\mathsf{Beta}(p;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

- Mean: $\mathbb{E}[p] = \frac{\alpha}{\alpha + \beta}$
- Variance: $var[p] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
- Often used to model the probability parameter of a Bernoulli or Binomial (also **conjugate** to these distributions)

Gamma Distribution

- Used to model positive real-valued r.v. x
- Defined by a shape parameters k and a scale parameter θ

- Mean: $\mathbb{E}[x] = k\theta$
- Variance: $var[x] = k\theta^2$
- Often used to model the rate parameter of Poisson or exponential distribution, or to model the inverse variance of a Gaussian

Note: There is another equivalent parameterization of gamma in terms of shape and rate parameters 🕢 🗇 🕨 🛬 👘 🛓 👘 🛬 👘 😒

• Used to model non-negative r.v. vectors ${m
ho}=[p_1,\ldots,p_K]$ that sum to 1

$$0 \le p_k \le 1, \quad \forall k = 1, \dots, K \quad \text{and} \quad \sum_{k=1}^{n} p_k = 1$$

• Equivalent to a distribution over the K-1 dimensional simplex

・ロト ・個ト ・ヨト ・ヨト

• Used to model non-negative r.v. vectors $oldsymbol{p} = [p_1, \dots, p_K]$ that sum to 1

$$0 \leq p_k \leq 1, \quad orall k = 1, \dots, K \quad ext{and} \quad \sum_{k=1} p_k = 1$$

- Equivalent to a distribution over the K-1 dimensional simplex
- Defined by a K size vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_K]$ of positive reals
- Distribution defined as

$$\mathsf{Dirichlet}(\boldsymbol{p}; \boldsymbol{\alpha}) = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} p_k^{\alpha_k - 1}$$

• Used to model non-negative r.v. vectors $oldsymbol{p} = [p_1, \dots, p_{\mathcal{K}}]$ that sum to 1

$$0 \leq p_k \leq 1, \quad orall k = 1, \dots, K \quad ext{and} \quad \sum_{k=1} p_k = 1$$

- Equivalent to a distribution over the K-1 dimensional simplex
- Defined by a K size vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_K]$ of positive reals
- Distribution defined as

$$\mathsf{Dirichlet}(\boldsymbol{p}; \boldsymbol{\alpha}) = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} p_k^{\alpha_k - 1}$$

• Often used to model parameters of Multinoulli/Multinomial

• Used to model non-negative r.v. vectors $oldsymbol{p} = [p_1, \dots, p_K]$ that sum to 1

$$0 \leq p_k \leq 1, \quad orall k = 1, \dots, K \quad ext{and} \quad \sum_{k=1} p_k = 1$$

- Equivalent to a distribution over the K-1 dimensional simplex
- Defined by a K size vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_K]$ of positive reals
- Distribution defined as

$$\mathsf{Dirichlet}(\boldsymbol{p}; \boldsymbol{\alpha}) = \frac{\mathsf{\Gamma}(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \mathsf{\Gamma}(\alpha_k)} \prod_{k=1}^{K} p_k^{\alpha_k - 1}$$

- Often used to model parameters of Multinoulli/Multinomial
- Dirichlet is conjugate to Multinoulli/Multinomial

(本部) (本語) (本語) (二語

• Used to model non-negative r.v. vectors $oldsymbol{p} = [p_1, \dots, p_K]$ that sum to 1

$$0 \leq p_k \leq 1, \quad orall k = 1, \dots, K \quad ext{and} \quad \sum_{k=1} p_k = 1$$

- Equivalent to a distribution over the K-1 dimensional simplex
- Defined by a K size vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_K]$ of positive reals
- Distribution defined as

$$\mathsf{Dirichlet}(\boldsymbol{p}; \alpha) = \frac{\mathsf{\Gamma}(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \mathsf{\Gamma}(\alpha_k)} \prod_{k=1}^{K} p_k^{\alpha_k - 1}$$

- Often used to model parameters of Multinoulli/Multinomial
- Dirichlet is conjugate to Multinoulli/Multinomial
- Note: Dirichlet can be seen as a generalization of the Beta distribution. Normalizing a bunch of Gamma r.v.'s gives an r.v. that is Dirichlet distributed.

