Some Essentials of Probability for Probabilistic Machine Learning

Piyush Rai

IIT Kanpur
Probabilistic Machine Learning (CS772A)
Jan 4, 2016

Random Variables

- A random variable (r.v.) X denotes possible outcomes of an event
- Can be discrete (i.e., finite many possible outcomes) or continuous

Random Variables

- A random variable (r.v.) X denotes possible outcomes of an event
- Can be discrete (i.e., finite many possible outcomes) or continuous

- Some examples of discrete r.v.
- A random variable $X \in\{0,1\}$ denoting outcomes of a coin-toss
- A random variable $X \in\{1,2, \ldots, 6\}$ denoteing outcome of a dice roll

Random Variables

- A random variable (r.v.) X denotes possible outcomes of an event
- Can be discrete (i.e., finite many possible outcomes) or continuous

- Some examples of discrete r.v.
- A random variable $X \in\{0,1\}$ denoting outcomes of a coin-toss
- A random variable $X \in\{1,2, \ldots, 6\}$ denoteing outcome of a dice roll
- Some examples of continuous r.v.
- A random variable $X \in(0,1)$ denoting the bias of a coin
- A random variable X denoting heights of students in CS772
- A random variable X denoting time to get to your hall from the department

Random Variables

- A random variable (r.v.) X denotes possible outcomes of an event
- Can be discrete (i.e., finite many possible outcomes) or continuous

- Some examples of discrete r.v.
- A random variable $X \in\{0,1\}$ denoting outcomes of a coin-toss
- A random variable $X \in\{1,2, \ldots, 6\}$ denoteing outcome of a dice roll
- Some examples of continuous r.v.
- A random variable $X \in(0,1)$ denoting the bias of a coin
- A random variable X denoting heights of students in CS772
- A random variable X denoting time to get to your hall from the department
- An r.v. is associated with a probability mass function or prob. distribution

Discrete Random Variables

- For a discrete r.v. $X, p(x)$ denotes the probability that $p(X=x)$
- $p(x)$ is called the probability mass function (PMF)

$$
\begin{aligned}
p(x) & \geq 0 \\
p(x) & \leq 1 \\
\sum_{x} p(x) & =1
\end{aligned}
$$

Continuous Random Variables

- For a continuous r.v. X, a probability $p(X=x)$ is meaningless

Continuous Random Variables

- For a continuous r.v. X, a probability $p(X=x)$ is meaningless
- Instead we use $p(x)$ to denote the probability density function (PDF)

$$
p(x) \geq 0 \quad \text { and } \quad \int_{x} p(x) d x=1
$$

- Probability that a cont. r.v. $X \in(x, x+\delta x)$ is $p(x) \delta x$ as $\delta x \rightarrow 0$

Continuous Random Variables

- For a continuous r.v. X, a probability $p(X=x)$ is meaningless
- Instead we use $p(x)$ to denote the probability density function (PDF)

$$
p(x) \geq 0 \quad \text { and } \quad \int_{x} p(x) d x=1
$$

- Probability that a cont. r.v. $X \in(x, x+\delta x)$ is $p(x) \delta x$ as $\delta x \rightarrow 0$

- Probability that X lies between $(-\infty, z)$ is given by the cumulative distribution function (CDF) $P(z)$ where

$$
P(z)=p(X \leq z)=\int_{-\infty}^{z} p(x) d x \quad \text { and } \quad p(x)=\left|P^{\prime}(z)\right|_{z=x}
$$

A word about notation..

- $p($.$) can mean different things depending on the context$
- $p(X)$ denotes the PMF/PDF of an r.v. X
- $p(X=x)$ or $p(x)$ denotes the probability or probability density at point x
- Actual meaning should be clear from the context (but be careful)

A word about notation..

- $p($.$) can mean different things depending on the context$
- $p(X)$ denotes the PMF/PDF of an r.v. X
- $p(X=x)$ or $p(x)$ denotes the probability or probability density at point x
- Actual meaning should be clear from the context (but be careful)
- Exercise the same care when $p($.$) is a specific distribution (Bernoulli, Beta,$ Gaussian, etc.)

A word about notation..

- $p($.$) can mean different things depending on the context$
- $p(X)$ denotes the PMF/PDF of an r.v. X
- $p(X=x)$ or $p(x)$ denotes the probability or probability density at point x
- Actual meaning should be clear from the context (but be careful)
- Exercise the same care when $p($.$) is a specific distribution (Bernoulli, Beta,$ Gaussian, etc.)
- The following means drawing a sample from the distribution $p(X)$

$$
x \sim p(X)
$$

Joint Probability

Joint probability $p(X, Y)$ models probability of co-occurrence of two r.v. X, Y For discrete r.v., the joint PMF $p(X, Y)$ is like a table (that sums to 1)

$$
\sum_{x} \sum_{y} p(X=x, Y=y)=1
$$

Joint Probability

Joint probability $p(X, Y)$ models probability of co-occurrence of two r.v. X, Y For discrete r.v., the joint PMF $p(X, Y)$ is like a table (that sums to 1)

$$
\sum_{x} \sum_{y} p(X=x, Y=y)=1
$$

For continuous r.v., we have joint PDF $p(X, Y)$

$$
\int_{x} \int_{y} p(X=x, Y=y) d x d y=1
$$

Marginal Probability

- For discrete r.v.

$$
p(X)=\sum_{y} p(X, Y=y), \quad p(Y)=\sum_{x} p(X=x, Y)
$$

Marginal Probability

- For discrete r.v.

$$
p(X)=\sum_{y} p(X, Y=y), \quad p(Y)=\sum_{x} p(X=x, Y)
$$

- For discrete r.v. it is the sum of the PMF table along the rows/columns

Marginal Probability

- For discrete r.v.

$$
p(X)=\sum_{y} p(X, Y=y), \quad p(Y)=\sum_{x} p(X=x, Y)
$$

- For discrete r.v. it is the sum of the PMF table along the rows/columns

- For continuous r.v.

$$
p(X)=\int_{y} p(X, Y=y) d y, \quad p(Y)=\int_{x} p(X=x, Y) d x
$$

Conditional Probability

- Meaning: Probability of one event when we know the outcome of the other
- Conditional probability $p(X \mid Y)$ or $p(Y \mid X)$: like taking a slice of $p(X, Y)$

