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RANDOM VARIABLES AND DENSITIES

e Random variables X represents outcomes or states of world.
Instantiations of variables usually in lower case: x
We will write p(z) to mean probability(X = z).

e Sample Space: the space of all possible outcomes/states.

(May be discrete or continuous or mixed.)

o Probability mass (density) function p(z) > 0
Assigns a non-negative number to each point in sample space.
Sums (integrates) to unity: > p(z) =1L or [ p(z)dz = 1.
Intuitively: how often does x occur, how much do we believe in z.

e Ensemble: random variable + sample space+ probability function

PROBABILITY

EXPECTATIONS, MOMENTS

e We use probabilities p(x) to represent our beliefs B(z) about the
states = of the world.

e There is a formal calculus for manipulating uncertainties
represented by probabilities.

e Any consistent set of beliefs obeying the Cox Axioms can be
mapped into probabilities.

1. Rationally ordered degrees of belief:
if B(x) > B(y) and B(y) > B(z) then B(z) > B(z)

2. Belief in = and its negation Z are related: B(z) = f[B(Z)]

3. Belief in conjunction depends only on conditionals:
B(z and y) = g[B(x), B(y|z)] = g[B(y), B(x|y)]

e Expectation of a function a(z) is written E[a] or (a)
Ela] = (a) = ) _ p(w)a(z)

e.g. mean = »__ap(x), variance = »_ (v — E[z])
e Moments are expectations of higher order powers.
(Mean is first moment. Autocorrelation is second moment.)

’p(a)

o Centralized moments have lower moments subtracted away
(e.g. variance, skew, curtosis).

e Deep fact: Knowledge of all orders of moments
completely defines the entire distribution.




MEANS, VARIANCES AND COVARIANCES

o Remember the definition of the mean and covariance of a vector
random variable:

Blel = [ xplxidx = m

Cov[z] = E[(x —m)(x —m) ] = /(x —m)(x —m) px)dx =V

T
which is the expected value of the outer product of the variable

with itself, after subtracting the mean.

e Also, the covariance between two variables:
Cov[x,y] = E[(x — mx)(y — my)T] =C

- /Xy(x — mx)(y — my)Tp(X, y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

MARGINAL PROBABILITIES

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(r) = plx,y)
Yy

e This is like adding slices of the table together.

z

X

e Another equivalent definition: p(z) = -, p(z|y)p(y).

JOINT PROBABILITY

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

o We call this a joint ensemble and write
p(x,y) = prob(X =z and Y = y)

=

4

p(x.y.2)

CONDITIONAL PROBABILITY

o If we know that some event has occurred, it changes our belief
about the probability of other events.

o This is like taking a "slice” through the joint table.
plzly) = p(z,y)/py)

1] ~

p(xylz)




BAYES’ RULE

e Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

_plylx)p(x)  plylz)p(r)
plaly) = ply)  Dplyla)p()

e This gives us a way of "reversing” conditional probabilities.

e Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the " chain rule”:

p(x,y, 2 ...) = pla)plyle)p(zlz, y)p(. . . |2, y, 2)]

ENTROPY

e Measures the amount of ambiguity or uncertainty in a distribution:

Zp ) log p(x

e Expected value of —log p(x) (a function which depends on p(x)!).

e H(p) > 0 unless only one possible outcomein which case H(p) =

e Maximal value when p is uniform.

e Tells you the expected "cost” if each event costs — log p(event)

0.

INDEPENDENCE & CONDITIONAL INDEPENDENCE

e Two variables are independent iff their joint factors:

p(x,y) = p(x)p(y)
LT T Jee

X

p(.y)

p(Y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

plx,ylz) = p(z[2)p(ylz) V=2

Cross ENTROPY (KL DIVERGENCE)

e An assymetric measure of the distancebetween two distributions:

KLpllq = Zp )[log p(x) — log q(x)]

e KL > 0 unless p = g then KL:()

e Tells you the extra cost if events were generated by p(x) but
instead of charging under p(z) you charged under g(z).




STATISTICS

e Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

e Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

e Many approaches to statistics:
frequentist, Bayesian, decision theory, ...