- For $\boldsymbol{p} = [p_1, p_2, \dots, p_K]$ drawn from $\mathsf{Dirichlet}(\alpha_1, \alpha_2, \dots, \alpha_K)$
 - Mean: $\mathbb{E}[p_k] = \frac{\alpha_k}{\sum_{k=1}^{\kappa} \alpha_k}$ • Variance: $\operatorname{var}[p_k] = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)}$ where $\alpha_0 = \sum_{k=1}^{\kappa} \alpha_k$
- Note: \boldsymbol{p} is a point on (K-1)-simplex
- Note: $\alpha_0 = \sum_{k=1}^{K} \alpha_k$ controls how peaked the distribution is
- Note: α_k 's control where the peak(s) occur

Plot of a 3 dim. Dirichlet (2 dim. simplex) for various values of α :

Picture courtesy: Computer vision: models, learning and inference (Simon Price)

Probabilistic Machine Learning (CS772A) Some Essentials of Probability for Probabilistic Machine Learning

Now comes the Gaussian (Normal) distribution..

Probabilistic Machine Learning (CS772A) Some Essentials of Probability for Probabilistic Machine Learning

周 ト イ ヨ ト イ ヨ ト

Univariate Gaussian Distribution

- Distribution over real-valued scalar r.v. x
- Defined by a scalar mean μ and a scalar variance σ^2
- Distribution defined as

- Mean: $\mathbb{E}[x] = \mu$
- Variance: $var[x] = \sigma^2$
- Precision (inverse variance) $\beta = 1/\sigma^2$

伺い くさい くさい

Multivariate Gaussian Distribution

- Distribution over a multivariate r.v. vector $\pmb{x} \in \mathbb{R}^D$ of real numbers
- Defined by a mean vector $\boldsymbol{\mu} \in \mathbb{R}^D$ and a D imes D covariance matrix $\boldsymbol{\Sigma}$

$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = rac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} e^{-rac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

周下 イモト イモト

Multivariate Gaussian Distribution

- Distribution over a multivariate r.v. vector $\pmb{x} \in \mathbb{R}^D$ of real numbers
- Defined by a mean vector $\boldsymbol{\mu} \in \mathbb{R}^D$ and a $D \times D$ covariance matrix $\boldsymbol{\Sigma}$

$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

 $\bullet\,$ The covariance matrix $\Sigma\,$ must be symmetric and positive definite

- All eigenvalues are positive
- $\boldsymbol{z}^{\top} \boldsymbol{\Sigma} \boldsymbol{z} > 0$ for any real vector \boldsymbol{z}

Multivariate Gaussian Distribution

- Distribution over a multivariate r.v. vector $\pmb{x} \in \mathbb{R}^D$ of real numbers
- Defined by a mean vector $\boldsymbol{\mu} \in \mathbb{R}^D$ and a $D \times D$ covariance matrix $\boldsymbol{\Sigma}$

$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

• The covariance matrix Σ must be symmetric and positive definite

- All eigenvalues are positive
- $\mathbf{z}^{\top} \mathbf{\Sigma} \mathbf{z} > 0$ for any real vector \mathbf{z}
- Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix, i.e., the precision matrix $\Lambda=\Sigma^{-1}$

(本語) (本語) (本語) (二語)

Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full

Picture courtesy: Computer vision: models, learning and inference (Simon Price)

Some nice properties of the Gaussian distribution..