[^0]
Conditional Probability

- Meaning: Probability of one event when we know the outcome of the other
- Conditional probability $p(X \mid Y)$ or $p(Y \mid X)$: like taking a slice of $p(X, Y)$
- For a discrete distribution:

[^1]
Conditional Probability

- Meaning: Probability of one event when we know the outcome of the other
- Conditional probability $p(X \mid Y)$ or $p(Y \mid X)$: like taking a slice of $p(X, Y)$
- For a discrete distribution:

- For a continuous distribution ${ }^{1}$:

[^2]
Some Basic Rules

- Sum rule: Gives the marginal probability
- For discrete r.v.: $p(X)=\sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X)=\int_{Y} p(X, Y) d Y$

Some Basic Rules

- Sum rule: Gives the marginal probability
- For discrete r.v.: $p(X)=\sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X)=\int_{Y} p(X, Y) d Y$
- Product rule: $p(X, Y)=p(Y \mid X) p(X)=p(X \mid Y) p(Y)$

Some Basic Rules

- Sum rule: Gives the marginal probability
- For discrete r.v.: $p(X)=\sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X)=\int_{Y} p(X, Y) d Y$
- Product rule: $p(X, Y)=p(Y \mid X) p(X)=p(X \mid Y) p(Y)$
- Bayes rule: Gives conditional probability

$$
p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{p(X)}
$$

Some Basic Rules

- Sum rule: Gives the marginal probability
- For discrete r.v.: $p(X)=\sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X)=\int_{Y} p(X, Y) d Y$
- Product rule: $p(X, Y)=p(Y \mid X) p(X)=p(X \mid Y) p(Y)$
- Bayes rule: Gives conditional probability

$$
p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{p(X)}
$$

- For discrete r.v.: $p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{\sum_{Y} p(X \mid Y) p(Y)}$
- For continuous r.v.: $p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{\int_{Y} p(X \mid Y) p(Y) d Y}$
- Bayes rule is also central to parameter estimation (more on this later)

Some Basic Rules

- Sum rule: Gives the marginal probability
- For discrete r.v.: $p(X)=\sum_{Y} p(X, Y)$
- For continuous r.v.: $p(X)=\int_{Y} p(X, Y) d Y$
- Product rule: $p(X, Y)=p(Y \mid X) p(X)=p(X \mid Y) p(Y)$
- Bayes rule: Gives conditional probability

$$
p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{p(X)}
$$

- For discrete r.v.: $p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{\sum_{Y} p(X \mid Y) p(Y)}$
- For continuous r.v.: $p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{\int_{Y} p(X \mid Y) p(Y) d Y}$
- Bayes rule is also central to parameter estimation (more on this later)
- Also remember the chain rule

$$
p\left(X_{1}, X_{2}, \ldots, X_{N}\right)=p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right) \ldots p\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)
$$

Independence

- X and Y are independent $(X \Perp Y)$ when one tells nothing about the other

$$
\begin{aligned}
p(X \mid Y) & =p(X) \\
p(Y \mid X) & =p(Y) \\
p(X, Y) & =p(X) p(Y)
\end{aligned}
$$

- $X \Perp Y$ is also called marginal independence

Independence

- X and Y are independent $(X \Perp Y)$ when one tells nothing about the other

$$
\begin{aligned}
p(X \mid Y) & =p(X) \\
p(Y \mid X) & =p(Y) \\
p(X, Y) & =p(X) p(Y)
\end{aligned}
$$

$p(X)$

- $X \Perp Y$ is also called marginal independence
- Conditional independence $(X \Perp Y \mid Z)$: independence when another event Z is observed

$$
p(X, Y \mid Z)=p(X \mid Z) p(Y \mid Z)
$$

Expectation

- Expectation or mean μ of an r.v. with PMF/PDF $p(X)$

$$
\begin{array}{ll}
\mathbb{E}[X]=\sum_{x} x p(x) & \text { (for discrete distributions) } \\
\mathbb{E}[X]=\int_{x}^{x p}(x) d x & \text { (for continuous distributions) }
\end{array}
$$

- Note: The definition applies to functions of r.v. too (e.g., $\mathbb{E}[f(x)]$)

Expectation

- Expectation or mean μ of an r.v. with PMF/PDF $p(X)$

$$
\begin{array}{ll}
\mathbb{E}[X]=\sum_{x} x p(x) & \text { (for discrete distributions) } \\
\mathbb{E}[X]=\int_{x}^{x p(x) d x} & \text { (for continuous distributions) }
\end{array}
$$

- Note: The definition applies to functions of r.v. too (e.g., $\mathbb{E}[f(x)]$)
- Linearity of expectation (very important/useful property)

$$
\mathbb{E}[\alpha f(x)+\beta g(x)]=\alpha \mathbb{E}[f(x)]+\beta \mathbb{E}[g(x)]
$$

Variance and Covariance

- Variance σ^{2} (or "spread" around mean) of an r.v. with PMF/PDF $p(X)$

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]
$$

Variance and Covariance

- Variance σ^{2} (or "spread" around mean) of an r.v. with PMF/PDF $p(X)$

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}
$$

- Standard deviation: $\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}=\sigma$

Variance and Covariance

- Variance σ^{2} (or "spread" around mean) of an r.v. with PMF/PDF $p(X)$

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}
$$

- Standard deviation: $\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}=\sigma$
- Note: The definition applies to functions of r.v. too (e.g., $\operatorname{var}[f(X)])$

Variance and Covariance

- Variance σ^{2} (or "spread" around mean) of an r.v. with PMF/PDF $p(X)$

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}
$$

- Standard deviation: $\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}=\sigma$
- Note: The definition applies to functions of r.v. too (e.g., $\operatorname{var}[f(X)])$
- For r.v. x and y, the covariance is defined by

$$
\operatorname{cov}[x, y]=\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}]
$$

Variance and Covariance

- Variance σ^{2} (or "spread" around mean) of an r.v. with PMF/PDF $p(X)$

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}
$$

- Standard deviation: $\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}=\sigma$
- Note: The definition applies to functions of r.v. too (e.g., $\operatorname{var}[f(X)]$)
- For r.v. x and y, the covariance is defined by

$$
\operatorname{cov}[x, y]=\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}]=\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y]
$$

Variance and Covariance

- Variance σ^{2} (or "spread" around mean) of an r.v. with PMF/PDF $p(X)$

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}
$$

- Standard deviation: $\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}=\sigma$
- Note: The definition applies to functions of r.v. too (e.g., $\operatorname{var}[f(X)]$)
- For r.v. x and y, the covariance is defined by

$$
\operatorname{cov}[x, y]=\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}]=\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y]
$$

