Introduction to Machine Learning and Probabilistic Modeling

Piyush Rai

Probabilistic Machine Learning (CS772A)

Dec 30, 2015

- 4 回 ト - 4 回 ト

- Course website: http://www.cse.iitk.ac.in/users/piyush/courses/ pml_winter16/PML.html
- Instructor: Piyush Rai (http://www.cse.iitk.ac.in/users/piyush/)
- TAs: Milan Someswar, Vinit Tiwari, Rahul Kumar Patidar
- Discussion site: https://piazza.com/iitk.ac.in/secondsemester2016/cs772a/
- **Background assumed:** basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB, R, Python).

- 本間 ト イヨト イヨト

- Course website: http://www.cse.iitk.ac.in/users/piyush/courses/ pml_winter16/PML.html
- Instructor: Piyush Rai (http://www.cse.iitk.ac.in/users/piyush/)
- TAs: Milan Someswar, Vinit Tiwari, Rahul Kumar Patidar
- Discussion site: https://piazza.com/iitk.ac.in/secondsemester2016/cs772a/
- **Background assumed:** basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB, R, Python).
- Grading:

- 4 同 ト 4 三 ト 4 三 ト

- Course website: http://www.cse.iitk.ac.in/users/piyush/courses/ pml_winter16/PML.html
- Instructor: Piyush Rai (http://www.cse.iitk.ac.in/users/piyush/)
- TAs: Milan Someswar, Vinit Tiwari, Rahul Kumar Patidar
- Discussion site: https://piazza.com/iitk.ac.in/secondsemester2016/cs772a/
- **Background assumed:** basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB, R, Python).

• Grading:

- 3 homework assignments: 30%, Midterm exam: 20%, Final exam: 20%
- Project: 30% (to be done in groups of 3 students)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Course website: http://www.cse.iitk.ac.in/users/piyush/courses/ pml_winter16/PML.html
- Instructor: Piyush Rai (http://www.cse.iitk.ac.in/users/piyush/)
- TAs: Milan Someswar, Vinit Tiwari, Rahul Kumar Patidar
- Discussion site: https://piazza.com/iitk.ac.in/secondsemester2016/cs772a/
- **Background assumed:** basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB, R, Python).

• Grading:

- 3 homework assignments: 30%, Midterm exam: 20%, Final exam: 20%
- Project: 30% (to be done in groups of 3 students)
- Note: A really awesome project (e.g., publishable piece of work) may help you automatically get an A grade. You may propose your own project or talk to me for ideas. The project has to be (at least loosely) related to probabilistic ML. More details coming soon.

Books

Some books with a bent towards *probabilistic* machine learning:

3

・ロン ・四 と ・ ヨ と ・ ヨ と …

Books

Some books with a bent towards *probabilistic* machine learning:

Some other books on machine learning:

イロト イポト イヨト イヨト

Books

Some books with a bent towards *probabilistic* machine learning:

Some other books on machine learning:

Not shown: many excellent books on special topics (kernel methods, online learning, Bayesian learning, deep learning, etc.). Ask me if you want to know.

イロト イポト イヨト イヨト

Intro to Machine Learning

(日) (周) (王) (王)

• Creating programs that can automatically learn rules from data *"Field of study that gives computers the ability to learn without being explicitly programmed"*(Arthur Samuel, 1959)

- 4 同 6 4 日 6 4 日 6

- Creating programs that can automatically learn rules from data *"Field of study that gives computers the ability to learn without being explicitly programmed"*(Arthur Samuel, 1959)
- Traditional way: Write programs using hard-coded (fixed) rules

不可た イモト イモト

- Creating programs that can automatically learn rules from data *"Field of study that gives computers the ability to learn without being explicitly programmed"* (Arthur Samuel, 1959)
- Traditional way: Write programs using hard-coded (fixed) rules

• Machine Learning (ML): Learn rules by looking at the data

- 4 回 5 - 4 三 5 - 4 三 5

- Creating programs that can automatically learn rules from data "Field of study that gives computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)
- Traditional way: Write programs using hard-coded (fixed) rules

• Machine Learning (ML): Learn rules by looking at the data

• Learned rules must generalize (do well) on future "test" data (idea of generalization; more on this later)

イロン イボン イヨン イヨン

Machine Learning in the real-world

Broadly applicable in many domains (e.g., finance, robotics, bioinformatics, computer vision, NLP, databases, systems, etc.). Some applications:

- Information retrieval (text, visual, and multimedia searches)
- Machine Translation
- Question Answering
- Social networks
- Recommender systems (Amazon, Netflix, etc.)
- Speech/handwriting/object recognition
- Ad placement on websites
- Credit-card fraud detection
- Weather prediction
- Autonomous vehicles (self-driving cars)
- Healthcare and life-sciences
- .. and many more applications in sciences and engineering

- 「同下」 (三下) (三下)

Data and Data Representation..

