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Dimensionality Reduction

Given: an N × D data matrix X = {x1, . . . , xN}, with xn ∈ RD

Want a lower-dim. rep. as an N × K matrix Z = {z1, . . . , zN}, zn ∈ RK

K � D ⇒ dimensionality reduction

Learns a new feature representation of data with reduced dimensionality

Don’t want to lose much information about X while doing this: want to
preserve the interesting/useful information in X and discard the rest

Various ways to quantify what “useful” is (depends on what we want to learn)
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Why Dimensionality Reduction?

To compress data by reducing dimensionality. E.g., representing each image in
a large collection as a linear combination of a small set of “template” images

Also sometimes called dictionary learning (can also be used for other types of
data, e.g., speech signals, text-documents, etc.)

Visualization (e.g., by projecting high-dim data to 2D or 3D)

To make learning algorithms run faster

To reduce overfitting problem caused by high-dimensional data
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Dimensionality Reduction: A Simple Illustration

Consider this 2 dimensional data

Each example x has 2 features {x1, x2}

Consider ignoring the feature x2 for each example

Each 2-dimensional example x now becomes 1-dimensional x = {x1}

Are we losing much information by throwing away x2?

No. Most of the data spread is along x1 (very little variance along x2)
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Dimensionality Reduction: A Simple Illustration

Consider this 2 dimensional data

Each example x has 2 features {x1, x2}

Consider ignoring the feature x2 for each example

Each 2-dimensional example x now becomes 1-dimensional x = {x1}

Are we losing much information by throwing away x2?

Yes. The data has substantial variance along both features (i.e., both axes)
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Dimensionality Reduction: A Simple Illustration

Now consider a change of axes (the co-ordinate system)

Each example x has 2 features {u1, u2}

Consider ignoring the feature u2 for each example

Each 2-dimensional example x now becomes 1-dimensional x = {u1}

Are we losing much information by throwing away u2?

No. Most of the data spread is along u1 (very little variance along u2)
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Review:
Principal Component Analysis
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Principal Component Analysis (PCA)

Based on identifying the Principal Components in the data

Principal Components (PC): Directions of high variance in the data

Roughly speaking, PCA does a change of axes that represent the data

First PC: Direction of the highest variance

Second PC: Direction of next highest variability (orthogonal to the first PC)

Subsequent PCs: Other directions of highest variability (in decreasing order)

Note: All principal components are orthogonal to each other

PCA: Take top K PC’s and project the data along those
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PCA: Finding the Principal Components

Given: N examples x1, . . . , xN , each example xn ∈ RD

Goal: Project the data from D dimensions to K dimensions (K < D)

Want projection directions s.t. the projected data has maximum variance

Note: This is equivalent to minimizing the reconstruction error, i.e., error in
reconstructing the original data from its projections

Let w 1, . . . ,wD be the principal components, assumed to be:

Orthogonal: w>
i w j = 0 if i 6= j , Orthonormal: w>

i w i = 1

Each principal component is a vector of size D × 1

We want only the first K principal components

Probabilistic Machine Learning (CS772A) Probabilistic PCA and Factor Analysis 9



PCA: Finding the Principal Components

Projection of a data point xn along w 1: w>1 xn

Projection of the mean x̄ along w 1: w>1 x̄ (where x̄ = 1
N

∑N
n=1 xn)

Variance of the projected data (along projection direction u1):

1

N

N∑
n=1

{
w
>
1 xn −w

>
1 x̄

}2

= w
>
1 Sw 1

where S is the data covariance matrix defined as

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)>

Want to have w 1 that maximizes the projected data variance w>1 Sw 1

Subject to the constraint: w>
1 w 1 = 1

We will introduce a Lagrange multiplier λ1 for this constraint
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PCA: Finding the Principal Components

Objective function: w>1 Sw 1 + λ1(1−w>1 w 1)

Taking derivative w.r.t. u1 and setting it to zero gives:

Sw 1 = λ1w 1

This is the eigenvalue equation

w 1 must be an eigenvector of S (and λ1 the corresponding eigenvalue)

But there are multiple eigenvectors of S . Which one is w 1?

Consider w>1 Sw 1 = w>1 λ1w 1 = λ1 (using w>1 w 1 = 1)

We know that the projected data variance w>1 Sw 1 = λ1 is maximum

Thus λ1 should be the largest eigenvalue
Thus w 1 is the first (top) eigenvector of S (with eigenvalue λ1)
⇒ the first principal component (direction of highest variance in the data)

Subsequent PC’s are given by the subsequent eigenvectors of S

Probabilistic Machine Learning (CS772A) Probabilistic PCA and Factor Analysis 11



PCA: The Algorithm

Compute the mean of the data

x̄ =
1

N

N∑
n=1

xn

Compute the sample covariance matrix (using the mean subtracted data)

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)>

Do the eigenvalue decomposition of the D × D matrix S

Take the top K eigenvectors (corresponding to the top K eigenvalues)