- For vector r.v. \boldsymbol{x} and \boldsymbol{y}, the covariance matrix is defined as

$$
\operatorname{cov}[\boldsymbol{x}, \boldsymbol{y}]=\mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}}\left[\{\boldsymbol{x}-\mathbb{E}[\boldsymbol{x}]\}\left\{\boldsymbol{y}^{\top}-\mathbb{E}\left[\boldsymbol{y}^{\top}\right]\right\}\right]
$$

Variance and Covariance

- Variance σ^{2} (or "spread" around mean) of an r.v. with PMF/PDF $p(X)$

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}
$$

- Standard deviation: $\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}=\sigma$
- Note: The definition applies to functions of r.v. too (e.g., $\operatorname{var}[f(X)]$)
- For r.v. x and y, the covariance is defined by

$$
\operatorname{cov}[x, y]=\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}]=\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y]
$$

- For vector r.v. \boldsymbol{x} and \boldsymbol{y}, the covariance matrix is defined as

$$
\operatorname{cov}[\boldsymbol{x}, \boldsymbol{y}]=\mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}}\left[\{\boldsymbol{x}-\mathbb{E}[\boldsymbol{x}]\}\left\{\boldsymbol{y}^{\top}-\mathbb{E}\left[\boldsymbol{y}^{\top}\right]\right\}\right]=\mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}}\left[\boldsymbol{x} \boldsymbol{y}^{\top}\right]-\mathbb{E}[\boldsymbol{x}] \mathbb{E}\left[\boldsymbol{y}^{\top}\right]
$$

Variance and Covariance

- Variance σ^{2} (or "spread" around mean) of an r.v. with PMF/PDF $p(X)$

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}
$$

- Standard deviation: $\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}=\sigma$
- Note: The definition applies to functions of r.v. too (e.g., $\operatorname{var}[f(X)]$)
- For r.v. x and y, the covariance is defined by

$$
\operatorname{cov}[x, y]=\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}]=\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y]
$$

- For vector r.v. \boldsymbol{x} and \boldsymbol{y}, the covariance matrix is defined as

$$
\operatorname{cov}[\boldsymbol{x}, \boldsymbol{y}]=\mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}}\left[\{\boldsymbol{x}-\mathbb{E}[\boldsymbol{x}]\}\left\{\boldsymbol{y}^{\top}-\mathbb{E}\left[\boldsymbol{y}^{\top}\right]\right\}\right]=\mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}}\left[\boldsymbol{x} \boldsymbol{y}^{\top}\right]-\mathbb{E}[\boldsymbol{x}] \mathbb{E}\left[\boldsymbol{y}^{\top}\right]
$$

- Cov. of components of a vector r.v. \boldsymbol{x} with each other: $\operatorname{cov}[\boldsymbol{x}]=\operatorname{cov}[\boldsymbol{x}, \boldsymbol{x}]$

Transformation of Random Variables

Suppose $\boldsymbol{y}=f(\boldsymbol{x})=\mathbf{A} \boldsymbol{x}+\mathbf{b}$ be a linear function of an r.v. \boldsymbol{x} Suppose $\mathbb{E}[\boldsymbol{x}]=\boldsymbol{\mu}$ and $\operatorname{cov}[\boldsymbol{x}]=\boldsymbol{\Sigma}$

Transformation of Random Variables

Suppose $\boldsymbol{y}=f(\boldsymbol{x})=\mathbf{A} \boldsymbol{x}+\mathbf{b}$ be a linear function of an r.v. \boldsymbol{x} Suppose $\mathbb{E}[\boldsymbol{x}]=\boldsymbol{\mu}$ and $\operatorname{cov}[\boldsymbol{x}]=\boldsymbol{\Sigma}$

- Expectation of \boldsymbol{y}

$$
\mathbb{E}[\boldsymbol{y}]=\mathbb{E}[\mathbf{A} \boldsymbol{x}+\mathbf{b}]=\mathbf{A} \boldsymbol{\mu}+\mathbf{b}
$$

Transformation of Random Variables

Suppose $\boldsymbol{y}=f(\boldsymbol{x})=\mathbf{A} \boldsymbol{x}+\mathbf{b}$ be a linear function of an r.v. \boldsymbol{x} Suppose $\mathbb{E}[\boldsymbol{x}]=\boldsymbol{\mu}$ and $\operatorname{cov}[\boldsymbol{x}]=\boldsymbol{\Sigma}$

- Expectation of \boldsymbol{y}

$$
\mathbb{E}[\boldsymbol{y}]=\mathbb{E}[\mathbf{A} \boldsymbol{x}+\mathbf{b}]=\mathbf{A} \boldsymbol{\mu}+\mathbf{b}
$$

- Covariance of \boldsymbol{y}

$$
\operatorname{cov}[\boldsymbol{y}]=\operatorname{cov}[\mathbf{A} \boldsymbol{x}+\mathbf{b}]=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T}
$$

Transformation of Random Variables

Suppose $\boldsymbol{y}=f(\boldsymbol{x})=\mathbf{A} \boldsymbol{x}+\mathbf{b}$ be a linear function of an r.v. \boldsymbol{x} Suppose $\mathbb{E}[\boldsymbol{x}]=\boldsymbol{\mu}$ and $\operatorname{cov}[\boldsymbol{x}]=\boldsymbol{\Sigma}$

- Expectation of \boldsymbol{y}

$$
\mathbb{E}[\boldsymbol{y}]=\mathbb{E}[\mathbf{A} \boldsymbol{x}+\mathbf{b}]=\mathbf{A} \boldsymbol{\mu}+\mathbf{b}
$$

- Covariance of \boldsymbol{y}

$$
\operatorname{cov}[\boldsymbol{y}]=\operatorname{cov}[\mathbf{A} \boldsymbol{x}+\mathbf{b}]=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T}
$$

Likewise if $\boldsymbol{y}=f(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}+b$ is a scalar-valued linear function of an r.v. \boldsymbol{x} :

Transformation of Random Variables

Suppose $\boldsymbol{y}=f(\boldsymbol{x})=\mathbf{A} \boldsymbol{x}+\mathbf{b}$ be a linear function of an r.v. \boldsymbol{x} Suppose $\mathbb{E}[\boldsymbol{x}]=\boldsymbol{\mu}$ and $\operatorname{cov}[\boldsymbol{x}]=\boldsymbol{\Sigma}$

