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Gaussian Process

A Gaussian Process (GP) is a distribution over functions

A random draw from a GP thus gives a function f

f ∼ GP(µ, κ)

where µ is the mean function and κ is the covariance/kernel function (the
cov. function controls f ’s shape/smoothness)

Note: µ and κ can be chosen or learned from data

GP can be used as a nonparametric prior distribution for such functions
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Gaussian Process

A function f is said to be drawn from GP(µ, κ) if


f (x1)
f (x2)

...
f (xN)

 ∼ N


µ(x1)
µ(x2)

...
µ(xN)

 ,


κ(x1, x1) . . . κ(x1, xN)
κ(x2, x1) . . . κ(x2, xN)

...
. . .

...
κ(xN , x1) . . . κ(xN , xN)




Thus, if f is drawn from a GP then the joint distribution of f ’s evaluations at
a finite set of points {x1, x2, . . . , xN} is a multivariate normal
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Gaussian Process

Let’s define

f =


f (x1)
f (x2)

...
f (xN)

 ,µ =


µ(x1)
µ(x2)

...
µ(xN)

 ,K =


κ(x1, x1) . . . κ(x1, xN)
κ(x2, x1) . . . κ(x2, xN)

...
. . .

...
κ(xN , x1) . . . κ(xN , xN)


Note: K is also called the kernel matrix. Knm = κ(xn, xm)

Thus we have
f ∼ N (µ,K)

Often, we assume the mean function to be zero. Thus f ∼ N (0,K)

Covariance/kernel function κ measures similarity between two inputs

κ(xn, xm) = exp
(
− ||xn−xm||2

γ

)
: RBF kernel

κ(xn, xm) = v0 exp
{
−
(
|xn−xm|

r

)α}
+ v1 + v2δnm
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Kernel Functions

Covariance/kernel function κ measures similarity between two inputs

Corresponds to implicitly mapping data to a higher dimensional space via a
feature mapping φ (x → φ(x)) and computing the dot product that space

κ(xn, xm) = φ(xn)>φ(xm)

Popularly known as the kernel trick (used in kernel methods for nonlinear
regression/classification/clustering/dimensionality reduction, etc.)

Allows extending linear models to nonlinear problems
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Today’s Plan

Gaussian Processes for two problems

Nonlinear Regression: Gaussian Process Regression

Nonlinear Dimensionality Reduction: Gaussian Process Latent Variable
Models (GPLVM)
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Gaussian Process Regression
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Gaussian Process Regression

Training data D: {xn, yn}Nn=1. xn ∈ RD , yn ∈ R

Assume the responses to be a noisy function of the inputs

yn = f (xn) + εn = fn + εn

Don’t a priori know the form of f (linear/polynomial/something else?)

Want to learn f with error bars

We’ll use GP prior on f and use Bayes rule to get the posterior on f

p(f |D) =
p(f )p(D|f )

p(D)
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Gaussian Process Regression

Training data: {xn, yn}Nn=1. xn ∈ RD , yn ∈ R

Assume the responses to be a noisy function of the inputs

yn = f (xn) + εn = fn + εn

Assume a zero-mean Gaussian error: εn ∼ N (εn|0, σ2)

Thus the likelihood model

p(yn|fn) = N (yn|fn, σ2)

For N i.i.d. responses, the joint likelihood can be written as

p(y |f) = N (y |f, σ2IN)

We will assume a zero mean Gaussian Process prior on f , which means:

p(f) = N (f|0,K)
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Gaussian Process Regression

The likelihood model
p(y |f) = N (y |f, σ2IN)

The prior distribution
p(f) = N (f|0,K)

Note: We don’t actually need to compute the posterior p(f|y) here

The marginal distribution of the training data responses y

p(y) =

∫
p(y |f)p(f)df = N (y |0,K + σ2IN) = N (y |0,CN)

What will be the prediction y∗ for a new test example x∗?

Well, we know that the marginal distribution of y∗ will be

p(y∗) = N (y∗|0, κ(x∗, x∗) + σ2)

But what we actually want is the predictive distribution p(y∗|y)
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Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y

y∗

])
= N

([
y

y∗

]∣∣∣∣ [ 0
0

]
,CN+1

)
where the (N + 1)× (N + 1) matrix CN+1 is given by

CN+1 =

[
CN k∗
k∗
> c

]

and k∗ = [k(x∗, x1), . . . , k(x∗, xN)]>, c = k(x∗, x∗) + σ2

Probabilistic ML (CS772A) Gaussian Processes for Nonlinear Regression and Dimensionality Reduction 11



Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y

y∗

])
= N

([
y

y∗

]∣∣∣∣ [ 0
0

]
,CN+1

)
where the (N + 1)× (N + 1) matrix CN+1 is given by

CN+1 =

[
CN k∗
k∗
> c

]
and k∗ = [k(x∗, x1), . . . , k(x∗, xN)]>, c = k(x∗, x∗) + σ2

Probabilistic ML (CS772A) Gaussian Processes for Nonlinear Regression and Dimensionality Reduction 11



Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y

y∗

])
= N

([
y

y∗

]∣∣∣∣ [ 0
0

]
,CN+1

)
where the (N + 1)× (N + 1) matrix CN+1 is given by

CN+1 =

[
CN k∗
k∗
> c

]
and k∗ = [k(x∗, x1), . . . , k(x∗, xN)]>, c = k(x∗, x∗) + σ2

Probabilistic ML (CS772A) Gaussian Processes for Nonlinear Regression and Dimensionality Reduction 11



Making Predictions

Given the jointly Gaussian distribution

p

([
y

y∗

])
= N

([
y

y∗

]∣∣∣∣ [ 0
0

]
,

[
CN k∗
k∗
> c

])
The predictive distribution will be

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1N y

σ2
∗ = k(x∗, x∗) + σ2 − k∗

>C−1N k∗

Follows readily from property of Gaussians (lecture 2 and PRML 2.94-2.96)

Note: Instead of explicitly inverting, often Cholesky decomposition
CN = LL> is used (for better numerical stability)

Test time cost is O(N): linear in the number of training examples (just like
kernel SVM or nearest neighbor methods)
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GP Regression: Pictorially

A GP with squared-exponential kernel function

Shaded area denotes twice the standard deviation at each input

Picture courtesy: https://pythonhosted.org/infpy/gps.html
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Interpreting GP predictions..

Let’s look at the predictions made by GP regression

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1N y

σ2
∗ = k(x∗, x∗) + σ2 − k∗

>C−1N k∗

Two interpretations for the mean prediction µ∗

An SVM like interpretation

µ∗ = k∗
>C−1

N y = k∗
>α =

N∑
n=1

k(x∗, xn)αn

where α is akin to the weights of support vectors

A nearest neighbors interpretation

µ∗ = k∗
>C−1

N y = w
>
y =

N∑
n=1

wnyn

where w is akin to the weights of the neighbors
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n=1

wnyn

where w is akin to the weights of the neighbors
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Inferring Hyperparameters

There are two hyperparameters in GP regression models

Variance of the Gaussian noise σ2

Hyperparameters θ of the covariance function κ, e.g.,

κ(xn, xm) = exp

(
−||xn − xm||2

γ

)
(RBF kernel)

κ(xn, xm) = exp

(
−

D∑
d=1

(xnd − xmd)2

γd

)
(ARD kernel)

These can be learned from data by maximizing the marginal likelihood

p(y |σ2
, θ) = N (y |0, σ2IN + Kθ)

Can maximize the (log) marginal likelihood w.r.t. σ2 and the kernel
hyperparameters θ and get point estimates of the hyperparameters

log p(y |σ2
, θ) = −

1

2
log |σ2IN + Kθ| −

1

2
y
>(σ2IN + Kθ)

−1
y + const
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Inferring Hyperparameters

The (log) marginal likelihood

log p(y |σ2
, θ) = −

1

2
log |σ2IN + Kθ| −

1

2
y
>(σ2IN + Kθ)

−1
y + const

Defining Ky = σ2IN + Kθ and taking derivative w.r.t. kernel hyperparams θ

∂

∂θj
log p(y |σ2

, θ) = −
1

2
tr

(
K−1

y

∂Ky

∂θj

)
+

1

2
y
>K−1

y

∂Ky

∂θj
K−1

y y

=
1

2
tr

(
(αα

> − K−1
y )

∂Ky

∂θj

)

where θj is the j th hyperparam. of the kernel, and α = K−1y y

No closed form solution for θj . Gradient based methods can be used.

Note: Computing K−1y itself takes O(N3) time (faster approximations exist

though). Then each gradient computation takes O(N2) time

Form of
∂Ky

∂θj
depends on the covariance/kernel function κ

Noise variance σ2 can also be estimated likewise
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Gaussian Processes with GLMs

GP regression is only one example of supervised learning with GP

GP can be combined with other types of likelihood functions to handle other
types of responses (e.g., binary, categorical, counts, etc.) by replacing the
Gaussian likelihood for responses by a generalized linear model

Inference however becomes more tricky because such likelihoods may no
longer be conjugate to GP prior. Approximate inference needed in such cases.

