Probabilistic Matrix Factorization

Piyush Rai
IIT Kanpur
Probabilistic Machine Learning (CS772A)
Feb 8, 2016

Matrix Factorization

- Given a matrix \mathbf{X} of size $N \times M$, approximate it via a low-rank decomposition

Matrix Factorization

- Given a matrix \mathbf{X} of size $N \times M$, approximate it via a low-rank decomposition

- Each entry of \mathbf{X} can be written as

$$
\begin{aligned}
& \text { written as } \\
& \qquad X_{n m} \approx \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}=\sum_{k=1}^{K} u_{n k} v_{m k}
\end{aligned}
$$

Matrix Factorization

- Given a matrix \mathbf{X} of size $N \times M$, approximate it via a low-rank decomposition

- Each entry of \mathbf{X} can be written as
- Note: $K \ll \min \{M, N\}$

$$
\begin{aligned}
& \text { written as } \\
& \qquad X_{n m} \approx \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}=\sum_{k=1}^{K} u_{n k} v_{m k}
\end{aligned}
$$

Matrix Factorization

- Given a matrix \mathbf{X} of size $N \times M$, approximate it via a low-rank decomposition

- Each entry of \mathbf{X} can be written as
- Note: $K \ll \min \{M, N\}$

$$
\begin{aligned}
& \text { written as } \\
& \qquad X_{n m} \approx \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}=\sum_{k=1}^{K} u_{n k} v_{m k}
\end{aligned}
$$

- $\mathbf{U}: N \times K$ row latent factor matrix, $\boldsymbol{u}_{n}: K \times 1$ latent factors of row n

Matrix Factorization

- Given a matrix \mathbf{X} of size $N \times M$, approximate it via a low-rank decomposition

$$
\mathbf{X} \approx \mathbf{U} \mathbf{V}^{\top}
$$

- Each entry of \mathbf{X} can be written as
- Note: $K \ll \min \{M, N\}$

$$
\begin{aligned}
& \text { written as } \\
& \qquad X_{n m} \approx \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}=\sum_{k=1}^{K} u_{n k} v_{m k}
\end{aligned}
$$

- U: $N \times K$ row latent factor matrix, $\boldsymbol{u}_{n}: K \times 1$ latent factors of row n
- V: $M \times K$ column latent factor matrix, $\boldsymbol{v}_{m}: K \times 1$ latent factors of column m

Matrix Factorization

- Given a matrix \mathbf{X} of size $N \times M$, approximate it via a low-rank decomposition

$$
\mathbf{X} \approx \mathbf{U} \mathbf{V}^{\top}
$$

- Each entry of \mathbf{X} can be written as
- Note: $K \ll \min \{M, N\}$

$$
\begin{aligned}
& \text { written as } \\
& \qquad X_{n m} \approx \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}=\sum_{k=1}^{K} u_{n k} v_{m k}
\end{aligned}
$$

- U: $N \times K$ row latent factor matrix, $\boldsymbol{u}_{n}: K \times 1$ latent factors of row n
- $\mathbf{V}: M \times K$ column latent factor matrix, $\boldsymbol{v}_{m}: K \times 1$ latent factors of column m
- X may have missing entries

Matrix Factorization: Examples and Applications

Some applications:

- Learning embeddings from dyadic/relational data (each matrix entry is a dyad, e.g., user-item rating, document-word count, user-user link, etc.). Thus it also performs dimensionality reduction.

Matrix Factorization: Examples and Applications

Some applications:

- Learning embeddings from dyadic/relational data (each matrix entry is a dyad, e.g., user-item rating, document-word count, user-user link, etc.). Thus it also performs dimensionality reduction.

Matrix Factorization: Examples and Applications

Some applications:

- Learning embeddings from dyadic/relational data (each matrix entry is a dyad, e.g., user-item rating, document-word count, user-user link, etc.). Thus it also performs dimensionality reduction.