< ロ > < 同 > < 回 > < 回 > < 回 > <

- ML algorithms work with data represented as a set of features/attributes
- One popular representation: bag-of-features

Picture courtesy: Svetlana Lazebnik

- ML algorithms work with data represented as a set of features/attributes
- One popular representation: bag-of-features

• The idea: Decide features to represent data (becomes our feature vocabulary)

9 B 0	

Picture courtesy: Svetlana Lazebnik

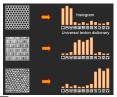
・ 同 ト ・ ヨ ト ・ ヨ ト

- ML algorithms work with data represented as a set of features/attributes
- One popular representation: bag-of-features

• The idea: Decide features to represent data (becomes our feature vocabulary)

88 E 61	

• Now represent each example using the frequency of each feature



Picture courtesy: Svetlana Lazebnik

< 6 b

Another example: representing text data. Consider the following sentences:

- John likes to watch movies
- Mary likes movies too
- John also likes football

The feature vocabulary consists of 8 unique words

- 4 同下 - 4 同下 - 4 同下

Another example: representing text data. Consider the following sentences:

- John likes to watch movies
- Mary likes movies too
- John also likes football

The feature vocabulary consists of 8 unique words

Here is the **bag-of-words** feature representation of these 3 sentences

	/John	likes	to	watch	movies	Mary	too	also	football
Sentence 1								0	- 1
Sentence 2	0	1	0	0	1	1	1	0	0
Sentence 3	1	1	0	0	0	0	0	1	1)

< 回 ト < 三 ト < 三 ト

Another example: representing text data. Consider the following sentences:

- John likes to watch movies
- Mary likes movies too
- John also likes football

The feature vocabulary consists of 8 unique words

Here is the bag-of-words feature representation of these 3 sentences

	/John	likes	to	watch	movies	Mary	too	also	football
Sentence 1								0	
Sentence 2	0	1	0	0	1	1	1	0	0
Sentence 3	1	1	0	0	0	0	0	1	1)

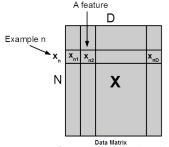
Note: Not necessarily the most optimal/most expressive feature representation

Feature representation learning is a very active area of research in ML (there is even a dedicated conference on this topic: ICLR)

くぼう くほう くほう

We will (usually) assume that:

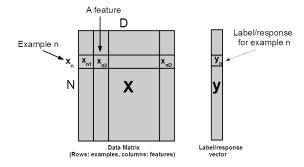
- X denotes data in form of an $N \times D$ feature matrix
- N examples, D features to represent each example
- Each row is an example, each column is a feature
- x_n denotes the *n*-th example (a vector of length *D*)



Data Matrix (Rows: examples, columns: features)

We will (usually) assume that:

- X denotes data in form of an $N \times D$ feature matrix
- N examples, D features to represent each example
- Each row is an example, each column is a feature
- x_n denotes the *n*-th example (a vector of length *D*)



- y denotes labels/responses in form of an $N \times 1$ label/response vector
- y_n denotes label/response of the *n*-th example x_n

Probabilistic Machine Learning (CS772A)

Types of Machine Learning problems..

- 4 同 ト 4 三 ト 4 三 ト

イロト 不得 トイヨト イヨト

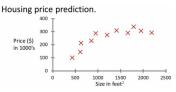
- Given: Training data as labeled examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$
- Goal: Learn a rule ("function" $f : x \to y$) to predict outputs y from inputs x

- 4 同 ト - 4 国 ト - 4 国 ト

- Given: Training data as labeled examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$
- Goal: Learn a rule ("function" $f : x \to y$) to predict outputs y from inputs x
- Output y (label/response) can usually be:

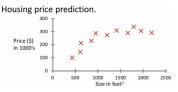
(4月) (4日) (4日)

- Given: Training data as labeled examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$
- Goal: Learn a rule ("function" $f : x \to y$) to predict outputs y from inputs x
- Output y (label/response) can usually be:
 - **Continuous-/real-valued** (Regression problem). Example: when *y* is the price of a stock, price of a house, USD/rupee conversion rate, etc.



