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Matrix Factorization

Given a matrix X of size N ×M, approximate it via a low-rank decomposition

X ≈ UV>

Each entry of X can be written as

Xnm ≈ u
>
n vm =

K∑
k=1

unkvmk

Note: K � min{M,N}

U: N × K row latent factor matrix, un: K × 1 latent factors of row n

V: M ×K column latent factor matrix, vm: K × 1 latent factors of column m

X may have missing entries
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Matrix Factorization: Examples and Applications

Some applications:

Learning embeddings from dyadic/relational data (each matrix entry is a
dyad, e.g., user-item rating, document-word count, user-user link, etc.). Thus
it also performs dimensionality reduction.

Matrix Completion, i.e., predicting missing entries in X via the learned
embeddings (useful in recommender systems/collaborative filtering - Netflix
Prize competition, link prediction in social networks, etc.): Xnm ≈ u

>
n vm
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Interpreting the Embeddings

The embeddings/latent factors/latent features can be given interpretations
(e.g., as genres if the matrix X represents a user-movie rating matrix case)

A cartoon illustation of matrix factorization based embeddings (or “generes”)
learned from a user-movie rating data set using embedding dimension K = 2

Similar things (users/movies) get embedded nearby in the embedding space
(two things will be deemed similar if their embeddings are similar). Thus
useful for computing similarities and/or making recommendations

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009
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Interpreting the Embeddings

Another illustation of two-dimensional embeddings of movies only

Similar movies get embedded nearby in the embedding space

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009
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Matrix Factorization

Recall our model X ≈ UV> or X = UV> + E where E is the noise matrix

Goal: learn U and V, given a subset Ω of X (let’s call it XΩ)

Some notations:

Ω = {(n,m)}: Xnm is observed

Ωun : column indices of observed entries in rows n

Ωvm : row indices of observed entries in column m
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Probabilistic Matrix Factorization

Assuming latent factors un, vm and each matrix entry Xnm to be real-valued

un ∼ N (un|0, λ−1
U IK ), n = 1, . . . ,N

vm ∼ N (vn|0, λ−1
V IK ), m = 1, . . . ,M

Xnm ∼ N (Xnm|u>n vm, σ
2), ∀(n,m) ∈ Ω

This is also equivalent to Xnm = u
>
n vm + εnm where the noise/residual

εnm ∼ N (0, σ2)
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Probabilistic Matrix Factorization

Our basic model

un ∼ N (un|0, λ−1
U IK ), n = 1, . . . ,N

vm ∼ N (vn|0, λ−1
V IK ), m = 1, . . . ,M

Xnm ∼ N (Xnm|u>n vm, σ
2), ∀(n,m) ∈ Ω

Note: Many variations possible, e.g., adding row/column biases (an, bm),
rows/column features (XU , XV ); will not consider those here

Xnm = N (Xnm|u>n vm+an + bm + β>U x
U
n + +β>V x

V
m, σ

2)

Note: Gaussian assumption on Xnm may not be appropriate if data is not
real-valued, e.g., is binary/counts/ordinal (but it still works well nevertheless)

Likewise, if we want to impose specific constraints on the latent factors (e.g.,
non-negativity, sparsity, etc.) then Gaussians on un, vm are not appropriate

Here, we will only focus on the Gaussian case (leads to a simple algorithm)

Probabilistic Machine Learning (CS772A) Probabilistic Matrix Factorization 8



Probabilistic Matrix Factorization

Our basic model

un ∼ N (un|0, λ−1
U IK ), n = 1, . . . ,N

vm ∼ N (vn|0, λ−1
V IK ), m = 1, . . . ,M

Xnm ∼ N (Xnm|u>n vm, σ
2), ∀(n,m) ∈ Ω

Note: Many variations possible, e.g., adding row/column biases (an, bm),
rows/column features (XU , XV ); will not consider those here

Xnm = N (Xnm|u>n vm+an + bm + β>U x
U
n + +β>V x

V
m, σ

2)

Note: Gaussian assumption on Xnm may not be appropriate if data is not
real-valued, e.g., is binary/counts/ordinal (but it still works well nevertheless)

Likewise, if we want to impose specific constraints on the latent factors (e.g.,
non-negativity, sparsity, etc.) then Gaussians on un, vm are not appropriate

Here, we will only focus on the Gaussian case (leads to a simple algorithm)

Probabilistic Machine Learning (CS772A) Probabilistic Matrix Factorization 8



Probabilistic Matrix Factorization

Our basic model

un ∼ N (un|0, λ−1
U IK ), n = 1, . . . ,N

vm ∼ N (vn|0, λ−1
V IK ), m = 1, . . . ,M

Xnm ∼ N (Xnm|u>n vm, σ
2), ∀(n,m) ∈ Ω

Note: Many variations possible, e.g., adding row/column biases (an, bm),
rows/column features (XU , XV ); will not consider those here

Xnm = N (Xnm|u>n vm+an + bm + β>U x
U
n + +β>V x

V
m, σ

2)

Note: Gaussian assumption on Xnm may not be appropriate if data is not
real-valued, e.g., is binary/counts/ordinal (but it still works well nevertheless)

Likewise, if we want to impose specific constraints on the latent factors (e.g.,
non-negativity, sparsity, etc.) then Gaussians on un, vm are not appropriate

Here, we will only focus on the Gaussian case (leads to a simple algorithm)