Matrix Factorization: Examples and Applications

Some applications:

- Learning embeddings from dyadic/relational data (each matrix entry is a dyad, e.g., user-item rating, document-word count, user-user link, etc.). Thus it also performs dimensionality reduction.
- Matrix Completion, i.e., predicting missing entries in \mathbf{X} via the learned embeddings (useful in recommender systems/collaborative filtering - Netflix Prize competition, link prediction in social networks, etc.): $X_{n m} \approx \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}$

Interpreting the Embeddings

- The embeddings/latent factors/latent features can be given interpretations (e.g., as genres if the matrix \mathbf{X} represents a user-movie rating matrix case)
- A cartoon illustation of matrix factorization based embeddings (or "generes") learned from a user-movie rating data set using embedding dimension $K=2$

Interpreting the Embeddings

- The embeddings/latent factors/latent features can be given interpretations (e.g., as genres if the matrix \mathbf{X} represents a user-movie rating matrix case)
- A cartoon illustation of matrix factorization based embeddings (or "generes") learned from a user-movie rating data set using embedding dimension $K=2$

- Similar things (users/movies) get embedded nearby in the embedding space (two things will be deemed similar if their embeddings are similar). Thus useful for computing similarities and/or making recommendations

Interpreting the Embeddings

- Another illustation of two-dimensional embeddings of movies only

- Similar movies get embedded nearby in the embedding space

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009■

Matrix Factorization

- Recall our model $\mathbf{X} \approx \mathbf{U V}^{\top}$ or $\mathbf{X}=\mathbf{U} \mathbf{V}^{\top}+\mathbf{E}$ where \mathbf{E} is the noise matrix
- Goal: learn \mathbf{U} and \mathbf{V}, given a subset Ω of \mathbf{X} (let's call it \mathbf{X}_{Ω})
- Some notations:
- $\Omega=\{(n, m)\}: X_{n m}$ is observed
- $\Omega_{u_{n}}$: column indices of observed entries in rows n
- $\Omega_{\nu_{m}}$: row indices of observed entries in column m

Probabilistic Matrix Factorization

- Assuming latent factors $\boldsymbol{u}_{n}, \boldsymbol{v}_{m}$ and each matrix entry $X_{n m}$ to be real-valued

Probabilistic Matrix Factorization

- Assuming latent factors $\boldsymbol{u}_{n}, \boldsymbol{v}_{m}$ and each matrix entry $X_{n m}$ to be real-valued

$$
\boldsymbol{u}_{n} \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), \quad n=1, \ldots, N
$$

Probabilistic Matrix Factorization

- Assuming latent factors $\boldsymbol{u}_{n}, \boldsymbol{v}_{m}$ and each matrix entry $X_{n m}$ to be real-valued

$$
\begin{array}{ll}
\boldsymbol{u}_{n} \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), & n=1, \ldots, N \\
\boldsymbol{v}_{m} \sim \mathcal{N}\left(\boldsymbol{v}_{n} \mid \mathbf{0}, \lambda_{V}^{-1} \mathbf{I}_{K}\right), & m=1, \ldots, M
\end{array}
$$

Probabilistic Matrix Factorization

- Assuming latent factors $\boldsymbol{u}_{n}, \boldsymbol{v}_{m}$ and each matrix entry $X_{n m}$ to be real-valued

$$
\begin{aligned}
\boldsymbol{u}_{n} & \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), & & n=1, \ldots, N \\
\boldsymbol{v}_{m} & \sim \mathcal{N}\left(\boldsymbol{v}_{n} \mid \mathbf{0}, \lambda_{V}^{-1} \mathbf{I}_{K}\right), & & m=1, \ldots, M \\
X_{n m} & \sim \mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}, \sigma^{2}\right), & & \forall(n, m) \in \Omega
\end{aligned}
$$

Probabilistic Matrix Factorization

- Assuming latent factors $\boldsymbol{u}_{n}, \boldsymbol{v}_{m}$ and each matrix entry $X_{n m}$ to be real-valued

$$
\begin{aligned}
\boldsymbol{u}_{n} & \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), & & n=1, \ldots, N \\
\boldsymbol{v}_{m} & \sim \mathcal{N}\left(\boldsymbol{v}_{n} \mid \mathbf{0}, \lambda_{V}^{-1} \mathbf{I}_{K}\right), & & m=1, \ldots, M \\
X_{n m} & \sim \mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}, \sigma^{2}\right), & & \forall(n, m) \in \Omega
\end{aligned}
$$