- Expectation of \boldsymbol{y}

$$
\mathbb{E}[\boldsymbol{y}]=\mathbb{E}[\mathbf{A} \boldsymbol{x}+\mathbf{b}]=\mathbf{A} \boldsymbol{\mu}+\mathbf{b}
$$

- Covariance of \boldsymbol{y}

$$
\operatorname{cov}[\boldsymbol{y}]=\operatorname{cov}[\mathbf{A} \boldsymbol{x}+\mathbf{b}]=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T}
$$

Likewise if $y=f(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}+b$ is a scalar-valued linear function of an r.v. \boldsymbol{x} :

- $\mathbb{E}[y]=\mathbb{E}\left[\boldsymbol{a}^{T} \boldsymbol{x}+b\right]=\boldsymbol{a}^{T} \boldsymbol{\mu}+b$

Transformation of Random Variables

Suppose $\boldsymbol{y}=f(\boldsymbol{x})=\mathbf{A} \boldsymbol{x}+\mathbf{b}$ be a linear function of an r.v. \boldsymbol{x} Suppose $\mathbb{E}[\boldsymbol{x}]=\boldsymbol{\mu}$ and $\operatorname{cov}[\boldsymbol{x}]=\boldsymbol{\Sigma}$

- Expectation of \boldsymbol{y}

$$
\mathbb{E}[\boldsymbol{y}]=\mathbb{E}[\mathbf{A} \boldsymbol{x}+\mathbf{b}]=\mathbf{A} \boldsymbol{\mu}+\mathbf{b}
$$

- Covariance of \boldsymbol{y}

$$
\operatorname{cov}[\boldsymbol{y}]=\operatorname{cov}[\mathbf{A} \boldsymbol{x}+\mathbf{b}]=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T}
$$

Likewise if $y=f(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}+b$ is a scalar-valued linear function of an r.v. \boldsymbol{x} :

- $\mathbb{E}[y]=\mathbb{E}\left[\boldsymbol{a}^{T} \boldsymbol{x}+b\right]=\boldsymbol{a}^{T} \boldsymbol{\mu}+b$
- $\operatorname{var}[y]=\operatorname{var}\left[\boldsymbol{a}^{T} \boldsymbol{x}+b\right]=\boldsymbol{a}^{T} \boldsymbol{\Sigma} \boldsymbol{a}$

Common Probability Distributions

Important: We will use these extensively to model data as well as parameters

Common Probability Distributions

Important: We will use these extensively to model data as well as parameters Some discrete distributions and what they can model:

- Bernoulli: Binary numbers, e.g., outcome (head/tail, $0 / 1$) of a coin toss
- Binomial: Bounded non-negative integers, e.g., \# of heads in n coin tosses
- Multinomial: One of $K(>2)$ possibilities, e.g., outcome of a dice roll
- Poisson: Non-negative integers, e.g., \# of words in a document
- .. and many others

Common Probability Distributions

Important: We will use these extensively to model data as well as parameters Some discrete distributions and what they can model:

- Bernoulli: Binary numbers, e.g., outcome (head/tail, $0 / 1$) of a coin toss
- Binomial: Bounded non-negative integers, e.g., \# of heads in n coin tosses
- Multinomial: One of $K(>2)$ possibilities, e.g., outcome of a dice roll
- Poisson: Non-negative integers, e.g., \# of words in a document
- .. and many others

Some continuous distributions and what they can model:

- Uniform: numbers defined over a fixed range
- Beta: numbers between 0 and 1, e.g., probability of head for a biased coin
- Gamma: Positive unbounded real numbers
- Dirichlet: vectors that sum of 1 (fraction of data points in different clusters)
- Gaussian: real-valued numbers or real-valued vectors
- .. and many others

Discrete Distributions

Bernoulli Distribution

- Distribution over a binary r.v. $x \in\{0,1\}$, like a coin-toss outcome
- Defined by a probability parameter $p \in(0,1)$

$$
P(x=1)=p
$$

- Distribution defined as: $\operatorname{Bernoulli}(x ; p)=p^{\times}(1-p)^{1-x}$

- Mean: $\mathbb{E}[x]=p$
- Variance: $\operatorname{var}[x]=p(1-p)$

Binomial Distribution

- Distribution over number of successes m (an r.v.) in a number of trials
- Defined by two parameters: total number of trials (N) and probability of each success $p \in(0,1)$
- Can think of Binomial as multiple independent Bernoulli trials
- Distribution defined as

$$
\operatorname{Binomial}(m ; N, p)=\binom{N}{m} p^{m}(1-p)^{N-m}
$$

- Mean: $\mathbb{E}[m]=N p$

Binomial distribution with $\mathrm{n}=15$ and $\mathrm{p}=0.2$

- Variance: $\operatorname{var}[m]=N p(1-p)$

Multinoulli Distribution

- Also known as the categorical distribution (models categorical variables)
- Think of a random assignment of an item to one of K bins - a K dim. binary r.v. \boldsymbol{x} with single 1 (i.e., $\sum_{k=1}^{K} x_{k}=1$): Modeled by a multinoulli

Multinoulli Distribution

- Also known as the categorical distribution (models categorical variables)
- Think of a random assignment of an item to one of K bins - a K dim. binary r.v. \boldsymbol{x} with single 1 (i.e., $\sum_{k=1}^{K} x_{k}=1$): Modeled by a multinoulli

$$
\underbrace{\left[\begin{array}{lllllll}
0 & 0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right.}_{\text {length }=K} \begin{array}{l}
0
\end{array}]
$$

- Let vector $\boldsymbol{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$ define the probability of going to each bin
- $p_{k} \in(0,1)$ is the probability that $x_{k}=1$ (assigned to bin k)
- $\sum_{k=1}^{K} p_{k}=1$

Multinoulli Distribution

- Also known as the categorical distribution (models categorical variables)
- Think of a random assignment of an item to one of K bins - a K dim. binary r.v. \boldsymbol{x} with single 1 (i.e., $\sum_{k=1}^{K} x_{k}=1$): Modeled by a multinoulli

$$
\underbrace{\left[\begin{array}{lllllll}
0 & 0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right.}_{\text {length }=K} \begin{array}{l}
0
\end{array}]
$$