- 4 同 ト 4 三 ト 4 三 ト

- Given: Training data as labeled examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$
- Goal: Learn a rule ("function" $f : x \to y$) to predict outputs y from inputs x
- Output y (label/response) can usually be:
 - **Continuous-/real-valued** (Regression problem). Example: when *y* is the price of a stock, price of a house, USD/rupee conversion rate, etc.

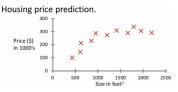


• **Discrete-valued** (Classification problem): Example: when y is the binary 0/1 label (spam/normal) of an email, label (0-9) of a handwritten digit, etc.

0000	0000	0000	0000	00000
				17711
				22322
				33333
				44449
				55555
				66666
				11177
				88884
1999	1991	1999	9999	99999

- 4 同下 - 4 同下 - 4 同下

- Given: Training data as labeled examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$
- Goal: Learn a rule ("function" $f : x \to y$) to predict outputs y from inputs x
- Output y (label/response) can usually be:
 - **Continuous-/real-valued** (Regression problem). Example: when *y* is the price of a stock, price of a house, USD/rupee conversion rate, etc.



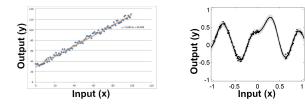
• **Discrete-valued** (Classification problem): Example: when y is the binary 0/1 label (spam/normal) of an email, label (0-9) of a handwritten digit, etc.

000	0	٥	0	0	0	0	0	0	0	0	0	0	0	D	0	0	0
11																	١
221																	
833																	
44.																	
551																	
661																	
77-																	
881																	
190	19	1	9	٩	2	1	9	٩	<u> </u>	9	٩.	9	9	٩	9	9	9

• Many other variants (structured-prediction, multi-label learning, ordinal regression, ranking, etc.), depending on the type of label y

Supervised Learning: Pictorially

• Regression (linear/nonlinear): fitting a line/curve

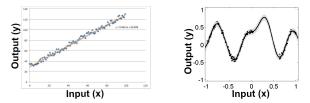


- The second sec

H

Supervised Learning: Pictorially

• Regression (linear/nonlinear): fitting a line/curve

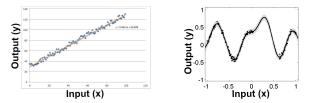


• Classification (linear/nonlinear): finding a separator

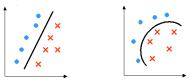


Supervised Learning: Pictorially

• Regression (linear/nonlinear): fitting a line/curve



• Classification (linear/nonlinear): finding a separator



• Generalization is crucial (must do well on test data)

Generalization

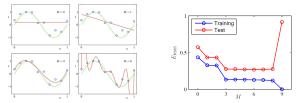
• Simple hypotheses/rules are preferred over more complex ones

イロト イポト イヨト イヨト

Generalization

• Simple hypotheses/rules are preferred over more complex ones

• Simple hypotheses/rules tend to generalize better



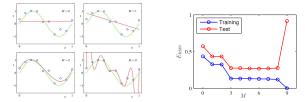
< 🗇 🕨

- ∢ ≣ →

Generalization

• Simple hypotheses/rules are preferred over more complex ones

• Simple hypotheses/rules tend to generalize better



• Desired: hypotheses that are not too simple, not too complex

イロト イポト イヨト イヨト

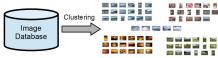
- Given: Training data in form of unlabeled examples $\{x_1, \ldots, x_N\}$
- Goal: Learn the instrinsic *structure* in the data.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Given: Training data in form of unlabeled examples $\{x_1, \ldots, x_N\}$
- Goal: Learn the instrinsic *structure* in the data. Examples:
 - Data clustering (grouping similar things together)

(日) (同) (三) (三)

- Given: Training data in form of unlabeled examples $\{x_1, \ldots, x_N\}$
- Goal: Learn the instrinsic *structure* in the data. Examples:
 - Data clustering (grouping similar things together)



