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Probability

•We use probabilities p(x) to represent our beliefs B(x) about the
states x of the world.

• There is a formal calculus for manipulating uncertainties
represented by probabilities.

• Any consistent set of beliefs obeying the Cox Axioms can be
mapped into probabilities.

1. Rationally ordered degrees of belief:
if B(x) > B(y) and B(y) > B(z) then B(x) > B(z)

2. Belief in x and its negation x̄ are related: B(x) = f [B(x̄)]

3. Belief in conjunction depends only on conditionals:
B(x and y) = g[B(x), B(y|x)] = g[B(y), B(x|y)]

Random Variables and Densities

• Random variables X represents outcomes or states of world.
Instantiations of variables usually in lower case: x
We will write p(x) to mean probability(X = x).

• Sample Space: the space of all possible outcomes/states.
(May be discrete or continuous or mixed.)

• Probability mass (density) function p(x) ≥ 0
Assigns a non-negative number to each point in sample space.
Sums (integrates) to unity:

∑

x p(x) = 1 or
∫

x p(x)dx = 1.
Intuitively: how often does x occur, how much do we believe in x.

• Ensemble: random variable + sample space+ probability function

Expectations, Moments

• Expectation of a function a(x) is written E[a] or 〈a〉

E[a] = 〈a〉 =
∑

x

p(x)a(x)

e.g. mean =
∑

x xp(x), variance =
∑

x(x− E[x])2p(x)

•Moments are expectations of higher order powers.
(Mean is first moment. Autocorrelation is second moment.)

• Centralized moments have lower moments subtracted away
(e.g. variance, skew, curtosis).

•Deep fact: Knowledge of all orders of moments
completely defines the entire distribution.



Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x − m)(x − m)⊤] =

∫

x
(x − m)(x − m)⊤p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x − mx)(y − my)⊤] = C

=

∫

xy
(x − mx)(y − my)⊤p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)
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Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal

distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.
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• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)
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Bayes’ Rule

•Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∑

x′ p(y|x′)p(x′)
• This gives us a way of ”reversing”conditional probabilities.

• Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the ”chain rule”:

p(x, y, z, . . .) = p(x)p(y|x)p(z|x, y)p(. . . |x, y, z)

Independence & Conditional Independence

• Two variables are independent iff their joint factors:

p(x, y) = p(x)p(y)
p(x,y)

=
x

p(y)

p(x)

• Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(x, y|z) = p(x|z)p(y|z) ∀z

Entropy

•Measures the amount of ambiguity or uncertainty in a distribution:

H(p) = −
∑

x

p(x) log p(x)

• Expected value of − log p(x) (a function which depends on p(x)!).

•H(p) > 0 unless only one possible outcomein which case H(p) = 0.

•Maximal value when p is uniform.

• Tells you the expected ”cost” if each event costs − log p(event)

Cross Entropy (KL Divergence)

• An assymetric measure of the distancebetween two distributions:

KL[p‖q] =
∑

x

p(x)[log p(x) − log q(x)]

•KL > 0 unless p = q then KL = 0

• Tells you the extra cost if events were generated by p(x) but
instead of charging under p(x) you charged under q(x).



Statistics

• Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

• Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

•Many approaches to statistics:
frequentist, Bayesian, decision theory, ...

Some (Conditional) Probability Functions

• Probability density functions p(x) (for continuous variables) or
probability mass functions p(x = k) (for discrete variables) tell us
how likely it is to get a particular value for a random variable
(possibly conditioned on the values of some other variables.)

•We can consider various types of variables: binary/discrete
(categorical), continuous, interval, and integer counts.

• For each type we’ll see some basic probability models which are
parametrized families of distributions.

(Conditional) Probability Tables

• For discrete (categorical) quantities, the most basic parametrization
is the probability table which lists p(xi = kth value).

• Since PTs must be nonnegative and sum to 1, for k-ary variables
there are k − 1 free parameters.