- Let vector $\boldsymbol{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$ define the probability of going to each bin
- $p_{k} \in(0,1)$ is the probability that $x_{k}=1$ (assigned to bin k)
- $\sum_{k=1}^{K} p_{k}=1$
- The multinoulli is defined as: Multinoulli(x; $\boldsymbol{p})=\prod_{k=1}^{K} p_{k}^{x_{k}}$

Multinoulli Distribution

- Also known as the categorical distribution (models categorical variables)
- Think of a random assignment of an item to one of K bins - a K dim. binary r.v. \boldsymbol{x} with single 1 (i.e., $\sum_{k=1}^{K} x_{k}=1$): Modeled by a multinoulli

$$
\underbrace{\left[\begin{array}{lllllll}
0 & 0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right.}_{\text {length }=K} \begin{array}{l}
0
\end{array}]
$$

- Let vector $\boldsymbol{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$ define the probability of going to each bin
- $p_{k} \in(0,1)$ is the probability that $x_{k}=1$ (assigned to bin k)
- $\sum_{k=1}^{K} p_{k}=1$
- The multinoulli is defined as: Multinoulli(x; $\boldsymbol{p})=\prod_{k=1}^{K} p_{k}^{x_{k}}$
- Mean: $\mathbb{E}\left[x_{k}\right]=p_{k}$
- Variance: $\operatorname{var}\left[x_{k}\right]=p_{k}\left(1-p_{k}\right)$

Multinomial Distribution

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_{k} is count in bin k

$$
0 \leq x_{k} \leq N \quad \forall k=1, \ldots, K, \quad \sum_{k=1}^{K} x_{k}=N
$$

- Assume probability of going to each bin: $\boldsymbol{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$

Multinomial Distribution

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_{k} is count in bin k

$$
0 \leq x_{k} \leq N \quad \forall k=1, \ldots, K, \quad \sum_{k=1}^{K} x_{k}=N
$$

- Assume probability of going to each bin: $\boldsymbol{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$
- Multonomial models the bin allocations via a discrete vector \boldsymbol{x} of size K

$$
\left[\begin{array}{llllll}
x_{1} & x_{2} & \ldots x_{k-1} & x_{k} & x_{k-1} \ldots & x_{K}
\end{array}\right]
$$

Multinomial Distribution

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_{k} is count in bin k

$$
0 \leq x_{k} \leq N \quad \forall k=1, \ldots, K, \quad \sum_{k=1}^{K} x_{k}=N
$$

- Assume probability of going to each bin: $\boldsymbol{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$
- Multonomial models the bin allocations via a discrete vector \boldsymbol{x} of size K

$$
\left[\begin{array}{llllll}
x_{1} & x_{2} & \ldots x_{k-1} & x_{k} & x_{k-1} \ldots & x_{K}
\end{array}\right]
$$

- Distribution defined as

$$
\text { Multinomial }(\boldsymbol{x} ; N, \boldsymbol{p})=\binom{N}{x_{1} x_{2} \ldots x_{K}} \prod_{k=1}^{K} p_{k}^{x_{k}}
$$

Multinomial Distribution

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_{k} is count in bin k

$$
0 \leq x_{k} \leq N \quad \forall k=1, \ldots, K, \quad \sum_{k=1}^{K} x_{k}=N
$$

- Assume probability of going to each bin: $\boldsymbol{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$
- Multonomial models the bin allocations via a discrete vector \boldsymbol{x} of size K

$$
\left[\begin{array}{llllll}
x_{1} & x_{2} & \ldots x_{k-1} & x_{k} & x_{k-1} \ldots & x_{K}
\end{array}\right]
$$

- Distribution defined as

$$
\operatorname{Multinomial}(\boldsymbol{x} ; N, \boldsymbol{p})=\binom{N}{x_{1} x_{2} \ldots x_{K}} \prod_{k=1}^{K} p_{k}^{x_{k}}
$$

- Mean: $\mathbb{E}\left[x_{k}\right]=N p_{k}$
- Variance: $\operatorname{var}\left[x_{k}\right]=N p_{k}\left(1-p_{k}\right)$

Multinomial Distribution

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_{k} is count in bin k

$$
0 \leq x_{k} \leq N \quad \forall k=1, \ldots, K, \quad \sum_{k=1}^{K} x_{k}=N
$$

- Assume probability of going to each bin: $\boldsymbol{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$
- Multonomial models the bin allocations via a discrete vector \boldsymbol{x} of size K

$$
\left[\begin{array}{llllll}
x_{1} & x_{2} & \ldots x_{k-1} & x_{k} & x_{k-1} \ldots & x_{K}
\end{array}\right]
$$

- Distribution defined as

$$
\operatorname{Multinomial}(\boldsymbol{x} ; N, \boldsymbol{p})=\binom{N}{x_{1} x_{2} \ldots x_{K}} \prod_{k=1}^{K} p_{k}^{x_{k}}
$$

- Mean: $\mathbb{E}\left[x_{k}\right]=N p_{k}$
- Variance: $\operatorname{var}\left[x_{k}\right]=N p_{k}\left(1-p_{k}\right)$
- Note: For $N=1$, multinomial is the same as multinoulli

Multinoulli/Multinomial: Pictorially

Poisson Distribution

- Used to model a non-negative integer (count) r.v. k
- Examples: number of words in a document, number of events in a fixed interval of time, etc.
- Defined by a positive rate parameter λ
- Distribution defined as

$$
\operatorname{Poisson}(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!} \quad k=0,1,2, \ldots
$$

- Mean: $\mathbb{E}[k]=\lambda$
- Variance: $\operatorname{var}[k]=\lambda$

Continuous Distributions

Uniform Distribution

- Models a continuous r.v. x distributed uniformly over a finite interval $[a, b]$

$$
\operatorname{Uniform}(x ; a, b)=\frac{1}{b-a}
$$

- Mean: $\mathbb{E}[x]=\frac{(b+a)}{2}$
- Variance: $\operatorname{var}[x]=\frac{(b-a)^{2}}{12}$

Beta Distribution

- Used to model an r.v. p between 0 and 1 (e.g., a probability)
- Defined by two shape parameters α and β

$$
\operatorname{Beta}(p ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}
$$

- Mean: $\mathbb{E}[p]=\frac{\alpha}{\alpha+\beta}$
- Variance: $\operatorname{var}[p]=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$

Beta Distribution

- Used to model an r.v. p between 0 and 1 (e.g., a probability)
- Defined by two shape parameters α and β

$$
\operatorname{Beta}(p ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}
$$

