Gaussian Processes for Nonlinear Regression and Nonlinear Dimensionality Reduction

Piyush Rai IIT Kanpur

Probabilistic Machine Learning (CS772A)

Feb 10, 2016

Probabilistic ML (CS772A)

Gaussian Processes for Nonlinear Regression and Dimensionality Reduction

同下 イヨト イヨト

- A Gaussian Process (GP) is a distribution over functions
- A random draw from a GP thus gives a function f

 $f \sim \mathsf{GP}(\mu, \kappa)$

where μ is the mean function and κ is the covariance/kernel function (the cov. function controls *f*'s shape/smoothness)

• Note: μ and κ can be chosen or learned from data

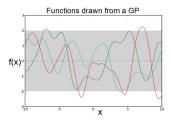
▲□ → ▲ 三 → ▲ 三 → …

- A Gaussian Process (GP) is a distribution over functions
- A random draw from a GP thus gives a function f

 $f \sim \mathsf{GP}(\mu, \kappa)$

where μ is the mean function and κ is the covariance/kernel function (the cov. function controls *f*'s shape/smoothness)

 $\bullet\,$ Note: μ and κ can be chosen or learned from data



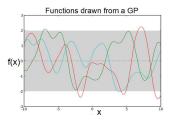
向下 イヨト イヨト

- A Gaussian Process (GP) is a distribution over functions
- A random draw from a GP thus gives a function f

 $f \sim \mathsf{GP}(\mu, \kappa)$

where μ is the mean function and κ is the covariance/kernel function (the cov. function controls *f*'s shape/smoothness)

 $\bullet\,$ Note: μ and κ can be chosen or learned from data



• GP can be used as a nonparametric prior distribution for such functions

Probabilistic ML (CS772A) Gaussian Processes for N

伺下 イヨト イヨト

• A function f is said to be drawn from ${\sf GP}(\mu,\kappa)$ if

$$\begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu(\mathbf{x}_1) \\ \mu(\mathbf{x}_2) \\ \vdots \\ \mu(\mathbf{x}_N) \end{bmatrix}, \begin{bmatrix} \kappa(\mathbf{x}_1, \mathbf{x}_1) \dots \kappa(\mathbf{x}_1, \mathbf{x}_N) \\ \kappa(\mathbf{x}_2, \mathbf{x}_1) \dots \kappa(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \kappa(\mathbf{x}_N, \mathbf{x}_1) \dots \kappa(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix} \right)$$

• A function f is said to be drawn from $GP(\mu, \kappa)$ if

$$\begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu(\mathbf{x}_1) \\ \mu(\mathbf{x}_2) \\ \vdots \\ \mu(\mathbf{x}_N) \end{bmatrix}, \begin{bmatrix} \kappa(\mathbf{x}_1, \mathbf{x}_1) \dots \kappa(\mathbf{x}_1, \mathbf{x}_N) \\ \kappa(\mathbf{x}_2, \mathbf{x}_1) \dots \kappa(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \kappa(\mathbf{x}_N, \mathbf{x}_1) \dots \kappa(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix} \right)$$

• Thus, if f is drawn from a GP then the joint distribution of f's evaluations at a finite set of points {x₁, x₂,..., x_N} is a multivariate normal

• Let's define

$$\mathbf{f} = \begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix}, \boldsymbol{\mu} = \begin{bmatrix} \mu(\mathbf{x}_1) \\ \mu(\mathbf{x}_2) \\ \vdots \\ \mu(\mathbf{x}_N) \end{bmatrix}, \mathbf{K} = \begin{bmatrix} \kappa(\mathbf{x}_1, \mathbf{x}_1) \dots \kappa(\mathbf{x}_1, \mathbf{x}_N) \\ \kappa(\mathbf{x}_2, \mathbf{x}_1) \dots \kappa(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \kappa(\mathbf{x}_N, \mathbf{x}_1) \dots \kappa(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

Note: **K** is also called the kernel matrix. $K_{nm} = \kappa(\mathbf{x}_n, \mathbf{x}_m)$

• Let's define

$$\mathbf{f} = \begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix}, \boldsymbol{\mu} = \begin{bmatrix} \mu(\mathbf{x}_1) \\ \mu(\mathbf{x}_2) \\ \vdots \\ \mu(\mathbf{x}_N) \end{bmatrix}, \mathbf{K} = \begin{bmatrix} \kappa(\mathbf{x}_1, \mathbf{x}_1) \dots \kappa(\mathbf{x}_1, \mathbf{x}_N) \\ \kappa(\mathbf{x}_2, \mathbf{x}_1) \dots \kappa(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \kappa(\mathbf{x}_N, \mathbf{x}_1) \dots \kappa(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

Note: **K** is also called the kernel matrix. $K_{nm} = \kappa(\mathbf{x}_n, \mathbf{x}_m)$ • Thus we have

 $\mathbf{f} \sim \mathcal{N}(oldsymbol{\mu}, \mathbf{K})$

• Let's define

$$\mathbf{f} = \begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix}, \boldsymbol{\mu} = \begin{bmatrix} \mu(\mathbf{x}_1) \\ \mu(\mathbf{x}_2) \\ \vdots \\ \mu(\mathbf{x}_N) \end{bmatrix}, \mathbf{K} = \begin{bmatrix} \kappa(\mathbf{x}_1, \mathbf{x}_1) \dots \kappa(\mathbf{x}_1, \mathbf{x}_N) \\ \kappa(\mathbf{x}_2, \mathbf{x}_1) \dots \kappa(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \kappa(\mathbf{x}_N, \mathbf{x}_1) \dots \kappa(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

Note: **K** is also called the kernel matrix. $K_{nm} = \kappa(\mathbf{x}_n, \mathbf{x}_m)$ • Thus we have

 $\mathbf{f} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K})$

 \bullet Often, we assume the mean function to be zero. Thus $f\sim\mathcal{N}(0,K)$

Let's define

$$\mathbf{f} = \begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix}, \boldsymbol{\mu} = \begin{bmatrix} \mu(\mathbf{x}_1) \\ \mu(\mathbf{x}_2) \\ \vdots \\ \mu(\mathbf{x}_N) \end{bmatrix}, \mathbf{K} = \begin{bmatrix} \kappa(\mathbf{x}_1, \mathbf{x}_1) \dots \kappa(\mathbf{x}_1, \mathbf{x}_N) \\ \kappa(\mathbf{x}_2, \mathbf{x}_1) \dots \kappa(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \kappa(\mathbf{x}_N, \mathbf{x}_1) \dots \kappa(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

Note: **K** is also called the kernel matrix. $K_{nm} = \kappa(\mathbf{x}_n, \mathbf{x}_m)$ • Thus we have

$$\mathbf{f} \sim \mathcal{N}(oldsymbol{\mu}, \mathbf{K})$$

- \bullet Often, we assume the mean function to be zero. Thus $f\sim\mathcal{N}(0,\mathsf{K})$
- Covariance/kernel function κ measures similarity between two inputs