Probabilistic Matrix Factorization

- Assuming latent factors $\boldsymbol{u}_{n}, \boldsymbol{v}_{m}$ and each matrix entry $X_{n m}$ to be real-valued

$$
\begin{aligned}
\boldsymbol{u}_{n} & \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), & & n=1, \ldots, N \\
\boldsymbol{v}_{m} & \sim \mathcal{N}\left(\boldsymbol{v}_{n} \mid \mathbf{0}, \lambda_{V}^{-1} \mathbf{I}_{K}\right), & & m=1, \ldots, M \\
X_{n m} & \sim \mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}, \sigma^{2}\right), & & \forall(n, m) \in \Omega
\end{aligned}
$$

- This is also equivalent to $X_{n m}=\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}+\epsilon_{n m}$ where the noise/residual

$$
\epsilon_{n m} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Probabilistic Matrix Factorization

- Our basic model

$$
\begin{aligned}
\boldsymbol{u}_{n} & \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), & & n=1, \ldots, N \\
\boldsymbol{v}_{m} & \sim \mathcal{N}\left(\boldsymbol{v}_{n} \mid \mathbf{0}, \lambda_{V}^{-1} \mathbf{I}_{K}\right), & & m=1, \ldots, M \\
X_{n m} & \sim \mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}, \sigma^{2}\right), & & \forall(n, m) \in \Omega
\end{aligned}
$$

Probabilistic Matrix Factorization

- Our basic model

$$
\begin{aligned}
\boldsymbol{u}_{n} & \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), & & n=1, \ldots, N \\
\boldsymbol{v}_{m} & \sim \mathcal{N}\left(\boldsymbol{v}_{n} \mid \mathbf{0}, \lambda_{v}^{-1} \mathbf{I}_{K}\right), & & m=1, \ldots, M \\
X_{n m} & \sim \mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}, \sigma^{2}\right), & & \forall(n, m) \in \Omega
\end{aligned}
$$

- Note: Many variations possible, e.g., adding row/column biases $\left(a_{n}, b_{m}\right)$, rows/column features $\left(\mathbf{X}^{U}, \mathbf{X}^{V}\right)$; will not consider those here

$$
X_{n m}=\mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}+a_{n}+b_{m}+\beta_{U}^{\top} \boldsymbol{x}_{n}^{U}++\beta_{V}^{\top} \boldsymbol{x}_{m}^{V}, \sigma^{2}\right)
$$

Probabilistic Matrix Factorization

- Our basic model

$$
\begin{aligned}
\boldsymbol{u}_{n} & \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), & & n=1, \ldots, N \\
\boldsymbol{v}_{m} & \sim \mathcal{N}\left(\boldsymbol{v}_{n} \mid \mathbf{0}, \lambda_{V}^{-1} \mathbf{I}_{K}\right), & & m=1, \ldots, M \\
X_{n m} & \sim \mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}, \sigma^{2}\right), & & \forall(n, m) \in \Omega
\end{aligned}
$$

- Note: Many variations possible, e.g., adding row/column biases $\left(a_{n}, b_{m}\right)$, rows/column features $\left(\mathbf{X}^{U}, \mathbf{X}^{v}\right)$; will not consider those here

$$
X_{n m}=\mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}+a_{n}+b_{m}+\beta_{U}^{\top} \boldsymbol{x}_{n}^{U}++\beta_{V}^{\top} \boldsymbol{x}_{m}^{V}, \sigma^{2}\right)
$$

- Note: Gaussian assumption on $X_{n m}$ may not be appropriate if data is not real-valued, e.g., is binary/counts/ordinal (but it still works well nevertheless)