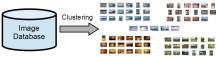
• Dimensionality reduction, embedding, or manifold learning

	김 김 원 ^씨 된 _권 권
LQ LQ	
Top arch articulation	
Top arct	3 5
,	

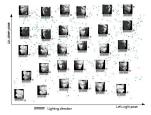


- 不同 ト イモト イモト

- Given: Training data in form of unlabeled examples $\{x_1, \ldots, x_N\}$
- Goal: Learn the instrinsic *structure* in the data. Examples:
 - Data clustering (grouping similar things together)



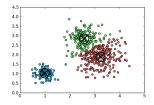
• Dimensionality reduction, embedding, or manifold learning



 Also very useful for summarizing/compressing data. Often also used as a preprocessing step for many supervised learning algorithms (e.g., to extract good features, to speed up the algorithms, etc.)

Unsupervised Learning: Pictorially

• Clustering: Find some "centers" and assign each data point to its "closest" center



• Dimensionality reduction: Find a lower-dimensional subspace that the data approximately lives on

Other popular Machine Learning paradigms

< 回 ト < 三 ト < 三 ト

• Learning with labeled+unlabeled data

イロト イポト イヨト イヨト

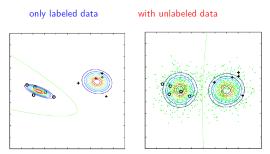
- Learning with labeled+unlabeled data
- Why is Semi-supervised Learning useful?

(人間) トイヨト イヨト

- Learning with labeled+unlabeled data
- Why is Semi-supervised Learning useful?
 - Labeled data is expensive. Unlabeled data comes (almost) for free!

マヨン イモン イモン

- Learning with labeled+unlabeled data
- Why is Semi-supervised Learning useful?
 - Labeled data is expensive. Unlabeled data comes (almost) for free!
 - Unlabeled data can provide valuable information about the distribution of data (e.g., where might the low-density regions or the class separator lie)

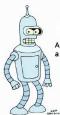


from [Semi-Supervised Learning, ICML 2007 Tutorial; Xiaojin Zhu]

Active Learning

• The learner can interactively ask for labels of most informative examples

raw unlabeled data x_1, x_2, x_3, \ldots



Assumes some small amount of initial labeled training data

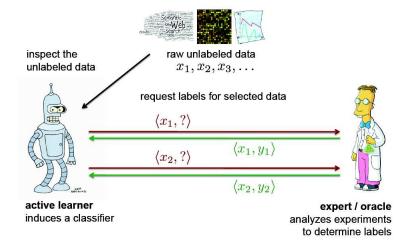
active learner induces a classifier

expert / oracle analyzes experiments to determine labels

イロト イポト イヨト イヨト

Active Learning

• The learner can interactively ask for labels of most informative examples

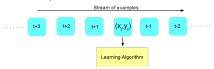


イロト イポト イヨト イヨト

Some Other Learning Paradigms

• Online Learning

• Learning with one example (or a small minibatch of examples) at a time

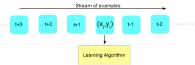


- 4 同 6 4 日 6 4 日 6

Some Other Learning Paradigms

• Online Learning

• Learning with one example (or a small minibatch of examples) at a time



• Reinforcement Learning

• Learning a "policy" by performing actions and getting rewards

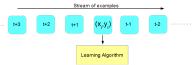
Reinforcement Learning Setup

(人間) トイヨト イヨト

Some Other Learning Paradigms

• Online Learning

• Learning with one example (or a small minibatch of examples) at a time



• Reinforcement Learning

• Learning a "policy" by performing actions and getting rewards

Reinforcement Learning Setup

• Transfer/Multitask Learning

• Leveraging knowledge of solving one problem to solve a new problem

On to Probabilistic Machine Learning..