•
$$\kappa(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{||\mathbf{x}_n - \mathbf{x}_m||^2}{\gamma}\right)$$
: RBF kernel
• $\kappa(\mathbf{x}_n, \mathbf{x}_m) = v_0 \exp\left\{-\left(\frac{|\mathbf{x}_n - \mathbf{x}_m|}{r}\right)^{\alpha}\right\} + v_1 + v_2 \delta_{nm}$

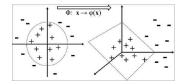
Probabilistic ML (CS772A)

Kernel Functions

- $\bullet\,$ Covariance/kernel function κ measures similarity between two inputs
- Corresponds to implicitly mapping data to a higher dimensional space via a feature mapping $\phi(\mathbf{x} \rightarrow \phi(\mathbf{x}))$ and computing the dot product that space

$$\kappa(\boldsymbol{x}_n, \boldsymbol{x}_m) = \phi(\boldsymbol{x}_n)^\top \phi(\boldsymbol{x}_m)$$

- Popularly known as the kernel trick (used in kernel methods for nonlinear regression/classification/clustering/dimensionality reduction, etc.)
- Allows extending linear models to nonlinear problems



伺 ト イヨト イヨト

Gaussian Processes for two problems

- Nonlinear Regression: Gaussian Process Regression
- Nonlinear Dimensionality Reduction: Gaussian Process Latent Variable Models (GPLVM)

- 4 同 ト - 4 国 ト - 4 国 ト

• Training data
$$\mathcal{D}$$
: $\{m{x}_n,m{y}_n\}_{n=1}^N$. $m{x}_n\in\mathbb{R}^D$, $m{y}_n\in\mathbb{R}$

• Assume the responses to be a noisy function of the inputs

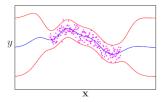
$$y_n = f(\boldsymbol{x}_n) + \boldsymbol{\epsilon}_n = f_n + \boldsymbol{\epsilon}_n$$

• Don't a priori know the form of f (linear/polynomial/something else?)

- Training data \mathcal{D} : $\{\boldsymbol{x}_n, y_n\}_{n=1}^N$. $\boldsymbol{x}_n \in \mathbb{R}^D$, $y_n \in \mathbb{R}$
- Assume the responses to be a noisy function of the inputs

$$y_n = f(\boldsymbol{x}_n) + \boldsymbol{\epsilon}_n = f_n + \boldsymbol{\epsilon}_n$$

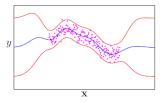
- Don't a priori know the form of f (linear/polynomial/something else?)
- Want to learn f with error bars



- Training data \mathcal{D} : $\{\boldsymbol{x}_n, y_n\}_{n=1}^N$. $\boldsymbol{x}_n \in \mathbb{R}^D$, $y_n \in \mathbb{R}$
- Assume the responses to be a noisy function of the inputs

$$y_n = f(\mathbf{x}_n) + \epsilon_n = f_n + \epsilon_n$$

- Don't a priori know the form of f (linear/polynomial/something else?)
- Want to learn f with error bars



• We'll use GP prior on f and use Bayes rule to get the posterior on f

$$p(f|\mathcal{D}) = rac{p(f)p(\mathcal{D}|f)}{p(\mathcal{D})}$$

Probabilistic ML (CS772A)

向下 イヨト イヨト

• Training data:
$$\{\boldsymbol{x}_n, y_n\}_{n=1}^N$$
. $\boldsymbol{x}_n \in \mathbb{R}^D$, $y_n \in \mathbb{R}$

• Assume the responses to be a noisy function of the inputs

$$y_n = f(\boldsymbol{x}_n) + \boldsymbol{\epsilon}_n = f_n + \boldsymbol{\epsilon}_n$$

• Assume a zero-mean Gaussian error: $\epsilon_n \sim \mathcal{N}(\epsilon_n | 0, \sigma^2)$

(本部) (本語) (本語) (二語

• Training data:
$$\{\boldsymbol{x}_n, y_n\}_{n=1}^N$$
. $\boldsymbol{x}_n \in \mathbb{R}^D$, $y_n \in \mathbb{R}$

• Assume the responses to be a noisy function of the inputs

$$y_n = f(\boldsymbol{x}_n) + \boldsymbol{\epsilon}_n = f_n + \boldsymbol{\epsilon}_n$$

• Assume a zero-mean Gaussian error: $\epsilon_n \sim \mathcal{N}(\epsilon_n | 0, \sigma^2)$

• Thus the likelihood model

$$p(y_n|f_n) = \mathcal{N}(y_n|f_n, \sigma^2)$$

★週 → ★ 国 → ★ 国 → 二 国

• Training data:
$$\{\boldsymbol{x}_n, y_n\}_{n=1}^N$$
. $\boldsymbol{x}_n \in \mathbb{R}^D$, $y_n \in \mathbb{R}$

• Assume the responses to be a noisy function of the inputs

$$y_n = f(\boldsymbol{x}_n) + \boldsymbol{\epsilon}_n = f_n + \boldsymbol{\epsilon}_n$$

• Assume a zero-mean Gaussian error: $\epsilon_n \sim \mathcal{N}(\epsilon_n | 0, \sigma^2)$

• Thus the likelihood model

$$p(y_n|f_n) = \mathcal{N}(y_n|f_n,\sigma^2)$$

• For N i.i.d. responses, the joint likelihood can be written as

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}_N)$$

< 回 → < 回 → < 回 → … 回

• Training data:
$$\{\boldsymbol{x}_n, y_n\}_{n=1}^N$$
. $\boldsymbol{x}_n \in \mathbb{R}^D$, $y_n \in \mathbb{R}$

• Assume the responses to be a noisy function of the inputs

$$y_n = f(\boldsymbol{x}_n) + \boldsymbol{\epsilon}_n = f_n + \boldsymbol{\epsilon}_n$$

• Assume a zero-mean Gaussian error: $\epsilon_n \sim \mathcal{N}(\epsilon_n | 0, \sigma^2)$

• Thus the likelihood model

$$p(y_n|f_n) = \mathcal{N}(y_n|f_n, \sigma^2)$$

• For N i.i.d. responses, the joint likelihood can be written as

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}_N)$$

• We will assume a zero mean Gaussian Process prior on f, which means:

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

Probabilistic ML (CS772A)

• The likelihood model

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}_N)$$

• The prior distribution

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

イロン イヨン イヨン イヨン

• The likelihood model

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}_N)$$

• The prior distribution

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

• Note: We don't actually need to compute the posterior $p(\mathbf{f}|\mathbf{y})$ here

伺い イヨト イヨト

• The likelihood model

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}_N)$$

• The prior distribution

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

- Note: We don't actually need to compute the posterior $p(\mathbf{f}|\mathbf{y})$ here
- The marginal distribution of the training data responses **y**

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f})d\mathbf{f} = \mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{K}+\sigma^2\mathbf{I}_N) = \mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{C}_N)$$

伺い イヨト イヨト

• The likelihood model

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}_N)$$

• The prior distribution

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

- Note: We don't actually need to compute the posterior $p(\mathbf{f}|\mathbf{y})$ here
- The marginal distribution of the training data responses \mathbf{y} $p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f})d\mathbf{f} = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I}_N) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{C}_N)$
- What will be the prediction y_{*} for a new test example x_{*}?