Probabilistic Matrix Factorization

- Our basic model

$$
\begin{aligned}
\boldsymbol{u}_{n} & \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), & & n=1, \ldots, N \\
\boldsymbol{v}_{m} & \sim \mathcal{N}\left(\boldsymbol{v}_{n} \mid \mathbf{0}, \lambda_{V}^{-1} \mathbf{I}_{K}\right), & & m=1, \ldots, M \\
X_{n m} & \sim \mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}, \sigma^{2}\right), & & \forall(n, m) \in \Omega
\end{aligned}
$$

- Note: Many variations possible, e.g., adding row/column biases $\left(a_{n}, b_{m}\right)$, rows/column features $\left(\mathbf{X}^{U}, \mathbf{X}^{V}\right)$; will not consider those here

$$
X_{n m}=\mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}+a_{n}+b_{m}+\beta_{U}^{\top} \boldsymbol{x}_{n}^{U}++\beta_{V}^{\top} \boldsymbol{x}_{m}^{V}, \sigma^{2}\right)
$$

- Note: Gaussian assumption on $X_{n m}$ may not be appropriate if data is not real-valued, e.g., is binary/counts/ordinal (but it still works well nevertheless)
- Likewise, if we want to impose specific constraints on the latent factors (e.g., non-negativity, sparsity, etc.) then Gaussians on $\boldsymbol{u}_{n}, \boldsymbol{v}_{m}$ are not appropriate

Probabilistic Matrix Factorization

- Our basic model

$$
\begin{aligned}
\boldsymbol{u}_{n} & \sim \mathcal{N}\left(\boldsymbol{u}_{n} \mid \mathbf{0}, \lambda_{U}^{-1} \mathbf{I}_{K}\right), & & n=1, \ldots, N \\
\boldsymbol{v}_{m} & \sim \mathcal{N}\left(\boldsymbol{v}_{n} \mid \mathbf{0}, \lambda_{V}^{-1} \mathbf{I}_{K}\right), & & m=1, \ldots, M \\
X_{n m} & \sim \mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}, \sigma^{2}\right), & & \forall(n, m) \in \Omega
\end{aligned}
$$

- Note: Many variations possible, e.g., adding row/column biases $\left(a_{n}, b_{m}\right)$, rows/column features $\left(\mathbf{X}^{U}, \mathbf{X}^{V}\right)$; will not consider those here

$$
X_{n m}=\mathcal{N}\left(X_{n m} \mid \boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}+a_{n}+b_{m}+\beta_{U}^{\top} \boldsymbol{x}_{n}^{U}++\beta_{V}^{\top} \boldsymbol{x}_{m}^{V}, \sigma^{2}\right)
$$

- Note: Gaussian assumption on $X_{n m}$ may not be appropriate if data is not real-valued, e.g., is binary/counts/ordinal (but it still works well nevertheless)
- Likewise, if we want to impose specific constraints on the latent factors (e.g., non-negativity, sparsity, etc.) then Gaussians on $\boldsymbol{u}_{n}, \boldsymbol{v}_{m}$ are not appropriate
- Here, we will only focus on the Gaussian case (leads to a simple algorithm)

Parameter Estimation via MAP

- Let's do MAP estimation (recall, we have priors on the latent factors)

Parameter Estimation via MAP

- Let's do MAP estimation (recall, we have priors on the latent factors)
- Log-posterior $\log p\left(\mathbf{X}_{\Omega}, \mathbf{U}, \mathbf{V}\right)=\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right) p(\mathbf{U}) p(\mathbf{V})$ is given by

$$
\mathcal{L}=\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right)+\log p(\mathbf{U})+\log p(\mathbf{V})
$$

Parameter Estimation via MAP

- Let's do MAP estimation (recall, we have priors on the latent factors)
- Log-posterior $\log p\left(\mathbf{X}_{\Omega}, \mathbf{U}, \mathbf{V}\right)=\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right) p(\mathbf{U}) p(\mathbf{V})$ is given by

$$
\begin{aligned}
\mathcal{L} & =\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right)+\log p(\mathbf{U})+\log p(\mathbf{V}) \\
& =\log \prod_{(n, m) \in \Omega} p\left(X_{n m} \mid \boldsymbol{u}_{n}, \boldsymbol{v}_{m}\right)
\end{aligned}
$$