Call these w 1, . . . ,wK (s.t. λ1 ≥ λ2 ≥ . . . λK−1 ≥ λK )

W = [w 1 w 2 . . . wK ] is the projection matrix of size D × K

Projection of each example xn is computed as zn = W>xn

zn is a K × 1 vector (also called the embedding of xn)
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Now on to
Probabilistic PCA
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Probabilistic PCA (PPCA)

Assume the following generative model for each observation xn

xn = Wzn + εn

Note: We’ll assume data to be centered, otherwise xn = µ + Wzn + εn

Think of it as low dimensional zn ∈ RK “generating” a higher-dimensional
xn ∈ RD via a mapping matrix W ∈ RD×K , plus some noise εn ∼ N (0, σ2ID)

Intuitively, this generative model is “inverse” of what the traditional PCA
does. Here we assume a latent low-dim zn that “generates” the high-dim xn

via the mapping W (plus adding some noise)

A directed graphical model linking zn and xn via “edge weights” W
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Interpreting Probabilistic PCA

Can also write xn = Wzn + εn as each example xn being a linear comb. of
columns of W = [w 1, . . . ,wK ], plus some example-specific random noise εn

xn =
K∑

k=1

w kznk + εn

The K columns of W (each RD) are like “prototype vectors” shared by all
examples. Each xn is a linear combination of these vectors (the combination
coefficients are given by zn ∈ RK which is basically the low-dim rep. of xn).

Some examples:

In case of images, columns of W would correspond to “basis images”

In case of text documents, columns of W (with non-negativity imposed on it)
would correspond to “topics” in the corpus
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Probabilistic PCA

Since noise εn ∼ N (0, σ2) is Gaussian, the conditional distrib. of xn

p(xn|zn,W, σ2) = N (Wzn, σ
2ID)

Given a set of observations X = {x1, . . . , xN}, the goal is to learn W and the
low-dim. representation of data, i.e., Z = {z1, . . . , zN}

Assume a Gaussian prior on the low-dimensional latent representation, i.e.,

p(zn) = N (0, IK )

Using the equation for marginal of Gaussians (lecture-2 and PRML 2.115),
the marginal distribution of xn (after integrating out latent variables zn)

p(xn) or p(xn|W, σ2) = N (0,WW> + σ2ID)

Note: Cov. matrix of p(xn) now has DK parameters instead of D(D − 1)/2

Thus PPCA also allows a more parsimonious parameterization of p(xn)
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Probabilistic PCA

Consider the marginal likelihood

p(xn|W, σ2) = N (0,WW> + σ2ID)

Can do MLE on this, or use EM with latent variables zn (is simpler)

To do EM, we will need the posterior over latent vars. zn in the E step

The posterior over zn (using result from lecture-2 and PRML 2.116)

p(zn|xn,W) = N (M−1W>xn, σ
2M−1)

where M = W>W + σ2IK (a K × K matrix)
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EM for Probabilistic PCA

Observed data: X = {x1, . . . , xN}, latent variable: Z = {z1, . . . , zN}

Parameters: W, σ2

The complete data log -likelihood

log p(X,Z|W, σ
2) = log

N∏
n=1

p(xn, zn|W, σ
2) = log

N∏
n=1

p(xn|zn,W, σ
2)p(zn)

=
N∑

n=1

{log p(xn|zn,W, σ
2) + log p(zn)}

Plugging in, simplifying and ignoring the constants, we get

log p(X,Z|W, σ
2) =

N∑
n=1

{
D

2
log σ2+

1

2σ2
||xn||2 −

1

σ2
z
>
n W>xn +

1

2σ2
tr(znz

>
n W>W) +

1

2
tr(znz

>
n )

}

The expected complete data log-likelihood E[log p(X,Z|W, σ2)]

=
N∑

n=1

{
D

2
log σ2+

1

2σ2
||xn||2 −

1

σ2
E[zn]>W>xn +

1

2σ2
tr(E[znz

>
n ]W>W) +

1

2
tr(E[znz

>
n ])

}
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EM for Probabilistic PCA

The expected complete data log-likelihood
N∑

n=1

{
D

2
log σ2+

1

2σ2
||xn||2 −

1

σ2
E[zn]>W>xn +

1

2σ2
tr(E[znz

>
n ]W>W) +

1

2
tr(E[znz

>
n ])

}

We need two terms: E[zn] and E[znz
>
n ]

We have already seen that

p(zn|xn,W) = N (M−1W>xn, σ
2M−1) where M = W>W + σ

2IK

From posterior p(zn|xn,W), we can easily compute the required expectations

E[zn] = M−1W>xn

E[znz
>
n ] = E[zn]E[zn]> + cov(zn) = E[zn]E[zn]> + σ

2M−1

Taking the derivative of E[log p(X,Z|W, σ2)] w.r.t. W and setting to zero

W =

[
N∑

n=1

xnE[zn]>
][

N∑
n=1

E[znz
>
n ]

