Review:

Probability and Statistics

Sam Roweis

Machine Learning Summer School, January 2005

Random Variables and Densities

- Random variables X represents outcomes or states of world.

Instantiations of variables usually in lower case: x
We will write $p(x)$ to mean $\operatorname{probability~}(X=x)$.

- Sample Space: the space of all possible outcomes/states.
(May be discrete or continuous or mixed.)
- Probability mass (density) function $p(x) \geq 0$

Assigns a non-negative number to each point in sample space.
Sums (integrates) to unity: $\sum_{x} p(x)=1$ or $\int_{x} p(x) d x=1$.
Intuitively: how often does x occur, how much do we believe in x.

- Ensemble: random variable + sample space+ probability function

Probability

- We use probabilities $p(x)$ to represent our beliefs $B(x)$ about the states x of the world.
- There is a formal calculus for manipulating uncertainties represented by probabilities.
- Any consistent set of beliefs obeying the Cox Axioms can be mapped into probabilities.

1. Rationally ordered degrees of belief:
if $B(x)>B(y)$ and $B(y)>B(z)$ then $B(x)>B(z)$
2. Belief in x and its negation \bar{x} are related: $B(x)=f[B(\bar{x})]$
3. Belief in conjunction depends only on conditionals:
$B(x$ and $y)=g[B(x), B(y \mid x)]=g[B(y), B(x \mid y)]$

Expectations, Moments

- Expectation of a function $a(x)$ is written $E[a]$ or $\langle a\rangle$

$$
E[a]=\langle a\rangle=\sum_{x} p(x) a(x)
$$

e.g. mean $=\sum_{x} x p(x)$, variance $=\sum_{x}(x-E[x])^{2} p(x)$

- Moments are expectations of higher order powers.
(Mean is first moment. Autocorrelation is second moment.)
- Centralized moments have lower moments subtracted away
(e.g. variance, skew, curtosis).
- Deep fact: Knowledge of all orders of moments completely defines the entire distribution.
- Remember the definition of the mean and covariance of a vector random variable:

$$
E[x]=\int_{\mathbf{x}} \mathbf{x} p(\mathbf{x}) d \mathbf{x}=\mathbf{m}
$$

$\operatorname{Cov}[x]=E\left[(\mathbf{x}-\mathbf{m})(\mathbf{x}-\mathbf{m})^{\top}\right]=\int_{x}(\mathbf{x}-\mathbf{m})(\mathbf{x}-\mathbf{m})^{\top} p(\mathbf{x}) d \mathbf{x}=\mathbf{V}$
which is the expected value of the outer product of the variable with itself, after subtracting the mean.

- Also, the covariance between two variables:

$$
\begin{aligned}
\operatorname{Cov}[\mathbf{x}, \mathbf{y}] & =E\left[\left(\mathbf{x}-\mathbf{m}_{\mathbf{x}}\right)\left(\mathbf{y}-\mathbf{m}_{\mathbf{y}}\right)^{\top}\right]=\mathbf{C} \\
& =\int_{\mathbf{x y}}\left(\mathbf{x}-\mathbf{m}_{\mathbf{x}}\right)\left(\mathbf{y}-\mathbf{m}_{\mathbf{y}}\right)^{\top} p(\mathbf{x}, \mathbf{y}) d \mathbf{x} d \mathbf{y}=\mathbf{C}
\end{aligned}
$$

which is the expected value of the outer product of one variable with another, after subtracting their means.
Note: \mathbf{C} is not symmetric.

- We can "sum out" part of a joint distribution to get the marginal distribution of a subset of variables:

$$
p(x)=\sum_{y} p(x, y)
$$

- This is like adding slices of the table together.

- Another equivalent definition: $p(x)=\sum_{y} p(x \mid y) p(y)$.

Joint Probability

- Key concept: two or more random variables may interact.

Thus, the probability of one taking on a certain value depends on which value(s) the others are taking.

- We call this a joint ensemble and write

$$
p(x, y)=\operatorname{prob}(X=x \text { and } Y=y)
$$

x

Conditional Probability

- If we know that some event has occurred, it changes our belief about the probability of other events.
- This is like taking a "slice" through the joint table.