A (1) N (1) N (1) N

- - E - b

• Assume data $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$ generated from a probability distribution $p(\mathbf{x}|\theta)$, in an i.i.d. (independent and identically distributed) fashion

$$x_1, \ldots, x_N \sim p(x|\theta)$$

< 同 > < 三 > < 三 >

• Assume data $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$ generated from a probability distribution $p(\mathbf{x}|\theta)$, in an i.i.d. (independent and identically distributed) fashion

$$\mathbf{x}_1, \ldots, \mathbf{x}_N \sim p(\mathbf{x}|\theta)$$

• The form of $p(\mathbf{x}|\theta)$ (also called likelihood) depends on the type of the data

くぼう くほう くほう

• Assume data $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$ generated from a probability distribution $p(\mathbf{x}|\theta)$, in an i.i.d. (independent and identically distributed) fashion

$$\mathbf{x}_1,\ldots,\mathbf{x}_N\sim p(\mathbf{x}| heta)$$

- The form of $p(\mathbf{x}|\theta)$ (also called likelihood) depends on the type of the data
- Assumptions about parameter θ can be encoded via a prior distribution $p(\theta)$
 - Also corresponds to imposing a regularizer over θ (helps in generalization)

くぼう くほう くほう

• Assume data $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$ generated from a probability distribution $p(\mathbf{x}|\theta)$, in an i.i.d. (independent and identically distributed) fashion

$$\mathbf{x}_1,\ldots,\mathbf{x}_N\sim p(\mathbf{x}| heta)$$

- The form of $p(\mathbf{x}|\theta)$ (also called likelihood) depends on the type of the data
- Assumptions about parameter θ can be encoded via a prior distribution $p(\theta)$
 - Also corresponds to imposing a regularizer over θ (helps in generalization)
- Goal: To estimate parameter θ , given data **X**

・ 同 ト ・ ヨ ト ・ ヨ ト

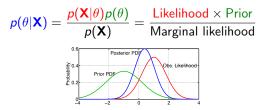
• Assume data $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$ generated from a probability distribution $p(\mathbf{x}|\theta)$, in an i.i.d. (independent and identically distributed) fashion

$$\mathbf{x}_1,\ldots,\mathbf{x}_N\sim p(\mathbf{x}| heta)$$

- The form of $p(\mathbf{x}|\theta)$ (also called likelihood) depends on the type of the data
- Assumptions about parameter θ can be encoded via a prior distribution $p(\theta)$
 - Also corresponds to imposing a regularizer over θ (helps in generalization)
- Goal: To estimate parameter θ , given data X
- Variations of this general view subsume most machine learning problems
 - Regression, classification, clustering, dimensionality reduction, etc.

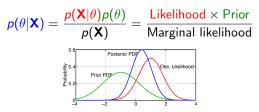
・ 同 ト ・ ヨ ト ・ ヨ ト …

• Can use Bayes rule to estimate the posterior distribution over parameters



- 「同下」 (三下) (三下)

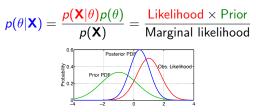
• Can use Bayes rule to estimate the posterior distribution over parameters



• .. or find the single "best" estimate of the parameters via optimization

くぼう くほう くほう

• Can use Bayes rule to estimate the posterior distribution over parameters



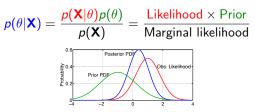
• .. or find the single "best" estimate of the parameters via optimization

• Maximum likelihood estimation (MLE)

$$\hat{\theta} = \arg \max_{\theta} p(\mathbf{X}|\theta)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Can use Bayes rule to estimate the posterior distribution over parameters



• .. or find the single "best" estimate of the parameters via optimization

• Maximum likelihood estimation (MLE)

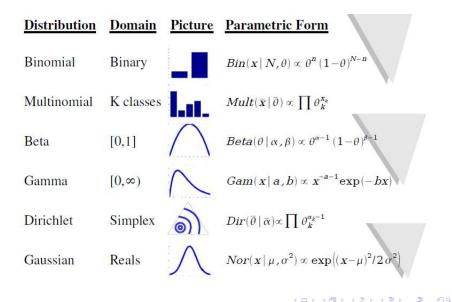
$$\hat{\theta} = \arg \max_{\theta} p(\mathbf{X}|\theta)$$

Maximum-a-Posteriori (MAP) estimation

$$\hat{\theta} = \arg \max_{\theta} p(\theta | \mathbf{X}) = \arg \max_{\theta} p(\mathbf{X} | \theta) p(\theta)$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Some common probability distributions