• The likelihood model

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}_N)$$

• The prior distribution

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

- Note: We don't actually need to compute the posterior $p(\mathbf{f}|\mathbf{y})$ here
- The marginal distribution of the training data responses \mathbf{y} $p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f})d\mathbf{f} = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I}_N) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{C}_N)$
- What will be the prediction y_{*} for a new test example x_{*}?
- Well, we know that the marginal distribution of y_* will be

$$p(y_*) = \mathcal{N}(y_*|0, \kappa(\boldsymbol{x}_*, \boldsymbol{x}_*) + \sigma^2)$$

• The likelihood model

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}_N)$$

• The prior distribution

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

- Note: We don't actually need to compute the posterior $p(\mathbf{f}|\mathbf{y})$ here
- The marginal distribution of the training data responses \mathbf{y} $p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f})d\mathbf{f} = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I}_N) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{C}_N)$
- What will be the prediction y_* for a new test example x_* ?
- Well, we know that the marginal distribution of y_* will be

$$p(y_*) = \mathcal{N}(y_*|0, \kappa(\boldsymbol{x}_*, \boldsymbol{x}_*) + \sigma^2)$$

• But what we actually want is the predictive distribution $p(y_*|y)$

Probabilistic ML (CS772A)

• Let's consider the joint distr. of N training responses y and test response y_*

$$p\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \mathbf{C}_{N+1}\right)$$

where the (N+1) \times (N+1) matrix $\boldsymbol{\mathsf{C}}_{N+1}$ is given by

$$\mathbf{C}_{N+1} = \left[\begin{array}{cc} \mathbf{C}_N & \mathbf{k}_* \\ \mathbf{k}_*^\top & c \end{array} \right]$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Let's consider the joint distr. of N training responses y and test response y_*

$$p\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \mathbf{C}_{N+1}\right)$$

where the (N+1) \times (N+1) matrix $\boldsymbol{\mathsf{C}}_{N+1}$ is given by

$$\mathbf{C}_{N+1} = \left[\begin{array}{cc} \mathbf{C}_N & \mathbf{k}_* \\ \mathbf{k}_*^\top & c \end{array} \right]$$

and $\mathbf{k}_* = [k(\mathbf{x}_*, \mathbf{x}_1), \dots, k(\mathbf{x}_*, \mathbf{x}_N)]^\top$, $c = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2$

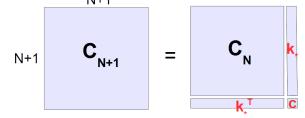
• Let's consider the joint distr. of N training responses y and test response y_*

$$p\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \mathbf{C}_{N+1}\right)$$

where the (N+1) \times (N+1) matrix $\boldsymbol{\mathsf{C}}_{N+1}$ is given by

$$\mathbf{C}_{N+1} = \left[\begin{array}{cc} \mathbf{C}_N & \mathbf{k}_* \\ \mathbf{k}_*^\top & \mathbf{c} \end{array} \right]$$

and $\mathbf{k}_* = [k(\mathbf{x}_*, \mathbf{x}_1), \dots, k(\mathbf{x}_*, \mathbf{x}_N)]^\top$, $c = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2$ N+1



• Given the jointly Gaussian distribution

$$p\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{c} \mathbf{C}_{N} & \mathbf{k}_{*} \\ \mathbf{k}_{*}^{\top} & \mathbf{c} \end{array}\right]\right)$$

• The predictive distribution will be

$$p(\mathbf{y}_*|\mathbf{y}) = \mathcal{N}(\mathbf{y}_*|\mu_*, \sigma_*^2)$$

$$\mu_* = \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{y}$$

$$\sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{k}_*$$

• Follows readily from property of Gaussians (lecture 2 and PRML 2.94-2.96)

向下 イヨト イヨト

• Given the jointly Gaussian distribution

$$p\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_{*} \end{array}\right]\right) \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{c} \mathbf{C}_{N} & \mathbf{k}_{*} \\ \mathbf{k}_{*}^{\top} & \mathbf{c} \end{array}\right]\right)$$

• The predictive distribution will be

$$p(\mathbf{y}_*|\mathbf{y}) = \mathcal{N}(\mathbf{y}_*|\mu_*, \sigma_*^2)$$

$$\mu_* = \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{y}$$

$$\sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{k}_*$$

- Follows readily from property of Gaussians (lecture 2 and PRML 2.94-2.96)
- Note: Instead of explicitly inverting, often Cholesky decomposition $C_N = LL^{\top}$ is used (for better numerical stability)

伺 ト イヨト イヨト

• Given the jointly Gaussian distribution

$$p\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_* \end{array}\right]\right) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_* \end{array}\right]\right) \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{c} \mathbf{C}_N & \mathbf{k}_* \\ \mathbf{k}_*^\top & \mathbf{c} \end{array}\right]\right)$$

• The predictive distribution will be

$$p(\mathbf{y}_*|\mathbf{y}) = \mathcal{N}(\mathbf{y}_*|\boldsymbol{\mu}_*, \sigma_*^2)$$

$$\mu_* = \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{y}$$

$$\sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{k}_*$$

- Follows readily from property of Gaussians (lecture 2 and PRML 2.94-2.96)
- Note: Instead of explicitly inverting, often Cholesky decomposition $C_N = LL^{\top}$ is used (for better numerical stability)
- Test time cost

向下 イヨト イヨト

• Given the jointly Gaussian distribution

$$p\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_* \end{array}\right]\right) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_* \end{array}\right]\right) \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{c} \mathbf{C}_N & \mathbf{k}_* \\ \mathbf{k}_*^\top & \mathbf{c} \end{array}\right]\right)$$

• The predictive distribution will be

$$p(\mathbf{y}_*|\mathbf{y}) = \mathcal{N}(\mathbf{y}_*|\boldsymbol{\mu}_*, \sigma_*^2)$$

$$\mu_* = \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{y}$$

$$\sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{k}_*$$

- Follows readily from property of Gaussians (lecture 2 and PRML 2.94-2.96)
- Note: Instead of explicitly inverting, often Cholesky decomposition $C_N = LL^{\top}$ is used (for better numerical stability)
- Test time cost is $\mathcal{O}(N)$

• Given the jointly Gaussian distribution

$$p\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_* \end{array}\right]\right) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{y}_* \end{array}\right]\right) \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right], \left[\begin{array}{c} \mathbf{C}_N & \mathbf{k}_* \\ \mathbf{k}_*^\top & \mathbf{c} \end{array}\right]\right)$$