Parameter Estimation via MAP

- Let's do MAP estimation (recall, we have priors on the latent factors)
- Log-posterior $\log p\left(\mathbf{X}_{\Omega}, \mathbf{U}, \mathbf{V}\right)=\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right) p(\mathbf{U}) p(\mathbf{V})$ is given by

$$
\begin{aligned}
\mathcal{L} & =\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right)+\log p(\mathbf{U})+\log p(\mathbf{V}) \\
& =\log \prod_{(n, m) \in \Omega} p\left(X_{n m} \mid \boldsymbol{u}_{n}, \boldsymbol{v}_{m}\right)+\log \prod_{n=1}^{N} p\left(\boldsymbol{u}_{n}\right)
\end{aligned}
$$

Parameter Estimation via MAP

- Let's do MAP estimation (recall, we have priors on the latent factors)
- Log-posterior $\log p\left(\mathbf{X}_{\Omega}, \mathbf{U}, \mathbf{V}\right)=\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right) p(\mathbf{U}) p(\mathbf{V})$ is given by

$$
\begin{aligned}
\mathcal{L} & =\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right)+\log p(\mathbf{U})+\log p(\mathbf{V}) \\
& =\log \prod_{(n, m) \in \Omega} p\left(X_{n m} \mid \boldsymbol{u}_{n}, \boldsymbol{v}_{m}\right)+\log \prod_{n=1}^{N} p\left(\boldsymbol{u}_{n}\right)+\log \prod_{m=1}^{M} p\left(\boldsymbol{v}_{m}\right)
\end{aligned}
$$

Parameter Estimation via MAP

- Let's do MAP estimation (recall, we have priors on the latent factors)
- Log-posterior $\log p\left(\mathbf{X}_{\Omega}, \mathbf{U}, \mathbf{V}\right)=\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right) p(\mathbf{U}) p(\mathbf{V})$ is given by

$$
\begin{aligned}
\mathcal{L} & =\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right)+\log p(\mathbf{U})+\log p(\mathbf{V}) \\
& =\log \prod_{(n, m) \in \Omega} p\left(X_{n m} \mid \boldsymbol{u}_{n}, \boldsymbol{v}_{m}\right)+\log \prod_{n=1}^{N} p\left(\boldsymbol{u}_{n}\right)+\log \prod_{m=1}^{M} p\left(\boldsymbol{v}_{m}\right)
\end{aligned}
$$

- With Gaussian likelihood and priors, ignoring the constants, we have

$$
\mathcal{L}=\sum_{(n, m) \in \Omega}-\frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}-\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}-\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

Parameter Estimation via MAP

- Let's do MAP estimation (recall, we have priors on the latent factors)
- Log-posterior $\log p\left(\mathbf{X}_{\Omega}, \mathbf{U}, \mathbf{V}\right)=\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right) p(\mathbf{U}) p(\mathbf{V})$ is given by

$$
\begin{aligned}
\mathcal{L} & =\log p\left(\mathbf{X}_{\Omega} \mid \mathbf{U}, \mathbf{V}\right)+\log p(\mathbf{U})+\log p(\mathbf{V}) \\
& =\log \prod_{(n, m) \in \Omega} p\left(X_{n m} \mid \boldsymbol{u}_{n}, \boldsymbol{v}_{m}\right)+\log \prod_{n=1}^{N} p\left(\boldsymbol{u}_{n}\right)+\log \prod_{m=1}^{M} p\left(\boldsymbol{v}_{m}\right)
\end{aligned}
$$

- With Gaussian likelihood and priors, ignoring the constants, we have

$$
\mathcal{L}=\sum_{(n, m) \in \Omega}-\frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}-\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}-\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

- Can solve for row and column latent factors $\boldsymbol{u}_{n}, \boldsymbol{v}_{m}$ in an alternating fashion

Solving for Row Latent Factors

- The (negative) log-posterior

$$
\mathcal{L}=\sum_{(n, m) \in \Omega} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}+\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

Solving for Row Latent Factors

- The (negative) log-posterior

$$
\mathcal{L}=\sum_{(n, m) \in \Omega} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}+\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