Some Examples of Probabilistic Modeling in Machine Learning

不同 とう きょうきょう

- Consider regression/classification. Training data $\{(x_1, y_1), \dots, (x_N, y_N)\}$
- Goal: Learn a function to predict outputs y from inputs x
- Model the output/response/label as a probability distribution

$$\boldsymbol{y}_1,\ldots,\boldsymbol{y}_N\sim p(\boldsymbol{y}|\boldsymbol{x},\theta)$$

- 4 回 ト - 4 回 ト

- Consider regression/classification. Training data $\{(x_1, y_1), \dots, (x_N, y_N)\}$
- Goal: Learn a function to predict outputs y from inputs x
- Model the output/response/label as a probability distribution

$$\boldsymbol{y}_1,\ldots,\boldsymbol{y}_N\sim p(\boldsymbol{y}|\boldsymbol{x},\theta)$$

• Learning involves estimating the parameter θ given data $\{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N$

- 4 同 ト 4 国 ト - 4 国 ト

- Consider regression/classification. Training data $\{(x_1, y_1), \dots, (x_N, y_N)\}$
- Goal: Learn a function to predict outputs y from inputs x
- Model the output/response/label as a probability distribution

$$\boldsymbol{y}_1,\ldots,\boldsymbol{y}_N\sim p(\boldsymbol{y}|\boldsymbol{x},\theta)$$

• Learning involves estimating the parameter θ given data $\{x_n, y_n\}_{n=1}^N$

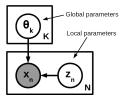
• Can now make probabilistic predictions for new data x_* using heta

$$p(\boldsymbol{y}_*|\boldsymbol{x}_*, \theta)$$
 or $p(\boldsymbol{y}_*|\boldsymbol{x}_*)$

Probabilistic Machine Learning (CS772A)

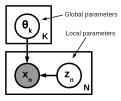
- 4 同 ト 4 国 ト - 4 国 ト

- Consider clustering or dimensionality reduction problems
- Each data point x_n assumed to be generated via some latent variable z_n and parameters θ



< 回 > < 三 > < 三 >

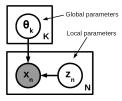
- Consider clustering or dimensionality reduction problems
- Each data point x_n assumed to be generated via some latent variable z_n and parameters θ



• Clustering: z_n denotes which cluster x_n belongs to

< 回 > < 三 > < 三 >

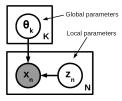
- Consider clustering or dimensionality reduction problems
- Each data point x_n assumed to be generated via some latent variable z_n and parameters θ



- Clustering: z_n denotes which cluster x_n belongs to
- Dimensionality Reduction: z_n represents the compressed representation of x_n

< 回 ト < 三 ト < 三 ト

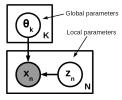
- Consider clustering or dimensionality reduction problems
- Each data point x_n assumed to be generated via some latent variable z_n and parameters θ



- Clustering: z_n denotes which cluster x_n belongs to
- Dimensionality Reduction: z_n represents the compressed representation of x_n
- Parameters $\theta = \{\theta_1, \dots, \theta_K\}$ may denote parameters of cluster centers (clustering) or parameters of the subspace (dimensionality reduction)

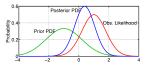
- 4 同下 - 4 同下 - 4 同下

- Consider clustering or dimensionality reduction problems
- Each data point x_n assumed to be generated via some latent variable z_n and parameters θ



- Clustering: z_n denotes which cluster x_n belongs to
- Dimensionality Reduction: z_n represents the compressed representation of x_n
- Parameters θ = {θ₁,...,θ_K} may denote parameters of cluster centers (clustering) or parameters of the subspace (dimensionality reduction)
- Learning involves estimating the parameters θ and latent variables $\{z_n\}_{n=1}^N$ given data $\{x_n\}_{n=1}^N$

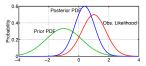
• Can get estimate of the the **uncertainty** in the parameter estimates via the posterior distribution



• Useful when we only have limited data for learning each parameter

< 回 > < 三 > < 三 >

• Can get estimate of the the **uncertainty** in the parameter estimates via the posterior distribution



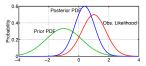
• Useful when we only have limited data for learning each parameter

- Can get estimate of the the uncertainty in the model's predictions
 - E.g., Instead of a single prediction y_{*}, we get a distribution over possible predictions (useful for applications such as diagnosis, decision making, etc.)