A T >>

• Given jointly Gaussian distribution $\mathcal{N}(\pmb{x}|\pmb{\mu},\pmb{\Sigma})$ with $\pmb{\Lambda}=\pmb{\Sigma}^{-1}$ with

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{pmatrix}, \quad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{pmatrix}$$
 $\mathbf{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{pmatrix}, \quad \mathbf{\Lambda} = \begin{pmatrix} \boldsymbol{\Lambda}_{aa} & \boldsymbol{\Lambda}_{ab} \\ \boldsymbol{\Lambda}_{ba} & \boldsymbol{\Lambda}_{bb} \end{pmatrix}$

• Given jointly Gaussian distribution $\mathcal{N}(\pmb{x}|\pmb{\mu},\pmb{\Sigma})$ with $\pmb{\Lambda}=\pmb{\Sigma}^{-1}$ with

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{pmatrix}, \quad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{pmatrix}$$
 $\mathbf{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{pmatrix}, \quad \mathbf{\Lambda} = \begin{pmatrix} \mathbf{\Lambda}_{aa} & \mathbf{\Lambda}_{ab} \\ \boldsymbol{\Lambda}_{ba} & \mathbf{\Lambda}_{bb} \end{pmatrix}$

• The marginal distribution is simply

$$p(\boldsymbol{x}_{a}) = \mathcal{N}(\boldsymbol{x}_{a}|\boldsymbol{\mu}_{a}, \boldsymbol{\Sigma}_{aa})$$

• Given jointly Gaussian distribution $\mathcal{N}(\pmb{x}|\pmb{\mu},\pmb{\Sigma})$ with $\pmb{\Lambda}=\pmb{\Sigma}^{-1}$ with

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{pmatrix}, \quad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{pmatrix}$$
 $\mathbf{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{pmatrix}, \quad \boldsymbol{\Lambda} = \begin{pmatrix} \boldsymbol{\Lambda}_{aa} & \boldsymbol{\Lambda}_{ab} \\ \boldsymbol{\Lambda}_{ba} & \boldsymbol{\Lambda}_{bb} \end{pmatrix}$

• The marginal distribution is simply

$$p(\boldsymbol{x}_a) = \mathcal{N}(\boldsymbol{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$

The conditional distribution is given by

$$\begin{aligned} p(\mathbf{x}_a | \mathbf{x}_b) &= \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_{a|b}, \boldsymbol{\Lambda}_{aa}^{-1}) \\ \boldsymbol{\mu}_{a|b} &= \boldsymbol{\mu}_a - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab}(\mathbf{x}_b - \boldsymbol{\mu}_b) \end{aligned}$$

くぼう くほう くほう

• Given jointly Gaussian distribution $\mathcal{N}(\pmb{x}|\pmb{\mu},\pmb{\Sigma})$ with $\pmb{\Lambda}=\pmb{\Sigma}^{-1}$ with

$$\mathbf{x} = egin{pmatrix} \mathbf{x}_a \ \mathbf{x}_b \end{pmatrix}, \quad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix}$$
 $\mathbf{\Sigma} = egin{pmatrix} \mathbf{\Sigma}_{aa} & \mathbf{\Sigma}_{ab} \ \mathbf{\Sigma}_{ba} & \mathbf{\Sigma}_{bb} \end{pmatrix}, \quad oldsymbol{\Lambda} = egin{pmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{pmatrix}$

• The marginal distribution is simply

$$p(\boldsymbol{x}_a) = \mathcal{N}(\boldsymbol{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$

The conditional distribution is given by

$$\begin{aligned} p(\mathbf{x}_a | \mathbf{x}_b) &= \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_{a|b}, \boldsymbol{\Lambda}_{aa}^{-1}) \\ \boldsymbol{\mu}_{a|b} &= \boldsymbol{\mu}_a - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab}(\mathbf{x}_b - \boldsymbol{\mu}_b) \end{aligned}$$

Thus marginals and conditionals of Gaussians are Gaussians

• Given the conditional and marginal of r.v. being conditioned on

$$\begin{aligned} p(\mathbf{y}|\mathbf{x}) &= \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}) \\ p(\mathbf{x}) &= \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}) \end{aligned}$$