- For row latent factors \boldsymbol{u}_{n} (with all column factors fixed), the objective will be

$$
\mathcal{L}_{\boldsymbol{u}_{n}}=\sum_{m \in \Omega_{u_{n}}} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\frac{\lambda_{u}}{2} \boldsymbol{u}_{n}^{\top} \boldsymbol{u}_{n}
$$

Solving for Row Latent Factors

- The (negative) log-posterior

$$
\mathcal{L}=\sum_{(n, m) \in \Omega} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}+\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

- For row latent factors \boldsymbol{u}_{n} (with all column factors fixed), the objective will be

$$
\mathcal{L}_{\boldsymbol{u}_{n}}=\sum_{m \in \Omega_{u_{n}}} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\frac{\lambda_{U}}{2} \boldsymbol{u}_{n}^{\top} \boldsymbol{u}_{n}
$$

- Taking derivative w.r.t. \boldsymbol{u}_{n} and setting to zero, we get

$$
\boldsymbol{u}_{n}=\left(\sum_{m \in \Omega_{u_{n}}} \boldsymbol{v}_{m} \boldsymbol{v}_{m}^{\top}+\lambda_{U} \sigma^{2} \mathbf{I}_{K}\right)^{-1}\left(\sum_{m \in \Omega_{u_{n}}} X_{n m} \boldsymbol{v}_{m}\right)
$$

Solving for Row Latent Factors

- The (negative) log-posterior

$$
\mathcal{L}=\sum_{(n, m) \in \Omega} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}+\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

- For row latent factors \boldsymbol{u}_{n} (with all column factors fixed), the objective will be

$$
\mathcal{L}_{\boldsymbol{u}_{n}}=\sum_{m \in \Omega_{u_{n}}} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\frac{\lambda_{U}}{2} \boldsymbol{u}_{n}^{\top} \boldsymbol{u}_{n}
$$

- Taking derivative w.r.t. \boldsymbol{u}_{n} and setting to zero, we get

$$
\boldsymbol{u}_{n}=\left(\sum_{m \in \Omega_{u_{n}}} \boldsymbol{v}_{m} \boldsymbol{v}_{m}^{\top}+\lambda_{U} \sigma^{2} \mathbf{I}_{K}\right)^{-1}\left(\sum_{m \in \Omega_{u_{n}}} X_{n m} \boldsymbol{v}_{m}\right)
$$

- Note: with \mathbf{V} fixed, we can solve for all $\boldsymbol{u}_{n}(n=1, \ldots, N)$ in parallel

Solving for Column Latent Factors

- The (negative) log-posterior

$$
\mathcal{L}=\sum_{(n, m) \in \Omega} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}+\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

Solving for Column Latent Factors

- The (negative) log-posterior

$$
\mathcal{L}=\sum_{(n, m) \in \Omega} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}+\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

- For column latent factors \boldsymbol{v}_{m} (with all row factors fixed), the objective will be

$$
\mathcal{L}_{\boldsymbol{v}_{m}}=\sum_{n \in \Omega_{\boldsymbol{v}_{m}}} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\frac{\lambda_{V}}{2} \boldsymbol{v}_{m}^{\top} \boldsymbol{v}_{m}
$$

Solving for Column Latent Factors

- The (negative) log-posterior

$$
\mathcal{L}=\sum_{(n, m) \in \Omega} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}+\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

- For column latent factors \boldsymbol{v}_{m} (with all row factors fixed), the objective will be

$$
\mathcal{L}_{\mathbf{v}_{m}}=\sum_{n \in \Omega_{\boldsymbol{v}_{m}}} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\frac{\lambda_{V}}{2} \boldsymbol{v}_{m}^{\top} \boldsymbol{v}_{m}
$$

- Taking derivative w.r.t. \boldsymbol{v}_{m} and setting to zero, we get

$$
\boldsymbol{v}_{m}=\left(\sum_{n \in \Omega_{\boldsymbol{v}_{m}}} \boldsymbol{u}_{n} \boldsymbol{u}_{n}^{\top}+\lambda_{V} \sigma^{2} \mathbf{I}_{K}\right)^{-1}\left(\sum_{n \in \Omega_{u_{m}}} X_{n m} \boldsymbol{u}_{n}\right)
$$