- Manipulating the basic definition of conditional probability gives one of the most important formulas in probability theory:

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{p(y \mid x) p(x)}{\sum_{x^{\prime}} p\left(y \mid x^{\prime}\right) p\left(x^{\prime}\right)}
$$

- This gives us a way of "reversing" conditional probabilities.
- Thus, all joint probabilities can be factored by selecting an ordering for the random variables and using the "chain rule":

$$
p(x, y, z, \ldots)=p(x) p(y \mid x) p(z \mid x, y) p(\ldots \mid x, y, z)
$$

Entropy

- Measures the amount of ambiguity or uncertainty in a distribution:

$$
H(p)=-\sum_{x} p(x) \log p(x)
$$

- Expected value of $-\log p(x)$ (a function which depends on $\mathrm{p}(\mathrm{x})!$).
- $H(p)>0$ unless only one possible outcomein which case $H(p)=0$.
- Maximal value when p is uniform.
- Tells you the expected "cost" if each event costs $-\log p$ (event)

Independence \& Conditional Independence

- Two variables are independent iff their joint factors:

$$
p(x, y)=p(x) p(y)
$$

- Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors:

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z) \quad \forall z
$$

Cross Entropy (KL Divergence)

- An assymetric measure of the distancebetween two distributions:

$$
K L[p \| q]=\sum_{x} p(x)[\log p(x)-\log q(x)]
$$

- $K L>0$ unless $p=q$ then $K L=0$
- Tells you the extra cost if events were generated by $p(x)$ but instead of charging under $p(x)$ you charged under $q(x)$.
- Probability: inferring probabilistic quantities for data given fixed models (e.g. prob. of events, marginals, conditionals, etc).
- Statistics: inferring a model given fixed data observations (e.g. clustering, classification, regression).
- Many approaches to statistics:
frequentist, Bayesian, decision theory, ...

(Conditional) Probability Tables

- For discrete (categorical) quantities, the most basic parametrization is the probability table which lists $p\left(x_{i}=k^{\text {th }}\right.$ value).
- Since PTs must be nonnegative and sum to 1 , for k-ary variables there are $k-1$ free parameters.
- If a discrete variable is conditioned on the values of some other discrete variables we make one table for each possible setting of the parents: these are called conditional probability tables or CPTs.

x

Some (Conditional) Probability Functions

- Probability density functions $p(x)$ (for continuous variables) or probability mass functions $p(x=k)$ (for discrete variables) tell us how likely it is to get a particular value for a random variable (possibly conditioned on the values of some other variables.)
- We can consider various types of variables: binary/discrete (categorical), continuous, interval, and integer counts.
- For each type we'll see some basic probability models which are parametrized families of distributions.

Exponential Family

- For (continuous or discrete) random variable \mathbf{x}

$$
\begin{aligned}
p(\mathbf{x} \mid \eta) & =h(\mathbf{x}) \exp \left\{\eta^{\top} T(\mathbf{x})-A(\eta)\right\} \\
& =\frac{1}{Z(\eta)} h(\mathbf{x}) \exp \left\{\eta^{\top} T(\mathbf{x})\right\}
\end{aligned}
$$

is an exponential family distribution with
natural parameter η.

- Function $T(\mathbf{x})$ is a sufficient statistic.
- Function $A(\eta)=\log Z(\eta)$ is the \log normalizer.
- Key idea: all you need to know about the data is captured in the summarizing function $T(\mathbf{x})$.
- For a binary random variable $x=\{0,1\}$ with $p(x=1)=\pi$:

$$
\begin{aligned}
p(x \mid \pi) & =\pi^{x}(1-\pi)^{1-x} \\
& =\exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x+\log (1-\pi)\right\}
\end{aligned}
$$

- Exponential family with:

$$
\begin{aligned}
\eta & =\log \frac{\pi}{1-\pi} \\
T(x) & =x \\
A(\eta) & =-\log (1-\pi)=\log \left(1+e^{\eta}\right) \\
h(x) & =1
\end{aligned}
$$

- The logistic function links natural parameter and chance of heads

$$
\pi=\frac{1}{1+e^{-\eta}}=\operatorname{logistic}(\eta)
$$

- For a categorical (discrete), random variable taking on K possible values, let π_{k} be the probability of the $k^{t h}$ value. We can use a binary vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{K}\right)$ in which $x_{k}=1$ if and only if the variable takes on its $k^{\text {th }}$ value. Now we can write,

$$
p(\mathbf{x} \mid \pi)=\pi_{1}^{x_{1}} \pi_{2}^{x_{2}} \cdots \pi_{K}^{x_{K}}=\exp \left\{\sum_{i} x_{i} \log \pi_{i}\right\}
$$

Exactly like a probability table, but written using binary vectors.