• Given the conditional and marginal of r.v. being conditioned on

$$\begin{aligned} p(\mathbf{y}|\mathbf{x}) &= \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}) \\ p(\mathbf{x}) &= \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}) \end{aligned}$$

• Marginal and "reverse" conditional are given by

w

$$\begin{split} p(\mathbf{y}) &= \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}}) \\ p(\mathbf{x}|\mathbf{y}) &= \mathcal{N}(\mathbf{x}|\boldsymbol{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma}) \end{split}$$
here $\boldsymbol{\Sigma} = (\boldsymbol{\Lambda} + \mathbf{A}^{\mathrm{T}}\mathbf{L}\mathbf{A})^{-1}$

くぼう くほう くほう

• Given the conditional and marginal of r.v. being conditioned on

$$\begin{aligned} p(\mathbf{y}|\mathbf{x}) &= \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}) \\ p(\mathbf{x}) &= \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}) \end{aligned}$$

• Marginal and "reverse" conditional are given by

where

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}})$$
$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\Sigma} = (\boldsymbol{\Lambda} + \mathbf{A}^{\mathrm{T}}\mathbf{L}\mathbf{A})^{-1}$$

• Very useful property for probabilistic models with Gaussian likelihoods and/or priors. Also very handly for computing **marginal likelihoods**.

(人間) トイヨト イヨト ニヨ

• Pointwise multiplication of two Gaussians is another (unnormalized) Gaussian

$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \mathcal{N}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \frac{1}{Z} \mathcal{N}(\mathbf{x}; \boldsymbol{\omega}, \mathbf{T}),$$

where

$$\begin{split} \mathbf{T} &= (\mathbf{\Sigma}^{-1} + \mathbf{P}^{-1})^{-1} \\ \boldsymbol{\omega} &= \mathbf{T} (\mathbf{\Sigma}^{-1} \boldsymbol{\mu} + \mathbf{P}^{-1} \boldsymbol{\nu}) \\ Z^{-1} &= \mathcal{N}(\boldsymbol{\mu}; \boldsymbol{\nu}, \mathbf{\Sigma} + \mathbf{P}) = \mathcal{N}(\boldsymbol{\nu}; \boldsymbol{\mu}, \mathbf{\Sigma} + \mathbf{P}) \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Multivariate Gaussian: Affine Transforms

• Given a $\pmb{x} \in \mathbb{R}^d$ with a multivariate Gaussian distribution

 $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$

• Consider an affiine transform of x into \mathbb{R}^D

y = Ax + b

where **A** is $D \times d$ and $\mathbf{b} \in \mathbb{R}^{D}$

Multivariate Gaussian: Affine Transforms

• Given a $\pmb{x} \in \mathbb{R}^d$ with a multivariate Gaussian distribution

 $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$

• Consider an affiine transform of \boldsymbol{x} into \mathbb{R}^D

y = Ax + b

where **A** is $D \times d$ and $\mathbf{b} \in \mathbb{R}^{D}$

• $\mathbf{y} \in \mathbb{R}^{D}$ will have a multivariate Gaussian distribution

 $\mathcal{N}(\mathbf{y}; \mathbf{A} \boldsymbol{\mu} + \mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{ op})$

• An exponential family distribution is defined as

 $p(x;\theta) = h(x)e^{\eta(\theta)T(x) - A(\theta)}$

3

・ロン ・四 と ・ ヨ と ・ ヨ と

• An exponential family distribution is defined as

 $p(x; \theta) = h(x)e^{\eta(\theta)T(x)-A(\theta)}$

- $\bullet~\theta$ is called the parameter of the family
- h(x), $\eta(\theta)$, T(x), and $A(\theta)$ are known functions

• An exponential family distribution is defined as

 $p(x;\theta) = h(x)e^{\eta(\theta)T(x) - A(\theta)}$

- $\bullet~\theta$ is called the parameter of the family
- h(x), $\eta(\theta)$, T(x), and $A(\theta)$ are known functions
- p(.) depends on x only through T(x)
- T(x) is called the sufficient statistics: summarizes the entire $p(x; \theta)$