• The predictive distribution will be

$$p(\mathbf{y}_*|\mathbf{y}) = \mathcal{N}(\mathbf{y}_*|\boldsymbol{\mu}_*, \sigma_*^2)$$

$$\mu_* = \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{y}$$

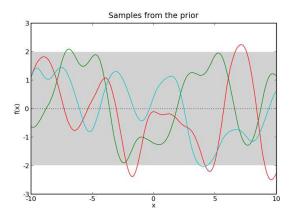
$$\sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{k}_*$$

- Follows readily from property of Gaussians (lecture 2 and PRML 2.94-2.96)
- Note: Instead of explicitly inverting, often Cholesky decomposition $C_N = LL^{\top}$ is used (for better numerical stability)
- Test time cost is $\mathcal{O}(N)$: linear in the number of training examples (just like kernel SVM or nearest neighbor methods)

A 10 A 10 A 10 A

GP Regression: Pictorially

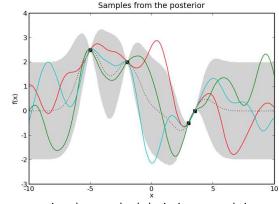
A GP with squared-exponential kernel function



イロト イポト イヨト イヨト

GP Regression: Pictorially

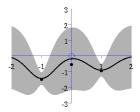
A GP with squared-exponential kernel function



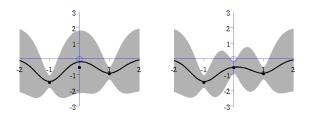
Shaded area denotes twice the standard deviation at each input

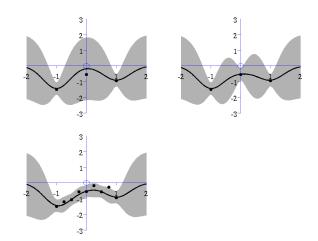
- E - N

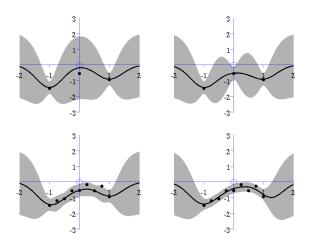
Picture courtesy: https://pythonhosted.org/infpy/gps.html



э







• Let's look at the predictions made by GP regression

$$p(\mathbf{y}_*|\mathbf{y}) = \mathcal{N}(\mathbf{y}_*|\mu_*, \sigma_*^2)$$

$$\mu_* = \mathbf{k}_*^{\top} \mathbf{C}_N^{-1} \mathbf{y}$$

$$\sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - \mathbf{k}_*^{\top} \mathbf{C}_N^{-1} \mathbf{k}_*$$

- 4 同 ト - 4 国 ト - 4 国 ト

• Let's look at the predictions made by GP regression

$$p(y_*|\mathbf{y}) = \mathcal{N}(y_*|\mu_*, \sigma_*^2)$$

$$\mu_* = \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{y}$$

$$\sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{k}_*$$

• Two interpretations for the mean prediction μ_*

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Let's look at the predictions made by GP regression

$$p(\mathbf{y}_*|\mathbf{y}) = \mathcal{N}(\mathbf{y}_*|\boldsymbol{\mu}_*, \sigma_*^2)$$

$$\mu_* = \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{y}$$

$$\sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{k}_*$$

- Two interpretations for the mean prediction μ_*
 - An SVM like interpretation

$$\mu_* = \mathbf{k}_*^{\top} \mathbf{C}_N^{-1} \mathbf{y} = \mathbf{k}_*^{\top} \boldsymbol{\alpha} = \sum_{n=1}^N k(\mathbf{x}_*, \mathbf{x}_n) \alpha_n$$

where lpha is akin to the weights of support vectors

• Let's look at the predictions made by GP regression

$$p(\mathbf{y}_*|\mathbf{y}) = \mathcal{N}(\mathbf{y}_*|\boldsymbol{\mu}_*, \sigma_*^2)$$

$$\mu_* = \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{y}$$

$$\sigma_*^2 = k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{k}_*$$

- Two interpretations for the mean prediction μ_*
 - An SVM like interpretation

$$\mu_* = \mathbf{k}_*^{\top} \mathbf{C}_N^{-1} \mathbf{y} = \mathbf{k}_*^{\top} \boldsymbol{\alpha} = \sum_{n=1}^N k(\mathbf{x}_*, \mathbf{x}_n) \alpha_n$$

...

where lpha is akin to the weights of support vectors

• A nearest neighbors interpretation

$$\mu_* = \mathbf{k}_*^{\top} \mathbf{C}_N^{-1} \mathbf{y} = \mathbf{w}^{\top} \mathbf{y} = \sum_{n=1}^N w_n y_n$$

where \boldsymbol{w} is akin to the weights of the neighbors

Probabilistic ML (CS772A)

伺下 イヨト イヨト

- There are two hyperparameters in GP regression models
 - ${\, \bullet \,}$ Variance of the Gaussian noise σ^2
 - Hyperparameters θ of the covariance function κ , e.g.,

$$\kappa(\boldsymbol{x}_n, \boldsymbol{x}_m) = \exp\left(-\frac{||\boldsymbol{x}_n - \boldsymbol{x}_m||^2}{\gamma}\right) \quad (\text{RBF kernel})$$

$$\kappa(\boldsymbol{x}_n, \boldsymbol{x}_m) = \exp\left(-\sum_{d=1}^{D} \frac{(\boldsymbol{x}_{nd} - \boldsymbol{x}_{md})^2}{\gamma_d}\right) \quad (\text{ARD kernel})$$

(日本) (日本) (日本)

- There are two hyperparameters in GP regression models
 - ${\, \bullet \,}$ Variance of the Gaussian noise σ^2
 - Hyperparameters θ of the covariance function κ , e.g.,

$$\kappa(\boldsymbol{x}_n, \boldsymbol{x}_m) = \exp\left(-\frac{||\boldsymbol{x}_n - \boldsymbol{x}_m||^2}{\gamma}\right) \quad (\mathsf{RBF \ kernel})$$
$$\kappa(\boldsymbol{x}_n, \boldsymbol{x}_m) = \exp\left(-\sum_{d=1}^{D} \frac{(\boldsymbol{x}_{nd} - \boldsymbol{x}_{md})^2}{\gamma_d}\right) \quad (\mathsf{ARD \ kernel})$$

• These can be learned from data by maximizing the marginal likelihood

$$p(\mathbf{y}|\sigma^2,\theta) = \mathcal{N}(\mathbf{y}|\mathbf{0},\sigma^2\mathbf{I}_N + \mathbf{K}_\theta)$$