Solving for Column Latent Factors

- The (negative) log-posterior

$$
\mathcal{L}=\sum_{(n, m) \in \Omega} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\sum_{n=1}^{N} \frac{\lambda_{U}}{2}\left\|\boldsymbol{u}_{n}\right\|^{2}+\sum_{m=1}^{M} \frac{\lambda_{V}}{2}\left\|\boldsymbol{v}_{m}\right\|^{2}
$$

- For column latent factors \boldsymbol{v}_{m} (with all row factors fixed), the objective will be

$$
\mathcal{L}_{\boldsymbol{v}_{m}}=\sum_{n \in \Omega_{\boldsymbol{v}_{m}}} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\frac{\lambda_{V}}{2} \boldsymbol{v}_{m}^{\top} \boldsymbol{v}_{m}
$$

- Taking derivative w.r.t. \boldsymbol{v}_{m} and setting to zero, we get

$$
\boldsymbol{v}_{m}=\left(\sum_{n \in \Omega_{v_{m}}} \boldsymbol{u}_{n} \boldsymbol{u}_{n}^{\top}+\lambda_{V} \sigma^{2} \mathbf{I}_{K}\right)^{-1}\left(\sum_{n \in \Omega_{u_{m}}} X_{n m} \boldsymbol{u}_{n}\right)
$$

- Note: with \mathbf{U} fixed, we can solve for all $\boldsymbol{v}_{m}(m=1, \ldots, M)$ in parallel

The Complete Algorithm

- Input: Partially complete matrix \mathbf{X}_{Ω}

The Complete Algorithm

- Input: Partially complete matrix \mathbf{X}_{Ω}
- Initialize the column latent factors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{M}$ randomly, e.g., from the prior, i.e., $\boldsymbol{v}_{n} \sim \mathcal{N}\left(0, \lambda_{V}^{-1} \mathbf{I}_{K}\right)$

The Complete Algorithm

- Input: Partially complete matrix \mathbf{X}_{Ω}
- Initialize the column latent factors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{M}$ randomly, e.g., from the prior, i.e., $\boldsymbol{v}_{n} \sim \mathcal{N}\left(0, \lambda_{V}^{-1} \mathbf{I}_{K}\right)$
- Iterate until converge

The Complete Algorithm

- Input: Partially complete matrix \mathbf{X}_{Ω}
- Initialize the column latent factors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{M}$ randomly, e.g., from the prior, i.e., $\boldsymbol{v}_{n} \sim \mathcal{N}\left(0, \lambda_{V}^{-1} \mathbf{I}_{K}\right)$
- Iterate until converge
- Update each row latent factor $\boldsymbol{u}_{n}, n=1, \ldots, N$ (can be in parallel)

$$
\boldsymbol{u}_{n}=\left(\sum_{m \in \Omega_{u_{n}}} \boldsymbol{v}_{m} \boldsymbol{v}_{m}^{\top}+\lambda_{U} \sigma^{2} \mathbf{I}_{K}\right)^{-1}\left(\sum_{m \in \Omega_{u_{n}}} X_{n m} \boldsymbol{v}_{m}\right)
$$

The Complete Algorithm

- Input: Partially complete matrix \mathbf{X}_{Ω}
- Initialize the column latent factors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{M}$ randomly, e.g., from the prior, i.e., $\boldsymbol{v}_{n} \sim \mathcal{N}\left(0, \lambda_{V}^{-1} \mathbf{I}_{K}\right)$
- Iterate until converge
- Update each row latent factor $\boldsymbol{u}_{n}, n=1, \ldots, N$ (can be in parallel)

$$
\boldsymbol{u}_{n}=\left(\sum_{m \in \Omega_{u_{n}}} \boldsymbol{v}_{m} \boldsymbol{v}_{m}^{\top}+\lambda_{U} \sigma^{2} \mathbf{I}_{K}\right)^{-1}\left(\sum_{m \in \Omega_{u_{n}}} X_{n m} \boldsymbol{v}_{m}\right)
$$