(CONDITIONAL) PROBABILITY TABLES

o For discrete (categorical) quantities, the most basic parametrization
is the probability table which lists p(x; = kth value).

e Since PTs must be nonnegative and sum to 1, for k-ary variables
there are k — 1 free parameters.
e If a discrete variable is conditioned on the values of some other

discrete variables we make one table for each possible setting of the
parents: these are called conditional probability tables or CPTs.

| <1 -~

p(x.y.2) p(x.yl2)

SOME (CONDITIONAL) PROBABILITY FUNCTIONS

EXPONENTIAL FAMILY

e Probability density functions p(x) (for continuous variables) or
probability mass functions p(x = k) (for discrete variables) tell us
how likely it is to get a particular value for a random variable
(possibly conditioned on the values of some other variables.)

e We can consider various types of variables: binary/discrete
(categorical), continuous, interval, and integer counts.

e For each type we'll see some basic probability models which are
parametrized families of distributions.

e For (continuous or discrete) random variable x
p(x|n) = h(x) exp{n' T(x) — A(n)}

1 T
%h(x) exp{n T(x)}

is an exponential family distribution with
natural parameter 7).

e Function T'(x) is a sufficient statistic.
e Function A(n) = log Z(n) is the log normalizer.

e Key idea: all you need to know about the data is captured in the
summarizing function 7'(x).




BERNOULLI DISTRIBUTION

e For a binary random variable z = {0, 1} with p(z = 1) =

plalm) = 7*(1 = m)t ="

— exp {log (1 T ) z + log(1 — n)}

e Exponential family with:

MULTINOMIAL

e For a categorical (discrete), random variable taking on K possible
values, let 7. be the probability of the k" value. We can use a
binary vector x = (x1,29,..., %}, ...,Zf) in which ;=1 if and
only if the variable takes on its k' value. Now we can write,

€2 .

p(x|m) = 7)'m; 7TK = exp Zx,logm

1 = log
1 —
T(z) == Exactly like a probability table, but written using binary vectors.
A(n) = —log(1 — m) = log(1 + €") o If we observe this variable several times X = {xl, X2, ... ,XN}, the
h(z) =1 (iid) probability depends on the total observed counts of each value:
e The logistic function links natural parameter and chance of heads p(X|r) = HP (x"|m) =exp {>; (X, z") logm; } = exp {>"; cilog m;}
= logistic(n)
PoI1ssoN MULTINOMIAL AS EXPONENTIAL FAMILY

e For an integer count variable with rate \:

p(z|A) =

AL -2

e Exponential family with:

n = log A
T(x)==x
Am)=r=¢"

1

e e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity A

o Other count densities: (neg)binomial, geometric.

e The multinomial parameters are constrained: » ; 7; = 1.
Define (the last) one in terms of the rest: 7w =1 — ZKllm

p(x|m) = exp {21‘:;1 log <ﬁ) x; + klog WK}
e Exponential family with:
n; = logm; —logmy
T(xi) = x;
A(n) = —klogjm( klog) ;e
h(x) =

e The softmax function relates direct and natural parameters:




GAUSSIAN (NORMAL)

IMPORTANT GAUSSIAN FACTS

e For a continuous univariate random variable:

pla|p, %) = ! exp{— ! (x—u)g}

V2o 202
1 U ? ,LL2 1
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e Exponential family with: ’/\

n=lu/o*; —1/207
T(x) = [w; o7
A(n) =logo + /20°
h(z) =1/vV2r
e Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistis.

o All marginals of a Gaussian are again Gaussian.
Any conditional of a Gaussian is again Gaussian.

p(y|x=x0)

'\xo p(X,y)

MULTIVARIATE GAUSSIAN DISTRIBUTION

e For a continuous vector random variable:

plelp, 2) = 278 " exp {—%(X — ) (x - u)}

e Exponential family with:

n=[S""u; —1/2571
T(z) = [x; xx']
Aln) =log |S|/2+ p 'S p/2

h(z) = (2m) "/
o Sufficient statistics: mean vector and correlation matrix.

o Other densities: Student-t, Laplacian.

e For non-negative values use exponential, Gamma, log-normal.