- There are two hyperparameters in GP regression models
 - $\bullet\,$ Variance of the Gaussian noise σ^2
 - Hyperparameters θ of the covariance function $\kappa,$ e.g.,

$$\kappa(\boldsymbol{x}_n, \boldsymbol{x}_m) = \exp\left(-\frac{||\boldsymbol{x}_n - \boldsymbol{x}_m||^2}{\gamma}\right) \quad (\mathsf{RBF \ kernel})$$
$$\kappa(\boldsymbol{x}_n, \boldsymbol{x}_m) = \exp\left(-\sum_{d=1}^{D} \frac{(\boldsymbol{x}_{nd} - \boldsymbol{x}_{md})^2}{\gamma_d}\right) \quad (\mathsf{ARD \ kernel})$$

• These can be learned from data by maximizing the marginal likelihood

$$p(\mathbf{y}|\sigma^2, \theta) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta})$$

• Can maximize the (log) marginal likelihood w.r.t. σ^2 and the kernel hyperparameters θ and get point estimates of the hyperparameters

$$\log p(\mathbf{y}|\sigma^2, \theta) = -\frac{1}{2} \log |\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}| - \frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta})^{-1} \mathbf{y} + \text{const}$$

Probabilistic ML (CS772A)

(日本) (日本) (日本)

• The (log) marginal likelihood

$$\log p(\mathbf{y}|\sigma^2, \theta) = -\frac{1}{2} \log |\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}| - \frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta})^{-1} \mathbf{y} + \text{const}$$

э

・ロン ・四 と ・ ヨ と ・ ヨ と …

• The (log) marginal likelihood

$$\log p(\mathbf{y}|\sigma^2, \theta) = -\frac{1}{2} \log |\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}| - \frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta})^{-1} \mathbf{y} + \text{const}$$

• Defining $\mathbf{K}_y = \sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}$ and taking derivative w.r.t. kernel hyperparams θ

$$\begin{split} \frac{\partial}{\partial \theta_j} \log p(\mathbf{y} | \sigma^2, \theta) &= -\frac{1}{2} \mathrm{tr} \left(\mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) + \frac{1}{2} \mathbf{y}^\top \mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \mathbf{K}_y^{-1} \mathbf{y} \\ &= -\frac{1}{2} \mathrm{tr} \left((\boldsymbol{\alpha} \boldsymbol{\alpha}^\top - \mathbf{K}_y^{-1}) \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) \end{split}$$

where $heta_j$ is the j^{th} hyperparam. of the kernel, and $oldsymbol{lpha} = \mathbf{K}_y^{-1} oldsymbol{y}$

• The (log) marginal likelihood

$$\log p(\mathbf{y}|\sigma^2, \theta) = -\frac{1}{2} \log |\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}| - \frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta})^{-1} \mathbf{y} + \text{const}$$

• Defining $\mathbf{K}_y = \sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}$ and taking derivative w.r.t. kernel hyperparams θ

$$\begin{split} \frac{\partial}{\partial \theta_j} \log p(\mathbf{y} | \sigma^2, \theta) &= -\frac{1}{2} \mathrm{tr} \left(\mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) + \frac{1}{2} \mathbf{y}^\top \mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \mathbf{K}_y^{-1} \mathbf{y} \\ &= -\frac{1}{2} \mathrm{tr} \left((\boldsymbol{\alpha} \boldsymbol{\alpha}^\top - \mathbf{K}_y^{-1}) \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) \end{split}$$

where θ_j is the j^{th} hyperparam. of the kernel, and $\boldsymbol{\alpha} = \mathbf{K}_y^{-1} \mathbf{y}$

• No closed form solution for θ_i . Gradient based methods can be used.

• The (log) marginal likelihood

$$\log p(\mathbf{y}|\sigma^2, \theta) = -\frac{1}{2} \log |\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}| - \frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta})^{-1} \mathbf{y} + \text{const}$$

• Defining $\mathbf{K}_y = \sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}$ and taking derivative w.r.t. kernel hyperparams θ

$$\begin{split} \frac{\partial}{\partial \theta_j} \log p(\mathbf{y} | \sigma^2, \theta) &= -\frac{1}{2} \mathrm{tr} \left(\mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) + \frac{1}{2} \mathbf{y}^\top \mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \mathbf{K}_y^{-1} \mathbf{y} \\ &= -\frac{1}{2} \mathrm{tr} \left((\boldsymbol{\alpha} \boldsymbol{\alpha}^\top - \mathbf{K}_y^{-1}) \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) \end{split}$$

where θ_j is the j^{th} hyperparam. of the kernel, and $\boldsymbol{\alpha} = \mathbf{K}_{y}^{-1} \boldsymbol{y}$

- No closed form solution for θ_j . Gradient based methods can be used.
- Note: Computing K⁻¹_y itself takes O(N³) time (faster approximations exist though). Then each gradient computation takes O(N²) time

• The (log) marginal likelihood

$$\log p(\mathbf{y}|\sigma^2, \theta) = -\frac{1}{2} \log |\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}| - \frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta})^{-1} \mathbf{y} + \text{const}$$

• Defining $\mathbf{K}_y = \sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}$ and taking derivative w.r.t. kernel hyperparams θ

$$\begin{split} \frac{\partial}{\partial \theta_j} \log p(\mathbf{y} | \sigma^2, \theta) &= -\frac{1}{2} \mathrm{tr} \left(\mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) + \frac{1}{2} \mathbf{y}^\top \mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \mathbf{K}_y^{-1} \mathbf{y} \\ &= -\frac{1}{2} \mathrm{tr} \left((\mathbf{\alpha} \mathbf{\alpha}^\top - \mathbf{K}_y^{-1}) \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) \end{split}$$

where θ_j is the j^{th} hyperparam. of the kernel, and $\boldsymbol{\alpha} = \mathbf{K}_y^{-1} \boldsymbol{y}$

- No closed form solution for θ_j . Gradient based methods can be used.
- Note: Computing K⁻¹_y itself takes O(N³) time (faster approximations exist though). Then each gradient computation takes O(N²) time
- Form of $\frac{\partial \mathbf{K}_y}{\partial \theta_i}$ depends on the covariance/kernel function κ

Probabilistic ML (CS772A)

• The (log) marginal likelihood

$$\log p(\mathbf{y}|\sigma^2, \theta) = -\frac{1}{2} \log |\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}| - \frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta})^{-1} \mathbf{y} + \text{const}$$

• Defining $\mathbf{K}_y = \sigma^2 \mathbf{I}_N + \mathbf{K}_{\theta}$ and taking derivative w.r.t. kernel hyperparams θ

$$\begin{split} \frac{\partial}{\partial \theta_j} \log p(\mathbf{y} | \sigma^2, \theta) &= -\frac{1}{2} \mathrm{tr} \left(\mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) + \frac{1}{2} \mathbf{y}^\top \mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta_j} \mathbf{K}_y^{-1} \mathbf{y} \\ &= -\frac{1}{2} \mathrm{tr} \left((\mathbf{\alpha} \mathbf{\alpha}^\top - \mathbf{K}_y^{-1}) \frac{\partial \mathbf{K}_y}{\partial \theta_j} \right) \end{split}$$

where θ_j is the j^{th} hyperparam. of the kernel, and $\boldsymbol{\alpha} = \mathbf{K}_y^{-1} \boldsymbol{y}$