Probabilistic Machine Learning (CS772A) Probabilistic Matrix Factorization 8



Probabilistic Matrix Factorization

Our basic model

un ∼ N (un|0, λ−1
U IK ), n = 1, . . . ,N

vm ∼ N (vn|0, λ−1
V IK ), m = 1, . . . ,M

Xnm ∼ N (Xnm|u>n vm, σ
2), ∀(n,m) ∈ Ω

Note: Many variations possible, e.g., adding row/column biases (an, bm),
rows/column features (XU , XV ); will not consider those here

Xnm = N (Xnm|u>n vm+an + bm + β>U x
U
n + +β>V x

V
m, σ

2)

Note: Gaussian assumption on Xnm may not be appropriate if data is not
real-valued, e.g., is binary/counts/ordinal (but it still works well nevertheless)

Likewise, if we want to impose specific constraints on the latent factors (e.g.,
non-negativity, sparsity, etc.) then Gaussians on un, vm are not appropriate

Here, we will only focus on the Gaussian case (leads to a simple algorithm)

Probabilistic Machine Learning (CS772A) Probabilistic Matrix Factorization 8



Probabilistic Matrix Factorization

Our basic model

un ∼ N (un|0, λ−1
U IK ), n = 1, . . . ,N

vm ∼ N (vn|0, λ−1
V IK ), m = 1, . . . ,M

Xnm ∼ N (Xnm|u>n vm, σ
2), ∀(n,m) ∈ Ω

Note: Many variations possible, e.g., adding row/column biases (an, bm),
rows/column features (XU , XV ); will not consider those here

Xnm = N (Xnm|u>n vm+an + bm + β>U x
U
n + +β>V x

V
m, σ

2)

Note: Gaussian assumption on Xnm may not be appropriate if data is not
real-valued, e.g., is binary/counts/ordinal (but it still works well nevertheless)

Likewise, if we want to impose specific constraints on the latent factors (e.g.,
non-negativity, sparsity, etc.) then Gaussians on un, vm are not appropriate

Here, we will only focus on the Gaussian case (leads to a simple algorithm)

Probabilistic Machine Learning (CS772A) Probabilistic Matrix Factorization 8



Parameter Estimation via MAP

Let’s do MAP estimation (recall, we have priors on the latent factors)

Log-posterior log p(XΩ,U,V) = log p(XΩ|U,V)p(U)p(V) is given by

L = log p(XΩ|U,V) + log p(U) + log p(V)

= log
∏

(n,m)∈Ω

p(Xnm|un, vm)+ log
N∏

n=1

p(un) + log
M∏

m=1

p(vm)

With Gaussian likelihood and priors, ignoring the constants, we have

L =
∑

(n,m)∈Ω

− 1

2σ2
(Xnm − u

>
n vm)2−

N∑
n=1

λU
2
||un||2 −

M∑
m=1

λV
2
||vm||2

Can solve for row and column latent factors un, vm in an alternating fashion
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Solving for Row Latent Factors

The (negative) log-posterior

L =
∑

(n,m)∈Ω

1

2σ2
(Xnm − u

>
n vm)2 +

N∑
n=1

λU
2
||un||2 +

M∑
m=1

λV
2
||vm||2

For row latent factors un (with all column factors fixed), the objective will be

Lun =
∑

m∈Ωun

1

2σ2
(Xnm − u

>
n vm)2 +

λU
2
u
>
n un

Taking derivative w.r.t. un and setting to zero, we get

un =

( ∑
m∈Ωun

vmv
>
m + λUσ

2IK

)−1( ∑
m∈Ωun

Xnmvm

)

Note: with V fixed, we can solve for all un (n = 1, . . . ,N) in parallel
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Solving for Column Latent Factors

The (negative) log-posterior

L =
∑

(n,m)∈Ω

1

2σ2
(Xnm − u

>
n vm)2 +

N∑
n=1

λU
2
||un||2 +

M∑
m=1

λV
2
||vm||2

For column latent factors vm (with all row factors fixed), the objective will be

Lvm =
∑

n∈Ωvm

1

2σ2
(Xnm − u

>
n vm)2 +

λV
2
v
>
mvm

Taking derivative w.r.t. vm and setting to zero, we get

vm =

( ∑
n∈Ωvm

unu
>
n + λVσ

2IK

)−1( ∑
n∈Ωum

Xnmun

)

Note: with U fixed, we can solve for all vm (m = 1, . . . ,M) in parallel
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The Complete Algorithm

Input: Partially complete matrix XΩ

Initialize the column latent factors v 1, . . . , vM randomly, e.g., from the prior,
i.e., vn ∼ N (0, λ−1

V IK )

Iterate until converge

Update each row latent factor un, n = 1, . . . ,N (can be in parallel)

un =

( ∑
m∈Ωun

vmv
>
m + λUσ

2IK

)−1( ∑
m∈Ωun

Xnmvm

)

Update each column latent factor vm, m = 1, . . . ,M (can be in parallel)

vm =

( ∑
n∈Ωvm

unu
>
n + λVσ

2IK

)−1( ∑
n∈Ωum

Xnmun

)

Final prediction for any entry: Xnm = u
>
n vm
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Matrix Factorization as Linear Regression

Suppose we are solving for the column latent factor vm (with U fixed)

Likewise, solving for each row latent factor un is a least-squares regression problem
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Matrix Factorization as Linear Regression

A very useful way to think about matrix factorization

Can modify the regularized least-squares like objective

arg min
un

∑
m∈Ωun

1

2σ2
(Xnm − u

>
n vm)2+

λU
2
u
>
n un

.. and replace it by other loss functions and regularizers

Can easily extend the model in various ways, e.g.

Handle other types of entries in the matrix X, e.g., binary, counts, etc. (by
changing the loss function or the likelihood function term)

Impose constraints on the latent factors (by changing the regularizer or prior
on latent factors)
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