GAUSSIAN MARGINALS/ CONDITIONALS

e To find these parameters is mostly linear algebra:
Let z = [x"y']" be normally distributed according to:

SRR (SR )

where C is the (non-symmetric) cross-covariance matrix between x
and y which has as many rows as the size of x and as many
columns as the size of y.

The marginal distributions are:

x~ N(a;A)
y ~N(b;B)
and the conditional distributions are:
xly ~ M@+ CB Yy —b);A - CB~'C")
yjx ~N(b+C A (x—a);B-CTA™IC)




PARAMETER CONSTRAINTS

e If we want to use general optimizations (e.g. conjugate gradient) to
learn latent variable models, we often have to make sure parameters
respect certain constraints. (e.g. > ;. ap = 1, ¥ pos.definite).

e A good trick is to reparameterize these quantities in terms of
unconstrained values. For mixing proportions, use the softmax:

__exp(gy)
> exp(gy)

e For covariance matrices, use the Cholesky decomposition:

nl=ATA
=2 =TT 4a
1
where A is upper diagonal with positive diagonal:

Aji=exp(r;)) >0  Ajj=a; (G>1) A;;=0 (j<i)

PARAMETERIZING CONDITIONALS

e When the variable(s) being conditioned on (parents) are discrete,
we just have one density for each possible setting of the parents.
e.g. a table of natural parameters in exponential models or a table
of tables for discrete models.

e When the conditioned variable is continuous, its value sets some of
the parameters for the other variables.

e A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(6'x;X).

e For discrete children and continuous parents, we often use a
Bernoulli/multinomial whose paramters are some function f(6'x).

MOMENTS

e For continuous variables, moment calculations are important.

o We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(7).

e The ¢ derivative gives the ¢'"" centred moment.

dA
i = mean
dn
d’A
(77) = variance

e When the sufficient statistic is a vector, partial derivatives need to
be considered.

GENERALIZED LINEAR MODELS (GLMs)

o Generalized Linear Models: p(y|x) is exponential family with
conditional mean p = f(6x).

e The function f is called the response function; if we chose it to be
the inverse of the mapping b/w conditional mean and natural
parameters then it is called the canonical response function.

n=1(u)
—1
) =47()
e We can be even more general and define distributions by arbitrary
energy functions proportional to the log probability.

p(x) o exp{— Y H}(x)}
k

e A common choice is to use pairwise terms in the energy:

H(X) = Z a;x; + Z Wy Ti 5
1

pairs




MATRIX INVERSION LEMMA
(SHERMAN-MORRISON-WOODBURY FORMULAE)

JENSEN’S INEQUALITY

e There is a good trick for inverting matrices when they can be
decomposed into the sum of an easily inverted matrix (D) and a
low rank outer product. It is called the matrix inversion lemma.

(D—AB AN 1 =D 14+ D'AB-ATD 14" 1ATD!
e The same trick can be used to compute determinants:
log|D + AB~'AT| = log|D| —log |B| +log |B+ ATD™ ! A|

e For any concave function f() and any distribution on x,
Elf(@)] < f(Elz])
f(E[X])

(0]

eeg. log() and ,/ are concave
e This allows us to bound expressions like log p(z) =log ). p(x, 2)

MATRIX DERIVATIVES

o Here are some useful matrix derivatives:

O =T
8—Alog|A|—(A )

0 T
a—Atrace[B Al=B

9 T
a—Atrace[BA CA]=2CAB

LoGgsum

e Often you can easily compute by = log p(x|z = k, 0y,),
but it will be very negative, say -10° or smaller.

e Now, to compute ¢ = log p(x|6) you need to compute log > ;. elk.
(e.g. for calculating responsibilities at test time or for learning)

o Careful! Do not compute this by doing log(sum(exp(b))).
You will get underflow and an incorrect answer.

o Instead do this:

—Add a constant exponent B to all the values b;. such that the
largest value comes close to the maxiumum exponent allowed by
machine precision: B = MAXEXPONENT-1log (K)-max (b).

— Compute log(sum(exp(b+B)))-B.

e Example: if logp(z|z = 1) = —120 and log p(z|z = 2) = —120,
what is log p(z) = log [p(z|z = 1) + p(x|z = 2)|?

Answer: log[2e™12Y] = —120 + log 2.