$$p(\mathbf{y}_*|\mathbf{x}_*,\theta)$$
 or $p(\mathbf{y}_*|\mathbf{x}_*) = \int p(\mathbf{y}_*|\mathbf{x}_*,\theta) p(\theta|\mathbf{X},\mathbf{y}) d\theta$

< 回 ト < 三 ト < 三 ト

• Can get estimate of the the **uncertainty** in the parameter estimates via the posterior distribution



• Useful when we only have limited data for learning each parameter

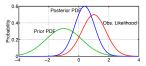
- Can get estimate of the the uncertainty in the model's predictions
 - E.g., Instead of a single prediction y_{*}, we get a distribution over possible predictions (useful for applications such as diagnosis, decision making, etc.)

$$p(\mathbf{y}_*|\mathbf{x}_*, \theta)$$
 or $p(\mathbf{y}_*|\mathbf{x}_*) = \int p(\mathbf{y}_*|\mathbf{x}_*, \theta) p(\theta|\mathbf{X}, \mathbf{y}) d\theta$

• Can handle missing and noisy data in a principled way

くぼう くほう くほう

• Can get estimate of the the **uncertainty** in the parameter estimates via the posterior distribution



• Useful when we only have limited data for learning each parameter

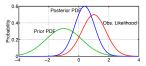
- Can get estimate of the the uncertainty in the model's predictions
 - E.g., Instead of a single prediction y_{*}, we get a distribution over possible predictions (useful for applications such as diagnosis, decision making, etc.)

$$p(\mathbf{y}_*|\mathbf{x}_*, \theta)$$
 or $p(\mathbf{y}_*|\mathbf{x}_*) = \int p(\mathbf{y}_*|\mathbf{x}_*, \theta) p(\theta|\mathbf{X}, \mathbf{y}) d\theta$

- Can handle missing and noisy data in a principled way
- Easy/more natural to do semi-supervised learning, active learning, etc.

- (同) - (目) - (目)

• Can get estimate of the the **uncertainty** in the parameter estimates via the posterior distribution



• Useful when we only have limited data for learning each parameter

- Can get estimate of the the uncertainty in the model's predictions
 - E.g., Instead of a single prediction y_{*}, we get a distribution over possible predictions (useful for applications such as diagnosis, decision making, etc.)

$$p(\mathbf{y}_*|\mathbf{x}_*, \theta)$$
 or $p(\mathbf{y}_*|\mathbf{x}_*) = \int p(\mathbf{y}_*|\mathbf{x}_*, \theta) p(\theta|\mathbf{X}, \mathbf{y}) d\theta$

- Can handle missing and noisy data in a principled way
- Easy/more natural to do semi-supervised learning, active learning, etc.
- Can generate (synthesize) data by simulating from the data distribution

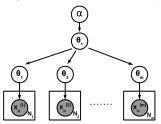
(人間) トイヨト イヨト

• Hyperparameters can be learned from data (need not be tuned)

- 4 同下 - 4 同下 - 4 同下

• Hyperparameters can be learned from data (need not be tuned)

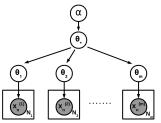
• Simple models can be neatly combined to solve complex problems



< 回 > < 三 > < 三 >

• Hyperparameters can be learned from data (need not be tuned)

• Simple models can be neatly combined to solve complex problems



• Many other benefits. Highly recommended to read this article from Nature: http://www.cse.iitk.ac.in/users/piyush/courses/pml_winter16/ nature14541.pdf

Course Outline

- Basics of probabilistic modeling and inference
- Probabilistic models for:
 - Regression and classification
 - Clustering
 - Dimensionality reduction
 - Matrix factorization and matrix completion
 - Time-series data modeling
- Bayesian learning and approximate inference
- Deep Learning
- .. and possibly some other topics of common interest

< 回 ト < 三 ト < 三 ト

Course Outline

- Basics of probabilistic modeling and inference
- Probabilistic models for:
 - Regression and classification
 - Clustering
 - Dimensionality reduction
 - Matrix factorization and matrix completion
 - Time-series data modeling
- Bayesian learning and approximate inference
- Deep Learning
- .. and possibly some other topics of common interest

Next class: Maths refresher. Common probability distributions and their properties

(人間) シスヨン スヨン