We will revisit one such example (GP for binary classification) later during
the semester
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GP vs (Kernel) SVM

The objective function of a soft-margin SVM looks like

1

2
||w ||2 + C

N∑
n=1

(1− ynfn)+

where fn = w
>
xn and yn is the true label for xn

Kernel SVM: fn =
∑N

m=1 αmk(xn, xm). Denote f = [f1, . . . , fN ]>

We can write ||w ||
2

2 = α>Kα = f>K−1f, and kernel SVM objective becomes

1

2
f>K−1f + C

N∑
n=1

(1− ynfn)+

Negative log-posterior log p(y |f)p(f) of a GP can be written as

1

2
f>K−1f−

N∑
n=1

log p(yn|fn) + const
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GP vs (Kernel) SVM

Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs

Both GP and SVM need dealing with (storing/inverting) large kernel matrices

Various approximations proposed to address this issue (applicable to both)

Ability to learn the kernel hyperparameters in GP is very useful, e.g.,

Learning the kernel bandwidth for Gaussian kernels

k(xn, xm) = exp

(
−||xn − xm||2

γ

)

Doing feature selection (via Automatic Relevance Determination)

k(xn, xm) = exp

(
−

D∑
d=1

(xnd − xmd)2

γd

)

Learning compositions of kernels for more flexible modeling

K = Kθ1 + Kθ2 + . . .
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Nonlinear Dimensionality
Reduction using Gaussian Process

(GPLVM)

Probabilistic ML (CS772A) Gaussian Processes for Nonlinear Regression and Dimensionality Reduction 21



Why Nonlinear Dimensionality Reduction?

Embeddings learned by PCA (left: original data, right: PCA)

Why PCA doesn’t work in such cases?

Uses Euclidean distances; learns linear projections

Embeddings learned by nonlinear dim. red. (left: LLE, right: ISOMAP)
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Recap: Probabilistic PCA

Given: N × D data matrix X = [x>1 , . . . , x
>
N ]>, with xn ∈ RD

Goal: Find a lower-dim. rep., an N ×K matrix Z = [z>1 , . . . , z
>
N ]>, zn ∈ RK

Assume the following generative model for each observation xn

xn = Wzn + εn with W ∈ RD×K , εn ∼ N (0, σ2)

The conditional distribution

p(xn|zn,W, σ2) = N (Wzn, σ
2ID)

Assume a Gaussian prior on zn: p(zn) = N (0, IK )

The marginal distribution of xn (after integrating out latent variables zn)

p(xn|W, σ2) = N (0,WW> + σ2ID)

p(X|W, σ2) =
N∏

n=1

p(xn|W, σ2)
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Gaussian Process Latent Variable Model (GPLVM)

Consider the same model

xn = Wzn + εn with W ∈ RD×K , εn ∼ N (0, σ2)

Assume a prior p(W) =
∏D

d=1N (wd |0, IK ) where wd is the d th row of W

Suppose we integrate out W instead of zn (treat zn’s as “parameter”)

p(X|Z, σ2) =
D∏

d=1

N (X:,d |0,ZZ> + σ
2ID )

= (2π)−DN/2|Kz |−D/2 exp

(
−

1

2
tr(K−1

z XX>)

)

where Kz = ZZ> + σ2I and X:,d is the d th column of N × D data matrix X

Note that we can think of X:,d modeled by a GP regression model

X:,d ∼ N (0,ZZ> + σ2ID)

There are a total of D such GPs (one for each column of X)
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Gaussian Process Latent Variable Model (GPLVM)

Consider the same model

xn = Wzn + εn with W ∈ RD×K , εn ∼ N (0, σ2)
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d=1N (wd |0, IK ) where wd is the d th row of W
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D∏
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z XX>)
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GPLVM

p(X|Z, σ2) is now a product of D GPs (one per column of data matrix X)

p(X|Z, σ2) =
D∏

d=1

N (X:,d |0,ZZ> + σ
2ID )

= (2π)−DN/2|Kz |−D/2 exp

(
−

1

2
tr(K−1

z XX>)

)

Using Kz = ZZ> + σ2I and doing MLE will give the same solution for Z as
linear PCA (note that ZZ> is a linear kernel over Z, the low-dim rep of data)

But with Kz = K + σ2I (with K being some appropriately defined kernel
matrix over Z) will give nonlinear dimensionality reduction
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MLE for GPLVM

Log-likelihood is given by

L = −D

2
log |Kz | −

1

2
tr(K−1z XX>)

where Kz = K + σ2I and K denotes the kernel matrix of our low-dim rep. Z

The goal is to estimate the N × K matrix Z

Can’t find closed form estimate of Z. Need to use gradient-based methods,
with the gradient given by

∂L
∂Znk

=
∂L
∂Kz

∂Kz

∂Znk

where ∂L
∂Kz

= K−1z XX>K−1z − DK−1z and ∂Kz

∂Znk
will depend on the kernel

function used (note: hyperparameters of the kernel can also be learned just
as we did it in the GP regression case)

Can also impose a prior on Z and do MAP (or fully Bayesian) estimation
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Resources on Gaussian Processes

Book: Gaussian Processes for Machine Learning (freely available online)

MATLAB Packages: Useful to play with, build applications, extend existing
models and inference algorithms for GPs (both regression and classification)

GPML: http://www.gaussianprocess.org/gpml/code/matlab/doc/

GPStuff: http://research.cs.aalto.fi/pml/software/gpstuff/

GPLVM: https://github.com/lawrennd/gplvm
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