- Mean: $\mathbb{E}[p]=\frac{\alpha}{\alpha+\beta}$
- Variance: $\operatorname{var}[p]=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
- Often used to model the probability parameter of a Bernoulli or Binomial (also conjugate to these distributions)

Gamma Distribution

- Used to model positive real-valued r.v. x
- Defined by a shape parameters k and a scale parameter θ

$$
\operatorname{Gamma}(x ; k, \theta)=\frac{x^{k-1} e^{-\frac{x}{\theta}}}{\theta^{k} \Gamma(k)}
$$

- Mean: $\mathbb{E}[x]=k \theta$
- Variance: $\operatorname{var}[x]=k \theta^{2}$
- Often used to model the rate parameter of Poisson or exponential distribution, or to model the inverse variance of a Gaussian

Dirichlet Distribution

- Used to model non-negative r.v. vectors $\boldsymbol{p}=\left[p_{1}, \ldots, p_{K}\right]$ that sum to 1

$$
0 \leq p_{k} \leq 1, \quad \forall k=1, \ldots, K \quad \text { and } \quad \sum_{k=1}^{k} p_{k}=1
$$

- Equivalent to a distribution over the $K-1$ dimensional simplex

Dirichlet Distribution

- Used to model non-negative r.v. vectors $\boldsymbol{p}=\left[p_{1}, \ldots, p_{K}\right]$ that sum to 1

$$
0 \leq p_{k} \leq 1, \quad \forall k=1, \ldots, K \quad \text { and } \quad \sum_{k=1}^{K} p_{k}=1
$$

- Equivalent to a distribution over the $K-1$ dimensional simplex
- Defined by a K size vector $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{K}\right]$ of positive reals
- Distribution defined as

$$
\operatorname{Dirichlet}(\boldsymbol{p} ; \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} p_{k}^{\alpha_{k}-1}
$$

Dirichlet Distribution

- Used to model non-negative r.v. vectors $\boldsymbol{p}=\left[p_{1}, \ldots, p_{K}\right]$ that sum to 1

$$
0 \leq p_{k} \leq 1, \quad \forall k=1, \ldots, K \quad \text { and } \quad \sum_{k=1}^{K} p_{k}=1
$$

- Equivalent to a distribution over the $K-1$ dimensional simplex
- Defined by a K size vector $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{K}\right]$ of positive reals
- Distribution defined as

$$
\operatorname{Dirichlet}(\boldsymbol{p} ; \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} p_{k}^{\alpha_{k}-1}
$$

- Often used to model parameters of Multinoulli/Multinomial

Dirichlet Distribution

- Used to model non-negative r.v. vectors $\boldsymbol{p}=\left[p_{1}, \ldots, p_{K}\right]$ that sum to 1

$$
0 \leq p_{k} \leq 1, \quad \forall k=1, \ldots, K \quad \text { and } \quad \sum_{k=1}^{K} p_{k}=1
$$

- Equivalent to a distribution over the $K-1$ dimensional simplex
- Defined by a K size vector $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{K}\right]$ of positive reals
- Distribution defined as

$$
\operatorname{Dirichlet}(\boldsymbol{p} ; \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} p_{k}^{\alpha_{k}-1}
$$

- Often used to model parameters of Multinoulli/Multinomial
- Dirichlet is conjugate to Multinoulli/Multinomial

Dirichlet Distribution

- Used to model non-negative r.v. vectors $\boldsymbol{p}=\left[p_{1}, \ldots, p_{K}\right]$ that sum to 1

$$
0 \leq p_{k} \leq 1, \quad \forall k=1, \ldots, K \quad \text { and } \quad \sum_{k=1}^{k} p_{k}=1
$$

- Equivalent to a distribution over the $K-1$ dimensional simplex
- Defined by a K size vector $\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{K}\right]$ of positive reals
- Distribution defined as

$$
\text { Dirichlet }(\boldsymbol{p} ; \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} p_{k}^{\alpha_{k}-1}
$$

- Often used to model parameters of Multinoulli/Multinomial
- Dirichlet is conjugate to Multinoulli/Multinomial
- Note: Dirichlet can be seen as a generalization of the Beta distribution. Normalizing a bunch of Gamma r.v.'s gives an r.v. that is Dirichlet distributed.

Dirichlet Distribution

- For $\boldsymbol{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$ drawn from $\operatorname{Dirichlet}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right)$
- Mean: $\mathbb{E}\left[p_{k}\right]=\frac{\alpha_{k}}{\sum_{k=1}^{\alpha_{k}} \alpha_{k}}$
- Variance: $\operatorname{var}\left[p_{k}\right]=\frac{\alpha_{k}\left(\alpha_{0}-\alpha_{k}\right.}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)}$ where $\alpha_{0}=\sum_{k=1}^{K} \alpha_{k}$
- Note: \boldsymbol{p} is a point on $(K-1)$-simplex
- Note: $\alpha_{0}=\sum_{k=1}^{K} \alpha_{k}$ controls how peaked the distribution is
- Note: α_{k} 's control where the peak(s) occur

Plot of a 3 dim . Dirichlet (2 dim. simplex) for various values of $\boldsymbol{\alpha}$:

Now comes the Gaussian (Normal) distribution..

Univariate Gaussian Distribution

- Distribution over real-valued scalar r.v. x
- Defined by a scalar mean μ and a scalar variance σ^{2}
- Distribution defined as

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Mean: $\mathbb{E}[x]=\mu$
- Variance: $\operatorname{var}[x]=\sigma^{2}$
- Precision (inverse variance) $\beta=1 / \sigma^{2}$

Multivariate Gaussian Distribution

- Distribution over a multivariate r.v. vector $\boldsymbol{x} \in \mathbb{R}^{D}$ of real numbers
- Defined by a mean vector $\boldsymbol{\mu} \in \mathbb{R}^{D}$ and a $D \times D$ covariance matrix $\boldsymbol{\Sigma}$

$$
\mathcal{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{D} \mid \boldsymbol{\Sigma}}} e^{-\frac{1}{2}(x-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})}
$$

Multivariate Gaussian Distribution

- Distribution over a multivariate r.v. vector $\boldsymbol{x} \in \mathbb{R}^{D}$ of real numbers
- Defined by a mean vector $\boldsymbol{\mu} \in \mathbb{R}^{D}$ and a $D \times D$ covariance matrix $\boldsymbol{\Sigma}$

$$
\mathcal{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{D} \mid \boldsymbol{\Sigma}}} e^{-\frac{1}{2}(x-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})}
$$