- If we observe this variable several times $\mathbf{X}=\left\{\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{N}\right\}$, the (iid) probability depends on the total observed counts of each value:

$$
p(\mathbf{X} \mid \pi)=\prod_{n} p\left(\mathbf{x}^{n} \mid \pi\right)=\exp \left\{\sum_{i}\left(\sum_{n} x_{i}^{n}\right) \log \pi_{i}\right\}=\exp \left\{\sum_{i} c_{i} \log \pi_{i}\right\}
$$

Multinomial as Exponential Family

- The multinomial parameters are constrained: $\sum_{i} \pi_{i}=1$

Define (the last) one in terms of the rest: $\pi_{K}=1-\sum_{i=1}^{K-1} \pi_{i}$

$$
p(\mathbf{x} \mid \pi)=\exp \left\{\sum_{i=1}^{K-1} \log \left(\frac{\pi_{i}}{\pi_{K}}\right) x_{i}+k \log \pi_{K}\right\}
$$

- Exponential family with:

$$
\begin{aligned}
\eta_{i} & =\log \pi_{i}-\log \pi_{K} \\
T\left(x_{i}\right) & =x_{i} \\
A(\eta) & =-k \log \pi_{K}=k \log \sum_{i} e^{\eta_{i}} \\
h(\mathbf{x}) & =1
\end{aligned}
$$

- The softmax function relates direct and natural parameters:

$$
\pi_{i}=\frac{e^{\eta_{i}}}{\sum_{j} e^{\eta_{j}}}
$$

- For a continuous univariate random variable:

$$
\begin{aligned}
p\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\} \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{\frac{\mu x}{\sigma^{2}}-\frac{x^{2}}{2 \sigma^{2}}-\frac{\mu^{2}}{2 \sigma^{2}}-\log \sigma\right\}
\end{aligned}
$$

- Exponential family with:

$$
\eta=\left[\mu / \sigma^{2} ;-1 / 2 \sigma^{2}\right]
$$

$$
T(x)=\left[x ; x^{2}\right]
$$

$$
A(\eta)=\log \sigma+\mu / 2 \sigma^{2}
$$

$$
h(x)=1 / \sqrt{2 \pi}
$$

- Note: a univariate Gaussian is a two-parameter distribution with a two-component vector of sufficient statistis.

Multivariate Gaussian Distribution

- For a continuous vector random variable:

$$
p(x \mid \mu, \Sigma)=|2 \pi \Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)\right\}
$$

- Exponential family with:

$$
\begin{aligned}
\eta & =\left[\Sigma^{-1} \mu ;-1 / 2 \Sigma^{-1}\right] \\
T(x) & =\left[\mathbf{x} ; \mathbf{x x}^{\top}\right] \\
A(\eta) & =\log |\Sigma| / 2+\mu^{\top} \Sigma^{-1} \mu / 2 \\
h(x) & =(2 \pi)^{-n / 2}
\end{aligned}
$$

- Sufficient statistics: mean vector and correlation matrix.
- Other densities: Student-t, Laplacian.
- For non-negative values use exponential, Gamma, log-normal.
- All marginals of a Gaussian are again Gaussian.

Any conditional of a Gaussian is again Gaussian.

Gaussian Marginals/Conditionals

- To find these parameters is mostly linear algebra:

Let $\mathbf{z}=\left[\mathbf{x}^{\top} \mathbf{y}^{\top}\right]^{\top}$ be normally distributed according to:

$$
\mathbf{z}=\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right] ;\left[\begin{array}{cc}
\mathbf{A} & \mathbf{C} \\
\mathbf{C}^{\top} & \mathbf{B}
\end{array}\right]\right)
$$

where \mathbf{C} is the (non-symmetric) cross-covariance matrix between \mathbf{x} and \mathbf{y} which has as many rows as the size of \mathbf{x} and as many columns as the size of \mathbf{y}.
The marginal distributions are:

$$
\begin{aligned}
& \mathbf{x} \sim \mathcal{N}(\mathbf{a} ; \mathbf{A}) \\
& \mathbf{y} \sim \mathcal{N}(\mathbf{b} ; \mathbf{B})
\end{aligned}
$$

and the conditional distributions are:

$$
\begin{aligned}
& \mathbf{x} \mid \mathbf{y} \sim \mathcal{N}\left(\mathbf{a}+\mathbf{C B}^{-1}(\mathbf{y}-\mathbf{b}) ; \mathbf{A}-\mathbf{C B}^{-1} \mathbf{C}^{\top}\right) \\
& \mathbf{y} \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{b}+\mathbf{C}^{\top} \mathbf{A}^{-1}(\mathbf{x}-\mathbf{a}) ; \mathbf{B}-\mathbf{C}^{\top} \mathbf{A}^{-1} \mathbf{C}\right)
\end{aligned}
$$

- If we want to use general optimizations (e.g. conjugate gradient) to learn latent variable models, we often have to make sure parameters respect certain constraints. (e.g. $\sum_{k} \alpha_{k}=1, \Sigma_{k}$ pos.definite).
- A good trick is to reparameterize these quantities in terms of unconstrained values. For mixing proportions, use the softmax:

$$
\alpha_{k}=\frac{\exp \left(q_{k}\right)}{\sum_{j} \exp \left(q_{j}\right)}
$$