- No closed form solution for θ_j . Gradient based methods can be used.
- Note: Computing K⁻¹_y itself takes O(N³) time (faster approximations exist though). Then each gradient computation takes O(N²) time
- Form of $\frac{\partial \mathbf{K}_y}{\partial \theta_i}$ depends on the covariance/kernel function κ
- $\bullet\,$ Noise variance σ^2 can also be estimated likewise

Probabilistic ML (CS772A)

▲■ ▼ ▲ 国 ▼ ▲ 国 ▼ 二 国

• GP regression is only one example of supervised learning with GP

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- GP regression is only one example of supervised learning with GP
- GP can be combined with other types of likelihood functions to handle other types of responses (e.g., binary, categorical, counts, etc.) by replacing the Gaussian likelihood for responses by a generalized linear model

伺 ト イヨト イヨト

- GP regression is only one example of supervised learning with GP
- GP can be combined with other types of likelihood functions to handle other types of responses (e.g., binary, categorical, counts, etc.) by replacing the Gaussian likelihood for responses by a generalized linear model
- Inference however becomes more tricky because such likelihoods may no longer be conjugate to GP prior. Approximate inference needed in such cases.

- GP regression is only one example of supervised learning with GP
- GP can be combined with other types of likelihood functions to handle other types of responses (e.g., binary, categorical, counts, etc.) by replacing the Gaussian likelihood for responses by a generalized linear model
- Inference however becomes more tricky because such likelihoods may no longer be conjugate to GP prior. Approximate inference needed in such cases.
- We will revisit one such example (GP for binary classification) later during the semester

伺下 イヨト イヨト

• The objective function of a soft-margin SVM looks like

$$\frac{1}{2}||\bm{w}||^2 + C\sum_{n=1}^N (1-y_n f_n)_+$$

where $f_n = \mathbf{w}^\top \mathbf{x}_n$ and y_n is the true label for \mathbf{x}_n

• The objective function of a soft-margin SVM looks like

$$\frac{1}{2}||\bm{w}||^2 + C\sum_{n=1}^N (1-y_n f_n)_+$$

where $f_n = \mathbf{w}^\top \mathbf{x}_n$ and y_n is the true label for \mathbf{x}_n

• Kernel SVM: $f_n = \sum_{m=1}^N \alpha_m k(\mathbf{x}_n, \mathbf{x}_m)$. Denote $\mathbf{f} = [f_1, \dots, f_N]^\top$

• The objective function of a soft-margin SVM looks like

$$\frac{1}{2}||\bm{w}||^2 + C\sum_{n=1}^N (1-y_n f_n)_+$$

where $f_n = \boldsymbol{w}^\top \boldsymbol{x}_n$ and y_n is the true label for \boldsymbol{x}_n

• Kernel SVM: $f_n = \sum_{m=1}^N \alpha_m k(\mathbf{x}_n, \mathbf{x}_m)$. Denote $\mathbf{f} = [f_1, \dots, f_N]^\top$

• We can write $\frac{||\boldsymbol{w}||^2}{2} = \boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha} = \mathbf{f}^\top \mathbf{K}^{-1} \mathbf{f}$, and kernel SVM objective becomes

$$\frac{1}{2}\mathbf{f}^{\top}\mathbf{K}^{-1}\mathbf{f} + C\sum_{n=1}^{N}(1-y_nf_n)_+$$

• The objective function of a soft-margin SVM looks like

$$\frac{1}{2}||\bm{w}||^2 + C\sum_{n=1}^N (1-y_n f_n)_+$$

where $f_n = \boldsymbol{w}^\top \boldsymbol{x}_n$ and y_n is the true label for \boldsymbol{x}_n

• Kernel SVM: $f_n = \sum_{m=1}^N \alpha_m k(\mathbf{x}_n, \mathbf{x}_m)$. Denote $\mathbf{f} = [f_1, \dots, f_N]^\top$

• We can write $\frac{||\boldsymbol{w}||^2}{2} = \boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha} = \mathbf{f}^\top \mathbf{K}^{-1} \mathbf{f}$, and kernel SVM objective becomes

$$\frac{1}{2}\mathbf{f}^{\top}\mathbf{K}^{-1}\mathbf{f}+C\sum_{n=1}^{N}(1-y_{n}f_{n})_{+}$$

• Negative log-posterior $\log p(\mathbf{y}|\mathbf{f})p(\mathbf{f})$ of a GP can be written as

$$\frac{1}{2}\mathbf{f}^{\top}\mathbf{K}^{-1}\mathbf{f} - \sum_{n=1}^{N}\log p(y_n|f_n) + \text{const}$$

Probabilistic ML (CS772A)

• Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs

イロン イヨン イヨン イヨン

- Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
- Both GP and SVM need dealing with (storing/inverting) large kernel matrices
 - Various approximations proposed to address this issue (applicable to both)

くぼう くほう くほう

- Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
- Both GP and SVM need dealing with (storing/inverting) large kernel matrices
 - Various approximations proposed to address this issue (applicable to both)
- Ability to learn the kernel hyperparameters in GP is very useful, e.g.,

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
- Both GP and SVM need dealing with (storing/inverting) large kernel matrices
 - Various approximations proposed to address this issue (applicable to both)
- Ability to learn the kernel hyperparameters in GP is very useful, e.g.,
 - · Learning the kernel bandwidth for Gaussian kernels

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{||\mathbf{x}_n - \mathbf{x}_m||^2}{\gamma}\right)$$

- Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
- Both GP and SVM need dealing with (storing/inverting) large kernel matrices
 - Various approximations proposed to address this issue (applicable to both)
- Ability to learn the kernel hyperparameters in GP is very useful, e.g.,
 - · Learning the kernel bandwidth for Gaussian kernels

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{||\mathbf{x}_n - \mathbf{x}_m||^2}{\gamma}\right)$$

• Doing feature selection (via Automatic Relevance Determination)

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\sum_{d=1}^{D} \frac{(\mathbf{x}_{nd} - \mathbf{x}_{md})^2}{\gamma_d}\right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
- Both GP and SVM need dealing with (storing/inverting) large kernel matrices
 - Various approximations proposed to address this issue (applicable to both)
- Ability to learn the kernel hyperparameters in GP is very useful, e.g.,
 - · Learning the kernel bandwidth for Gaussian kernels

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{||\mathbf{x}_n - \mathbf{x}_m||^2}{\gamma}\right)$$

• Doing feature selection (via Automatic Relevance Determination)

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\sum_{d=1}^{D} \frac{(\mathbf{x}_{nd} - \mathbf{x}_{md})^2}{\gamma_d}\right)$$

Learning compositions of kernels for more flexible modeling

$$\mathbf{K} = \mathbf{K}_{\theta_1} + \mathbf{K}_{\theta_2} + \dots$$

Probabilistic ML (CS772A)

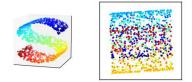
(本語) (本語) (本語) (

Nonlinear Dimensionality Reduction using Gaussian Process (GPLVM)

医肾管医肾管炎

• Embeddings learned by PCA (left: original data, right: PCA)

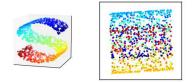
• Embeddings learned by PCA (left: original data, right: PCA)



• Why PCA doesn't work in such cases?