- The covariance matrix $\boldsymbol{\Sigma}$ must be symmetric and positive definite
- All eigenvalues are positive
- $\boldsymbol{z}^{\top} \boldsymbol{\Sigma} \boldsymbol{z}>0$ for any real vector \boldsymbol{z}

Multivariate Gaussian Distribution

- Distribution over a multivariate r.v. vector $\boldsymbol{x} \in \mathbb{R}^{D}$ of real numbers
- Defined by a mean vector $\boldsymbol{\mu} \in \mathbb{R}^{D}$ and a $D \times D$ covariance matrix $\boldsymbol{\Sigma}$

$$
\mathcal{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{D}|\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(x-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})}
$$

- The covariance matrix $\boldsymbol{\Sigma}$ must be symmetric and positive definite
- All eigenvalues are positive
- $\boldsymbol{z}^{\top} \boldsymbol{\Sigma} \boldsymbol{z}>0$ for any real vector \boldsymbol{z}
- Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix, i.e., the precision matrix $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}$

Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full

Diagonal covariances

d)

Full covariances

$$
\mu=\left[\begin{array}{l}
1.0 \\
0.0
\end{array}\right], \Sigma=\left[\begin{array}{ll}
0.8 & 0.7 \\
0.7 & 1.3
\end{array}\right]
$$

f)
$\underbrace{\mu=\left[\begin{array}{l}0.0 \\ 2.0\end{array}\right], \Sigma=\left[\begin{array}{cc}3.9 & -0.5 \\ -0.5 & 1.1\end{array}\right]}_{-5}$ x_{1}

Picture courtesy: Computer vision: models, learning and inference (Simon Price)

Some nice properties of the Gaussian distribution..

Multivariate Gaussian: Marginals and Conditionals

- Given jointly Gaussian distribution $\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}$ with

$$
\begin{array}{cc}
\mathrm{x}=\binom{\mathrm{x}_{a}}{\mathrm{x}_{b}}, & \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{a}}{\boldsymbol{\mu}_{b}} \\
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right), & \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
\end{array}
$$

Multivariate Gaussian: Marginals and Conditionals

- Given jointly Gaussian distribution $\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}$ with

$$
\begin{array}{cc}
\mathrm{x}=\binom{\mathrm{x}_{a}}{\mathrm{x}_{b}}, & \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{a}}{\boldsymbol{\mu}_{b}} \\
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right), & \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
\end{array}
$$

- The marginal distribution is simply

$$
p\left(\boldsymbol{x}_{\mathrm{a}}\right)=\mathcal{N}\left(\boldsymbol{x}_{\mathrm{a}} \mid \boldsymbol{\mu}_{\mathrm{a}}, \boldsymbol{\Sigma}_{\mathrm{aa}}\right)
$$

Multivariate Gaussian: Marginals and Conditionals

- Given jointly Gaussian distribution $\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}$ with

$$
\begin{aligned}
\mathrm{x}=\binom{\mathbf{x}_{a}}{\mathbf{x}_{b}}, & \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{a}}{\boldsymbol{\mu}_{b}} \\
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right), & \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
\end{aligned}
$$

- The marginal distribution is simply

$$
p\left(\boldsymbol{x}_{\mathrm{a}}\right)=\mathcal{N}\left(\boldsymbol{x}_{\mathrm{a}} \mid \boldsymbol{\mu}_{\mathrm{a}}, \boldsymbol{\Sigma}_{\mathrm{aa}}\right)
$$

- The conditional distribution is given by

$$
\begin{aligned}
p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{a \mid b}, \boldsymbol{\Lambda}_{a a}^{-1}\right) \\
\boldsymbol{\mu}_{a \mid b} & =\boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a a}^{-1} \boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)
\end{aligned}
$$

Multivariate Gaussian: Marginals and Conditionals

- Given jointly Gaussian distribution $\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}$ with

$$
\begin{array}{cc}
\mathrm{x}=\binom{\mathrm{x}_{a}}{\mathrm{x}_{b}}, & \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{a}}{\boldsymbol{\mu}_{b}} \\
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right), & \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
\end{array}
$$

- The marginal distribution is simply

$$
p\left(\boldsymbol{x}_{\mathrm{a}}\right)=\mathcal{N}\left(\boldsymbol{x}_{\mathrm{a}} \mid \boldsymbol{\mu}_{\mathrm{a}}, \boldsymbol{\Sigma}_{\mathrm{aa}}\right)
$$

- The conditional distribution is given by

$$
\begin{aligned}
p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{a \mid b}, \boldsymbol{\Lambda}_{a a}^{-1}\right) \\
\boldsymbol{\mu}_{a \mid b} & =\boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a a}^{-1} \boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)
\end{aligned}
$$

Thus marginals and conditionals of Gaussians are Gaussians

Multivariate Gaussian: Marginals and Conditionals

- Given the conditional and marginal of r.v. being conditioned on

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right) \\
p(\mathbf{x}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right)
\end{aligned}
$$

Multivariate Gaussian: Marginals and Conditionals

- Given the conditional and marginal of r.v. being conditioned on

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right) \\
p(\mathbf{x}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right)
\end{aligned}
$$

- Marginal and "reverse" conditional are given by

$$
\begin{aligned}
p(\mathbf{y}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}}\right) \\
p(\mathbf{x} \mid \mathbf{y}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\Sigma}\left\{\mathbf{A}^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Lambda} \boldsymbol{\mu}\right\}, \mathbf{\Sigma}\right)
\end{aligned}
$$

where $\boldsymbol{\Sigma}=\left(\boldsymbol{\Lambda}+\mathbf{A}^{\top} \mathbf{L A}\right)^{-1}$

Multivariate Gaussian: Marginals and Conditionals

- Given the conditional and marginal of r.v. being conditioned on

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right) \\
p(\mathbf{x}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{\Lambda}^{-1}\right)
\end{aligned}
$$

- Marginal and "reverse" conditional are given by

$$
\begin{aligned}
p(\mathbf{y}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}}\right) \\
p(\mathbf{x} \mid \mathbf{y}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\Sigma}\left\{\mathbf{A}^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Lambda} \boldsymbol{\mu}\right\}, \mathbf{\Sigma}\right)
\end{aligned}
$$

where $\boldsymbol{\Sigma}=\left(\boldsymbol{\Lambda}+\mathbf{A}^{\top} \mathbf{L A}\right)^{-1}$

- Very useful property for probabilistic models with Gaussian likelihoods and/or priors. Also very handly for computing marginal likelihoods.