- For covariance matrices, use the Cholesky decomposition:

$$
\begin{aligned}
\Sigma^{-1} & =A^{\top} A \\
|\Sigma|^{-1 / 2} & =\prod_{i} A_{i i}
\end{aligned}
$$

where A is upper diagonal with positive diagonal:

$$
A_{i i}=\exp \left(r_{i}\right)>0 \quad A_{i j}=a_{i j} \quad(j>i) \quad A_{i j}=0 \quad(j<i)
$$

- When the variable(s) being conditioned on (parents) are discrete, we just have one density for each possible setting of the parents.
e.g. a table of natural parameters in exponential models or a table of tables for discrete models.
- When the conditioned variable is continuous, its value sets some of the parameters for the other variables.
- A very common instance of this for regression is the "linear-Gaussian" : $p(\mathbf{y} \mid \mathbf{x})=\operatorname{gauss}\left(\theta^{\top} \mathbf{x} ; \Sigma\right)$.
- For discrete children and continuous parents, we often use a Bernoulli/multinomial whose paramters are some function $f\left(\theta^{\top} \mathbf{x}\right)$.

Moments

- For continuous variables, moment calculations are important.
- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer $A(\eta)$.
- The $q^{t h}$ derivative gives the $q^{t h}$ centred moment.

$$
\begin{aligned}
\frac{d A(\eta)}{d \eta} & =\text { mean } \\
\frac{d^{2} A(\eta)}{d \eta^{2}} & =\text { variance }
\end{aligned}
$$

- When the sufficient statistic is a vector, partial derivatives need to be considered.

Generalized Linear Models (GLMs)

- Generalized Linear Models: $p(\mathbf{y} \mid \mathbf{x})$ is exponential family with conditional mean $\mu=f\left(\theta^{\top} \mathbf{x}\right)$.
- The function f is called the response function; if we chose it to be the inverse of the mapping b / w conditional mean and natural parameters then it is called the canonical response function.

$$
\begin{aligned}
\eta & =\psi(\mu) \\
f(\cdot) & =\psi^{-1}(\cdot)
\end{aligned}
$$

- We can be even more general and define distributions by arbitrary energy functions proportional to the log probability.

$$
p(\mathbf{x}) \propto \exp \left\{-\sum_{k} H_{k}(\mathbf{x})\right\}
$$

- A common choice is to use pairwise terms in the energy:

$$
H(\mathbf{x})=\sum_{i} a_{i} x_{i}+\sum_{\text {pairs } i j} w_{i j} x_{i} x_{j}
$$

Matrix Inversion Lemma

- There is a good trick for inverting matrices when they can be decomposed into the sum of an easily inverted matrix (D) and a low rank outer product. It is called the matrix inversion lemma.

$$
\left(D-A B^{-1} A^{\top}\right)^{-1}=D^{-1}+D^{-1} A\left(B-A^{\top} D^{-1} A\right)^{-1} A^{\top} D^{-1}
$$

- The same trick can be used to compute determinants:
$\log \left|D+A B^{-1} A^{\top}\right|=\log |D|-\log |B|+\log \left|B+A^{\top} D^{-1} A\right|$

Jensen's Inequality

- For any concave function $f()$ and any distribution on x,

$$
E[f(x)] \leq f(E[x])
$$

- e.g. $\log ()$ and $\sqrt{ }$ are concave
- This allows us to bound expressions like $\log p(x)=\log \sum_{z} p(x, z)$

Matrix Derivatives

- Here are some useful matrix derivatives:

$$
\begin{aligned}
\frac{\partial}{\partial A} \log |A| & =\left(A^{-1}\right)^{\top} \\
\frac{\partial}{\partial A} \operatorname{trace}\left[B^{\top} A\right] & =B \\
\frac{\partial}{\partial A} \operatorname{trace}\left[B A^{\top} C A\right] & =2 C A B
\end{aligned}
$$

LogSum

- Often you can easily compute $b_{k}=\log p\left(\mathbf{x} \mid z=k, \theta_{k}\right)$,
but it will be very negative, say -10^{6} or smaller.
- Now, to compute $\ell=\log p(\mathbf{x} \mid \theta)$ you need to compute $\log \sum_{k} e^{b_{k}}$. (e.g. for calculating responsibilities at test time or for learning)
- Careful! Do not compute this by doing $\log (\operatorname{sum}(\exp (b)))$.

You will get underflow and an incorrect answer.

- Instead do this:
- Add a constant exponent B to all the values b_{k} such that the largest value comes close to the maxiumum exponent allowed by machine precision: $\mathrm{B}=\mathrm{MAXEXPONENT}-\log (\mathrm{K})-\max (\mathrm{b})$.
- Compute $\log (\operatorname{sum}(\exp (b+B)))-B$.
- Example: if $\log p(x \mid z=1)=-120$ and $\log p(x \mid z=2)=-120$,
what is $\log p(x)=\log [p(x \mid z=1)+p(x \mid z=2)]$?
Answer: $\log \left[2 e^{-120}\right]=-120+\log 2$.