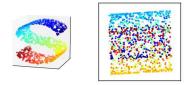
向下 イヨト イヨト

• Embeddings learned by PCA (left: original data, right: PCA)

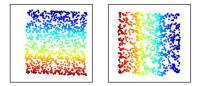


- Why PCA doesn't work in such cases?
 - Uses Euclidean distances; learns linear projections

• Embeddings learned by PCA (left: original data, right: PCA)



- Why PCA doesn't work in such cases?
 - Uses Euclidean distances; learns linear projections
- Embeddings learned by nonlinear dim. red. (left: LLE, right: ISOMAP)



- Given: $N \times D$ data matrix $\mathbf{X} = [\mathbf{x}_1^\top, \dots, \mathbf{x}_N^\top]^\top$, with $\mathbf{x}_n \in \mathbb{R}^D$
- Goal: Find a lower-dim. rep., an $N \times K$ matrix $\mathbf{Z} = [\mathbf{z}_1^\top, \dots, \mathbf{z}_N^\top]^\top$, $\mathbf{z}_n \in \mathbb{R}^K$
- Assume the following generative model for each observation x_n

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$
 with $\mathbf{W} \in \mathbb{R}^{D \times K}$, $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

- Given: $N \times D$ data matrix $\mathbf{X} = [\mathbf{x}_1^\top, \dots, \mathbf{x}_N^\top]^\top$, with $\mathbf{x}_n \in \mathbb{R}^D$
- Goal: Find a lower-dim. rep., an $N \times K$ matrix $\mathbf{Z} = [\mathbf{z}_1^\top, \dots, \mathbf{z}_N^\top]^\top$, $\mathbf{z}_n \in \mathbb{R}^K$
- Assume the following generative model for each observation x_n

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$
 with $\mathbf{W} \in \mathbb{R}^{D \times K}$, $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

• The conditional distribution

$$p(\boldsymbol{x}_n | \boldsymbol{z}_n, \boldsymbol{\mathsf{W}}, \sigma^2) = \mathcal{N}(\boldsymbol{\mathsf{W}} \boldsymbol{z}_n, \sigma^2 \boldsymbol{\mathsf{I}}_D)$$

- Given: $N \times D$ data matrix $\mathbf{X} = [\mathbf{x}_1^\top, \dots, \mathbf{x}_N^\top]^\top$, with $\mathbf{x}_n \in \mathbb{R}^D$
- Goal: Find a lower-dim. rep., an $N \times K$ matrix $\mathbf{Z} = [\mathbf{z}_1^\top, \dots, \mathbf{z}_N^\top]^\top$, $\mathbf{z}_n \in \mathbb{R}^K$
- Assume the following generative model for each observation x_n

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$
 with $\mathbf{W} \in \mathbb{R}^{D \times K}$, $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

• The conditional distribution

$$p(\boldsymbol{x}_n | \boldsymbol{z}_n, \boldsymbol{\mathsf{W}}, \sigma^2) = \mathcal{N}(\boldsymbol{\mathsf{W}} \boldsymbol{z}_n, \sigma^2 \boldsymbol{\mathsf{I}}_D)$$

• Assume a Gaussian prior on z_n : $p(z_n) = \mathcal{N}(0, \mathbf{I}_K)$

- Given: $N \times D$ data matrix $\mathbf{X} = [\mathbf{x}_1^\top, \dots, \mathbf{x}_N^\top]^\top$, with $\mathbf{x}_n \in \mathbb{R}^D$
- Goal: Find a lower-dim. rep., an $N \times K$ matrix $\mathbf{Z} = [\mathbf{z}_1^\top, \dots, \mathbf{z}_N^\top]^\top$, $\mathbf{z}_n \in \mathbb{R}^K$
- Assume the following generative model for each observation x_n

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$
 with $\mathbf{W} \in \mathbb{R}^{D \times K}$, $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

• The conditional distribution

$$p(\boldsymbol{x}_n | \boldsymbol{z}_n, \boldsymbol{\mathsf{W}}, \sigma^2) = \mathcal{N}(\boldsymbol{\mathsf{W}} \boldsymbol{z}_n, \sigma^2 \boldsymbol{\mathsf{I}}_D)$$

- Assume a Gaussian prior on z_n : $p(z_n) = \mathcal{N}(0, \mathbf{I}_K)$
- The marginal distribution of x_n (after integrating out latent variables z_n)

$$p(\mathbf{x}_n | \mathbf{W}, \sigma^2) = \mathcal{N}(\mathbf{0}, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I}_D)$$
$$p(\mathbf{X} | \mathbf{W}, \sigma^2) = \prod_{n=1}^N p(\mathbf{x}_n | \mathbf{W}, \sigma^2)$$

Probabilistic ML (CS772A)

Gaussian Process Latent Variable Model (GPLVM)

• Consider the same model

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$
 with $\mathbf{W} \in \mathbb{R}^{D \times K}$, $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

• Assume a prior $p(\mathbf{W}) = \prod_{d=1}^{D} \mathcal{N}(\mathbf{w}_d | 0, \mathbf{I}_K)$ where \mathbf{w}_d is the d^{th} row of \mathbf{W}

御下 人居下 人居下 二日

Gaussian Process Latent Variable Model (GPLVM)

• Consider the same model

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$
 with $\mathbf{W} \in \mathbb{R}^{D \times K}$, $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

• Assume a prior $p(\mathbf{W}) = \prod_{d=1}^{D} \mathcal{N}(\mathbf{w}_d | 0, \mathbf{I}_K)$ where \mathbf{w}_d is the d^{th} row of \mathbf{W}

• Suppose we integrate out **W** instead of z_n (treat z_n 's as "parameter")

$$p(\mathbf{X}|\mathbf{Z},\sigma^2) = \prod_{d=1}^{D} \mathcal{N}(\mathbf{X}_{:,d}|\mathbf{0},\mathbf{Z}\mathbf{Z}^{\top} + \sigma^2 \mathbf{I}_D)$$
$$= (2\pi)^{-DN/2} |\mathbf{K}_z|^{-D/2} \exp\left(-\frac{1}{2} \operatorname{tr}(\mathbf{K}_z^{-1}\mathbf{X}\mathbf{X}^{\top})\right)$$

where $\mathbf{K}_z = \mathbf{Z}\mathbf{Z}^\top + \sigma^2 \mathbf{I}$ and $\mathbf{X}_{:,d}$ is the d^{th} column of $N \times D$ data matrix \mathbf{X}

御下 人居下 人居下 二日

Gaussian Process Latent Variable Model (GPLVM)