Gaussians: Product of Gaussians

- Pointwise multiplication of two Gaussians is another (unnormalized) Gaussian

$$
\mathcal{N}(\mathrm{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \mathcal{N}(\mathrm{x} ; \boldsymbol{\nu}, \mathbf{P})=\frac{1}{Z} \mathcal{N}(\mathrm{x} ; \boldsymbol{\omega}, \mathbf{T})
$$

where

$$
\begin{aligned}
\mathbf{T} & =\left(\boldsymbol{\Sigma}^{-1}+\mathbf{P}^{-1}\right)^{-1} \\
\boldsymbol{\omega} & =\mathbf{T}\left(\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}+\mathrm{P}^{-1} \boldsymbol{\nu}\right) \\
Z^{-1} & =\mathcal{N}(\boldsymbol{\mu} ; \boldsymbol{\nu}, \boldsymbol{\Sigma}+\mathbf{P})=\mathcal{N}(\boldsymbol{\nu} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}+\mathbf{P})
\end{aligned}
$$

Multivariate Gaussian: Affine Transforms

- Given a $\boldsymbol{x} \in \mathbb{R}^{d}$ with a multivariate Gaussian distribution

$$
\mathcal{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

- Consider an affiine transform of \boldsymbol{x} into \mathbb{R}^{D}

$$
\boldsymbol{y}=\mathbf{A} \boldsymbol{x}+\mathbf{b}
$$

where \mathbf{A} is $D \times d$ and $\mathbf{b} \in \mathbb{R}^{D}$

Multivariate Gaussian: Affine Transforms

- Given a $\boldsymbol{x} \in \mathbb{R}^{d}$ with a multivariate Gaussian distribution

$$
\mathcal{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

- Consider an affiine transform of \boldsymbol{x} into \mathbb{R}^{D}

$$
\boldsymbol{y}=\mathbf{A} \boldsymbol{x}+\mathbf{b}
$$

where \mathbf{A} is $D \times d$ and $\mathbf{b} \in \mathbb{R}^{D}$

- $\boldsymbol{y} \in \mathbb{R}^{D}$ will have a multivariate Gaussian distribution

$$
\mathcal{N}\left(\boldsymbol{y} ; \mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)
$$

Exponential Family

- An exponential family distribution is defined as

$$
p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}
$$

Exponential Family

- An exponential family distribution is defined as

$$
p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}
$$

- θ is called the parameter of the family
- $h(x), \eta(\theta), T(x)$, and $A(\theta)$ are known functions

Exponential Family

- An exponential family distribution is defined as

$$
p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}
$$

- θ is called the parameter of the family
- $h(x), \eta(\theta), T(x)$, and $A(\theta)$ are known functions
- $p($.$) depends on x$ only through $T(x)$
- $T(x)$ is called the sufficient statistics: summarizes the entire $p(x ; \theta)$

Exponential Family

- An exponential family distribution is defined as

$$
p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}
$$

- θ is called the parameter of the family
- $h(x), \eta(\theta), T(x)$, and $A(\theta)$ are known functions
- $p($.$) depends on x$ only through $T(x)$
- $T(x)$ is called the sufficient statistics: summarizes the entire $p(x ; \theta)$
- Exponential family is the only family for which conjugate priors exist (often also in the exponential family)
- Many other nice properties (especially useful in Bayesian inference)

Exponential Family

- An exponential family distribution is defined as

$$
p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}
$$

- θ is called the parameter of the family
- $h(x), \eta(\theta), T(x)$, and $A(\theta)$ are known functions
- $p($.$) depends on x$ only through $T(x)$
- $T(x)$ is called the sufficient statistics: summarizes the entire $p(x ; \theta)$
- Exponential family is the only family for which conjugate priors exist (often also in the exponential family)
- Many other nice properties (especially useful in Bayesian inference)

Many well-known distribution (Bernoulli, Binomial, categorical, beta, gamma, Gaussian, etc.) are exponential family distributions
https://en.wikipedia.org/wiki/Exponential_family

Binomial as Exponential Family

- Recall the exponential family distribution

$$
p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}
$$

- Binomial in the usual form:

$$
\operatorname{Binomial}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

Binomial as Exponential Family

- Recall the exponential family distribution

$$
p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}
$$

- Binomial in the usual form:

$$
\operatorname{Binomial}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

- Can re-express it as

$$
\binom{n}{x} e^{\left(\times \log \left(\frac{p}{1-p}\right)+n \log (1-p)\right)}
$$

- $h(x)=\binom{n}{x}$
- $\eta(\theta)=\log \left(\frac{p}{1-p}\right)$
- $T(x)=x$
- $A(\theta)=-n \log (1-p)$

Gaussian as Exponential Family

- Recall the exponential family distribution

$$
p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}
$$

- Gaussian in the usual form:

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Gaussian as Exponential Family

- Recall the exponential family distribution

$$
p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}
$$

- Gaussian in the usual form:

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Can re-express it as $p(x ; \theta)=h(x) e^{\eta(\theta) T(x)-A(\theta)}$ where
- $h(x)=\frac{1}{\sqrt{2 \pi}}$
- $\eta(\theta)=\left(\frac{\mu}{\sigma^{2}},-\frac{1}{2 \sigma^{2}}\right)^{T}$
- $T(x)=\left(x, x^{2}\right)^{T}$
- $A(\theta)=\frac{\mu^{2}}{2 \sigma^{2}}+\log \sigma$

Conjugate Priors

- Given a distribution $p(x \mid \theta)$
- We say $p(\theta)$ is conjugate to $p(x \mid \theta)$ if

$$
p(\theta \mid x) \propto p(x \mid \theta) p(\theta)
$$

has the same form as $p(\theta)$

- Many pairs of distributions are conjugate to each other, e.g.,
- Gaussian-Gaussian
- Bernoulli-Beta
- Poisson-Gamma
- .. and many others
- More on this in the next class..

Next class: Parameter estimation in probabilistic models

[^0]: $1_{\text {Picture courtesy: Computer vision: models, learning and inference (Simon Price) }}$

[^1]: $1_{\text {Picture courtesy: Computer vision: models, learning and inference (Simon Price) }}$

[^2]: $1_{\text {Picture courtesy: Computer vision: models, learning and inference (Simon Price) }}$