• If a discrete variable is conditioned on the values of some other
discrete variables we make one table for each possible setting of the
parents: these are called conditional probability tables or CPTs.
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Exponential Family

• For (continuous or discrete) random variable x

p(x|η) = h(x) exp{η⊤T (x) − A(η)}
=

1

Z(η)
h(x) exp{η⊤T (x)}

is an exponential family distribution with
natural parameter η.

• Function T (x) is a sufficient statistic.

• Function A(η) = logZ(η) is the log normalizer.

• Key idea: all you need to know about the data is captured in the
summarizing function T (x).



Bernoulli Distribution

• For a binary random variable x = {0, 1} with p(x = 1) = π:

p(x|π) = πx(1 − π)1−x

= exp

{

log

(

π

1 − π

)

x + log(1 − π)

}

• Exponential family with:

η = log
π

1 − π
T (x) = x

A(η) = − log(1 − π) = log(1 + eη)

h(x) = 1

• The logistic function links natural parameter and chance of heads

π =
1

1 + e−η
= logistic(η)

Poisson

• For an integer count variable with rate λ:

p(x|λ) =
λxe−λ

x!

=
1

x!
exp{x log λ− λ}

• Exponential family with:

η = log λ

T (x) = x

A(η) = λ = eη

h(x) =
1

x!

• e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity λ

•Other count densities: (neg)binomial, geometric.

Multinomial

• For a categorical (discrete), random variable taking on K possible
values, let πk be the probability of the kth value. We can use a
binary vector x = (x1, x2, . . . , xk, . . . , xK) in which xk=1 if and
only if the variable takes on its kth value. Now we can write,

p(x|π) = π
x1
1 π

x2
2 · · · πxKK = exp







∑

i

xi log πi







Exactly like a probability table, but written using binary vectors.

• If we observe this variable several times X = {x1,x2, . . . ,xN}, the
(iid) probability depends on the total observed counts of each value:

p(X|π) =
∏

n

p(xn|π) = exp
{
∑

i

(
∑

n x
n
i

)

log πi
}

= exp {∑i ci log πi}

Multinomial as Exponential Family

• The multinomial parameters are constrained:
∑

i πi = 1.

Define (the last) one in terms of the rest: πK = 1 − ∑K−1
i=1 πi

p(x|π) = exp
{

∑K−1
i=1 log

(

πi
πK

)

xi + k log πK

}

• Exponential family with:

ηi = log πi − log πK
T (xi) = xi
A(η) = −k log πK = k log

∑

i e
ηi

h(x) = 1

• The softmax function relates direct and natural parameters:

πi =
eηi

∑

j e
ηj



Gaussian (normal)

• For a continuous univariate random variable:

p(x|µ, σ2) =
1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

=
1√
2πσ

exp

{

µx

σ2
− x2

2σ2
− µ2

2σ2
− log σ

}

• Exponential family with:

η = [µ/σ2 ; −1/2σ2]

T (x) = [x ; x2]

A(η) = log σ + µ/2σ2

h(x) = 1/
√

2π

• Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistis.

Multivariate Gaussian Distribution

• For a continuous vector random variable:

p(x|µ,Σ) = |2πΣ|−1/2 exp

{

−1

2
(x − µ)⊤Σ−1(x − µ)

}

• Exponential family with:

η = [Σ−1µ ; −1/2Σ−1]

T (x) = [x ; xx⊤]

A(η) = log |Σ|/2 + µ⊤Σ−1µ/2

h(x) = (2π)−n/2

• Sufficient statistics: mean vector and correlation matrix.

•Other densities: Student-t, Laplacian.

• For non-negative values use exponential, Gamma, log-normal.

Important Gaussian Facts

• All marginals of a Gaussian are again Gaussian.
Any conditional of a Gaussian is again Gaussian.