• Consider the same model

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$
 with $\mathbf{W} \in \mathbb{R}^{D \times K}, \ \epsilon_n \sim \mathcal{N}(0, \sigma^2)$

• Assume a prior $p(\mathbf{W}) = \prod_{d=1}^{D} \mathcal{N}(\mathbf{w}_d | 0, \mathbf{I}_K)$ where \mathbf{w}_d is the d^{th} row of \mathbf{W}

• Suppose we integrate out **W** instead of z_n (treat z_n 's as "parameter")

$$p(\mathbf{X}|\mathbf{Z},\sigma^2) = \prod_{d=1}^{D} \mathcal{N}(\mathbf{X}_{:,d}|\mathbf{0},\mathbf{Z}\mathbf{Z}^{\top} + \sigma^2 \mathbf{I}_D)$$
$$= (2\pi)^{-DN/2} |\mathbf{K}_z|^{-D/2} \exp\left(-\frac{1}{2} \operatorname{tr}(\mathbf{K}_z^{-1}\mathbf{X}\mathbf{X}^{\top})\right)$$

where $\mathbf{K}_z = \mathbf{Z}\mathbf{Z}^\top + \sigma^2 \mathbf{I}$ and $\mathbf{X}_{:,d}$ is the d^{th} column of $N \times D$ data matrix \mathbf{X}

• Note that we can think of $\mathbf{X}_{:,d}$ modeled by a GP regression model

$$\mathbf{X}_{:,d} \sim \mathcal{N}(\mathbf{0}, \mathbf{Z}\mathbf{Z}^{\top} + \sigma^2 \mathbf{I}_D)$$

• There are a total of D such GPs (one for each column of X)

Probabilistic ML (CS772A)

• $p(\mathbf{X}|\mathbf{Z}, \sigma^2)$ is now a product of D GPs (one per column of data matrix \mathbf{X})

$$p(\mathbf{X}|\mathbf{Z},\sigma^2) = \prod_{d=1}^{D} \mathcal{N}(\mathbf{X}_{:,d}|\mathbf{0},\mathbf{Z}\mathbf{Z}^{\top} + \sigma^2 \mathbf{I}_D)$$
$$= (2\pi)^{-DN/2} |\mathbf{K}_z|^{-D/2} \exp\left(-\frac{1}{2} \operatorname{tr}(\mathbf{K}_z^{-1}\mathbf{X}\mathbf{X}^{\top})\right)$$

- Using K_z = ZZ^T + σ²I and doing MLE will give the same solution for Z as linear PCA (note that ZZ^T is a linear kernel over Z, the low-dim rep of data)
- But with K_z = K + σ²I (with K being some appropriately defined kernel matrix over Z) will give nonlinear dimensionality reduction

• Log-likelihood is given by

$$\mathcal{L} = -rac{D}{2} \log |\mathbf{K}_z| - rac{1}{2} \mathrm{tr}(\mathbf{K}_z^{-1} \mathbf{X} \mathbf{X}^{ op})$$

where $\mathbf{K}_z = \mathbf{K} + \sigma^2 \mathbf{I}$ and \mathbf{K} denotes the kernel matrix of our low-dim rep. \mathbf{Z}

э

・ロト ・回ト ・ヨト ・ヨト

• Log-likelihood is given by

$$\mathcal{L} = -rac{D}{2} \log |\mathbf{K}_z| - rac{1}{2} \mathrm{tr}(\mathbf{K}_z^{-1} \mathbf{X} \mathbf{X}^{ op})$$

where $\mathbf{K}_z = \mathbf{K} + \sigma^2 \mathbf{I}$ and \mathbf{K} denotes the kernel matrix of our low-dim rep. \mathbf{Z}

• The goal is to estimate the $N \times K$ matrix **Z**

• Log-likelihood is given by

$$\mathcal{L} = -rac{D}{2} \log |\mathbf{K}_z| - rac{1}{2} \mathrm{tr}(\mathbf{K}_z^{-1} \mathbf{X} \mathbf{X}^{ op})$$

where $\mathbf{K}_z = \mathbf{K} + \sigma^2 \mathbf{I}$ and \mathbf{K} denotes the kernel matrix of our low-dim rep. \mathbf{Z}

- The goal is to estimate the $N \times K$ matrix **Z**
- Can't find closed form estimate of **Z**. Need to use gradient-based methods, with the gradient given by

$$\frac{\partial \mathcal{L}}{\partial Z_{nk}} = \frac{\partial \mathcal{L}}{\partial \mathbf{K}_z} \frac{\partial \mathbf{K}_z}{\partial Z_{nk}}$$

where $\frac{\partial \mathcal{L}}{\partial \mathbf{K}_z} = \mathbf{K}_z^{-1} \mathbf{X} \mathbf{X}^\top \mathbf{K}_z^{-1} - D \mathbf{K}_z^{-1}$ and $\frac{\partial \mathbf{K}_z}{\partial Z_{nk}}$ will depend on the kernel function used (note: hyperparameters of the kernel can also be learned just as we did it in the GP regression case)

• Log-likelihood is given by

$$\mathcal{L} = -rac{D}{2}\log|\mathbf{K}_z| - rac{1}{2}\mathrm{tr}(\mathbf{K}_z^{-1}\mathbf{X}\mathbf{X}^{ op})$$

where $\mathbf{K}_z = \mathbf{K} + \sigma^2 \mathbf{I}$ and \mathbf{K} denotes the kernel matrix of our low-dim rep. \mathbf{Z}

- The goal is to estimate the $N \times K$ matrix **Z**
- Can't find closed form estimate of **Z**. Need to use gradient-based methods, with the gradient given by

$$\frac{\partial \mathcal{L}}{\partial Z_{nk}} = \frac{\partial \mathcal{L}}{\partial \mathbf{K}_z} \frac{\partial \mathbf{K}_z}{\partial Z_{nk}}$$

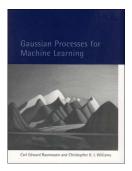
where $\frac{\partial \mathcal{L}}{\partial \mathbf{K}_z} = \mathbf{K}_z^{-1} \mathbf{X} \mathbf{X}^\top \mathbf{K}_z^{-1} - D \mathbf{K}_z^{-1}$ and $\frac{\partial \mathbf{K}_z}{\partial Z_{nk}}$ will depend on the kernel function used (note: hyperparameters of the kernel can also be learned just as we did it in the GP regression case)

• Can also impose a prior on Z and do MAP (or fully Bayesian) estimation

御下 人居下 人居下 二日

Resources on Gaussian Processes

• Book: Gaussian Processes for Machine Learning (freely available online)



- MATLAB Packages: Useful to play with, build applications, extend existing models and inference algorithms for GPs (both regression and classification)
 - GPML: http://www.gaussianprocess.org/gpml/code/matlab/doc/
 - GPStuff: http://research.cs.aalto.fi/pml/software/gpstuff/
 - GPLVM: https://github.com/lawrennd/gplvm

Probabilistic ML (CS772A)