]−1

=

[
N∑

n=1

xnE[zn]>
][

N∑
n=1

E[zn]E[zn]> + σ
2M−1

]−1
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The Full EM Algorithm

Initialize W and σ2

E step: Compute the exp. complete data log-lik. using current W and σ2

N∑
n=1

{
D

2
log σ2+

1

2σ2
||xn||2 −

1

σ2
E[zn]>W>xn +

1

2σ2
tr(E[znz

>
n ]W>W) +

1

2
tr(E[znz

>
n ])

}

where
E[zn] = (W>W + σ

2IK )−1W>xn = M−1W>xn

E[znz
>
n ] = cov(zn) + E[zn]E[zn]> = E[zn]E[zn]> + σ

2M−1

M step: Re-estimate W and σ2 (taking derivatives w.r.t. W and σ2,
respectively)

Wnew =

[
N∑

n=1

xnE[zn]>
][

N∑
n=1

E[znz
>
n ]

]−1

=

[
N∑

n=1

xnE[zn]>
][

N∑
n=1

E[zn]E[zn]> + σ
2M−1

]−1

σ
2
new =

1

ND

N∑
n=1

{
||xn||2 − 2E[zn]>W>newxn + tr

(
E[znz

>
n ]W>newWnew

)}

Set W = Wnew and σ2 = σ2
new

If not converged, go back to E step.
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EM for PPCA to a PCA-like Algorithm

Let’s see what happens if the noise variance σ2 goes to 0

Let’s first look at the E step

E[zn] = (W>W + σ
2IK )−1W>xn = (W>W)−1W>xn

No need to compute E[znz
>
n ] since it will simply be equal to E[zn]E[zn]>

Thus, in this case, E step computes an orthogonal projection of xn

Let’s now look at the M step

Wnew =

[
N∑

n=1

xnE[zn]>
][

N∑
n=1

E[zn]E[zn]>
]−1

= X>Ω(Ω>Ω)−1

where Ω = E[Z] is an N × K matrix with row n equal to E[zn]

Thus, in this case, M step finds W that minimizes the reconstruction error

Wnew = arg min
W
||X− E[Z]W||2 = arg min

W
||X−ΩW||2
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Benefits of PPCA over PCA

Can handle missing data (can treat it as latent variable in E step)

Doesn’t require computing the D × D cov. matrix of data and doing
expensive eigen-decomposition. When K is small (i.e., we only want few
eigen vectors), this is especially nice because only inverting K ×K is required

Easy to “plug-in” PPCA as part of more complex problems, e.g., mixtures of
PPCA models for doing nonlinear dimensionality reduction, or subspace
clustering (i.e., clustering when data in each cluster lives on a lower
dimensional subspace).

Possible to give it a fully Bayesian treatment (which has many benefits such
as inferring K )
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Identifiability

Note that p(xn) = N (0,WW> + σ2ID)

If we replace W by W̃ = WR for some orthogonal rotation matrix R then

p(xn) = N (0, W̃W̃> + σ2ID)

= N (0,WRR>W> + σ2ID)

= N (0,WW> + σ2ID)

Thus PPCA doesn’t give a unique solution (for every W, there is another
W̃ = WR that gives the same solution)

Thus the PPCA model is not uniquely identifiable

Usually this is not a problem, unless we want to interpret W

To ensure identifiability, we can impose certain structure on W, e.g.,
constrain it to be a lower-triangular or sparse matrix
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Factor Analysis

Similar to PPCA except that the Gaussian conditional distribution p(xn|zn)
has diagonal instead of spherical covariance

xn ∼ N (Wzn,Ψ)

where Ψ is a diagonal matrix

In Factor Analysis, the projection matrix W is also called the Factor Loading
Matrix and zn is called the factor scores for example n

EM for Factor Analysis is same as that for PPCA except

The required expectations in the E step :

E[zn] = G−1W>Ψ−1
xn

E[znz
>
n ] = E[zn]E[zn]> + G

where G = (W>Ψ−1W + IK )−1

In the M step, in addition to Wnew , we also need to estimate Ψ

Ψnew = diag

{
S−Wnew

1

N

N∑
n=1

E[zn]x>n

}
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Mixture of PPCAs/Mixture of Factor Analyzers

PPCA and FA learn a linear projection of the data (i.e., are linear
dimensionality reduction methods)

Can use mixture of PPCAs or mixture of FAs to learn nonlinear projections
(i.e., nonlinear dimensionality reduction)

Similar to mixture of Gaussians, except that now each Gaussian is replaced by
a PPCA or FA model

Note: Unline PPCA/FA, can’t have µ = 0: Each PPCA/FA based mixture
component k will have a nonzero mean µk and projection matrix Wk

We will later look at another nonlinear dim. red. model - Gaussian Process
Latent Variable Models (GPLVM)

For details, check out “Mixtures of Probabilistic Principal Component Analysers” by Tipping and Bishop, and “The EM Algorithm for Mixtures of
Factor Analyzers” by Ghahramani and Hinton
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