• An exponential family distribution is defined as

 $p(x; \theta) = h(x)e^{\eta(\theta)T(x)-A(\theta)}$

- θ is called the parameter of the family
- h(x), $\eta(\theta)$, T(x), and $A(\theta)$ are known functions
- p(.) depends on x only through T(x)
- T(x) is called the **sufficient statistics**: summarizes the entire $p(x; \theta)$
- Exponential family is the only family for which **conjugate priors** exist (often also in the exponential family)
- Many other nice properties (especially useful in Bayesian inference)

(本部) (本語) (本語) (二語

• An exponential family distribution is defined as

 $p(x; \theta) = h(x)e^{\eta(\theta)T(x)-A(\theta)}$

- $\bullet~\theta$ is called the parameter of the family
- h(x), $\eta(\theta)$, T(x), and $A(\theta)$ are known functions
- p(.) depends on x only through T(x)
- T(x) is called the **sufficient statistics**: summarizes the entire $p(x; \theta)$
- Exponential family is the only family for which **conjugate priors** exist (often also in the exponential family)
- Many other nice properties (especially useful in Bayesian inference)

Many well-known distribution (Bernoulli, Binomial, categorical, beta, gamma, Gaussian, etc.) are exponential family distributions

https://en.wikipedia.org/wiki/Exponential_family

Binomial as Exponential Family

• Recall the exponential family distribution

$$p(x; \theta) = h(x)e^{\eta(\theta)T(x)-A(\theta)}$$

• Binomial in the usual form:

$$\mathsf{Binomial}(x;n,p) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

- 4 回 ト 4 三 ト 4 三 ト

Binomial as Exponential Family

• Recall the exponential family distribution

$$p(x; \theta) = h(x)e^{\eta(\theta)T(x)-A(\theta)}$$

• Binomial in the usual form:

Binomial(x; n, p) =
$$\binom{n}{x} p^{x} (1-p)^{n-x}$$

• Can re-express it as

$$\binom{n}{x}e^{\left(x\log\left(\frac{p}{1-p}\right)+n\log(1-p)\right)}$$

• $h(x) = \binom{n}{x}$ • $\eta(\theta) = \log\left(\frac{p}{1-p}\right)$ • T(x) = x• $A(\theta) = -n\log(1-p)$

(日本) (日本) (日本)

Gaussian as Exponential Family

• Recall the exponential family distribution

$$p(x;\theta) = h(x)e^{\eta(\theta)T(x) - A(\theta)}$$

• Gaussian in the usual form:

$$\mathcal{N}(x;\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- 本間 ト イヨト イヨト

Gaussian as Exponential Family

• Recall the exponential family distribution

$$p(x;\theta) = h(x)e^{\eta(\theta)T(x) - A(\theta)}$$

• Gaussian in the usual form:

$$\mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Can re-express it as $p(x; \theta) = h(x)e^{\eta(\theta)T(x)-A(\theta)}$ where

•
$$h(x) = \frac{1}{\sqrt{2\pi}}$$

• $\eta(\theta) = \left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}\right)^T$
• $T(x) = (x, x^2)^T$
• $A(\theta) = \frac{\mu^2}{2\sigma^2} + \log \sigma$

くぼう くほう くほう

Conjugate Priors

- Given a distribution $p(x|\theta)$
- We say $p(\theta)$ is conjugate to $p(x|\theta)$ if

 $p(\theta|x) \propto p(x|\theta)p(\theta)$

has the same form as $p(\theta)$

- Many pairs of distributions are conjugate to each other, e.g.,
 - Gaussian-Gaussian
 - Bernoulli-Beta
 - Poisson-Gamma
 - .. and many others
- More on this in the next class..

くぼう くほう くほう

Next class: Parameter estimation in probabilistic models

Probabilistic Machine Learning (CS772A) Some Essentials of Probability for Probabilistic Machine Learning