- Update each column latent factor $\boldsymbol{v}_{m}, m=1, \ldots, M$ (can be in parallel)

$$
\boldsymbol{v}_{m}=\left(\sum_{n \in \Omega_{\boldsymbol{v}_{m}}} \boldsymbol{u}_{n} \boldsymbol{u}_{n}^{\top}+\lambda v \sigma^{2} \mathbf{I}_{K}\right)^{-1}\left(\sum_{n \in \Omega_{\boldsymbol{u}_{m}}} X_{n m} \boldsymbol{u}_{n}\right)
$$

The Complete Algorithm

- Input: Partially complete matrix \mathbf{X}_{Ω}
- Initialize the column latent factors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{M}$ randomly, e.g., from the prior, i.e., $\boldsymbol{v}_{n} \sim \mathcal{N}\left(0, \lambda_{V}^{-1} \mathbf{I}_{K}\right)$
- Iterate until converge
- Update each row latent factor $\boldsymbol{u}_{n}, n=1, \ldots, N$ (can be in parallel)

$$
\boldsymbol{u}_{n}=\left(\sum_{m \in \Omega_{u_{n}}} \boldsymbol{v}_{m} \boldsymbol{v}_{m}^{\top}+\lambda_{U} \sigma^{2} \mathbf{I}_{K}\right)^{-1}\left(\sum_{m \in \Omega_{u_{n}}} X_{n m} \boldsymbol{v}_{m}\right)
$$

- Update each column latent factor $\boldsymbol{v}_{m}, m=1, \ldots, M$ (can be in parallel)

$$
\boldsymbol{v}_{m}=\left(\sum_{n \in \Omega_{\boldsymbol{v}_{m}}} \boldsymbol{u}_{n} \boldsymbol{u}_{n}^{\top}+\lambda v \sigma^{2} \mathbf{I}_{K}\right)^{-1}\left(\sum_{n \in \Omega_{\boldsymbol{u}_{m}}} X_{n m} \boldsymbol{u}_{n}\right)
$$

- Final prediction for any entry: $X_{n m}=\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}$

Matrix Factorization as Linear Regression

Suppose we are solving for the column latent factor \boldsymbol{v}_{m} (with \mathbf{U} fixed)

Matrix Factorization as Linear Regression

Suppose we are solving for the column latent factor \boldsymbol{v}_{m} (with \mathbf{U} fixed)

Matrix Factorization as Linear Regression

Suppose we are solving for the column latent factor \boldsymbol{v}_{m} (with \mathbf{U} fixed)

Likewise, solving for each row latent factor \boldsymbol{u}_{n} is a least-squares regression problem

Matrix Factorization as Linear Regression

- A very useful way to think about matrix factorization

Matrix Factorization as Linear Regression

- A very useful way to think about matrix factorization
- Can modify the regularized least-squares like objective

$$
\arg \min _{\boldsymbol{u}_{n}} \sum_{m \in \Omega_{u_{n}}} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\frac{\lambda_{U}}{2} \boldsymbol{u}_{n}^{\top} \boldsymbol{u}_{n}
$$

.. and replace it by other loss functions and regularizers

Matrix Factorization as Linear Regression

- A very useful way to think about matrix factorization
- Can modify the regularized least-squares like objective

$$
\arg \min _{\boldsymbol{u}_{n}} \sum_{m \in \Omega_{u_{n}}} \frac{1}{2 \sigma^{2}}\left(X_{n m}-\boldsymbol{u}_{n}^{\top} \boldsymbol{v}_{m}\right)^{2}+\frac{\lambda_{U}}{2} \boldsymbol{u}_{n}^{\top} \boldsymbol{u}_{n}
$$

.. and replace it by other loss functions and regularizers

- Can easily extend the model in various ways, e.g.
- Handle other types of entries in the matrix X, e.g., binary, counts, etc. (by changing the loss function or the likelihood function term)
- Impose constraints on the latent factors (by changing the regularizer or prior on latent factors)