Σ

p(x,y)

p(x)

p(y|x=x0)

x0

Gaussian Marginals/Conditionals

• To find these parameters is mostly linear algebra:
Let z = [x⊤y⊤]⊤ be normally distributed according to:

z =

[

x

y

]

∼ N
([

a

b

]

;

[

A C

C⊤ B

])

where C is the (non-symmetric) cross-covariance matrix between x

and y which has as many rows as the size of x and as many
columns as the size of y.
The marginal distributions are:

x ∼ N (a;A)

y ∼ N (b;B)

and the conditional distributions are:

x|y ∼ N (a + CB−1(y − b);A − CB−1C⊤)

y|x ∼ N (b + C⊤A−1(x − a);B − C⊤A−1C)



Parameter Constraints

• If we want to use general optimizations (e.g. conjugate gradient) to
learn latent variable models, we often have to make sure parameters
respect certain constraints. (e.g.

∑

k αk = 1, Σk pos.definite).

• A good trick is to reparameterize these quantities in terms of
unconstrained values. For mixing proportions, use the softmax:

αk =
exp(qk)

∑

j exp(qj)

• For covariance matrices, use the Cholesky decomposition:

Σ−1 = A⊤A

|Σ|−1/2 =
∏

i

Aii

where A is upper diagonal with positive diagonal:

Aii = exp(ri) > 0 Aij = aij (j > i) Aij = 0 (j < i)

Moments

• For continuous variables, moment calculations are important.

•We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(η).

• The qth derivative gives the qth centred moment.

dA(η)

dη
= mean

d2A(η)

dη2
= variance

· · ·
•When the sufficient statistic is a vector, partial derivatives need to

be considered.

Parameterizing Conditionals

•When the variable(s) being conditioned on (parents) are discrete,
we just have one density for each possible setting of the parents.
e.g. a table of natural parameters in exponential models or a table
of tables for discrete models.

•When the conditioned variable is continuous, its value sets some of
the parameters for the other variables.

• A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(θ⊤x; Σ).

• For discrete children and continuous parents, we often use a
Bernoulli/multinomial whose paramters are some function f (θ⊤x).

Generalized Linear Models (GLMs)

• Generalized Linear Models: p(y|x) is exponential family with
conditional mean µ = f (θ⊤x).

• The function f is called the response function; if we chose it to be
the inverse of the mapping b/w conditional mean and natural
parameters then it is called the canonical response function.

η = ψ(µ)

f (·) = ψ−1(·)
•We can be even more general and define distributions by arbitrary

energy functions proportional to the log probability.

p(x) ∝ exp{−
∑

k

Hk(x)}

• A common choice is to use pairwise terms in the energy:

H(x) =
∑

i

aixi +
∑

pairs ij

wijxixj



Matrix Inversion Lemma
(Sherman-Morrison-Woodbury Formulae)

• There is a good trick for inverting matrices when they can be
decomposed into the sum of an easily inverted matrix (D) and a
low rank outer product. It is called the matrix inversion lemma.

(D −AB−1A⊤)−1 = D−1 +D−1A(B − A⊤D−1A)−1A⊤D−1

• The same trick can be used to compute determinants:

log |D +AB−1A⊤| = log |D| − log |B| + log |B + A⊤D−1A|

Matrix Derivatives

• Here are some useful matrix derivatives:
∂

∂A
log |A| = (A−1)⊤

∂

∂A
trace[B⊤A] = B

∂

∂A
trace[BA⊤CA] = 2CAB

Jensen’s Inequality

• For any concave function f () and any distribution on x,

E[f (x)] ≤ f (E[x])

f(E[x])

E[f(x)]

• e.g. log() and
√

are concave

• This allows us to bound expressions like log p(x) = log
∑

z p(x, z)

Logsum

•Often you can easily compute bk = log p(x|z = k, θk),
but it will be very negative, say -106 or smaller.

• Now, to compute ℓ = log p(x|θ) you need to compute log
∑

k e
bk.

(e.g. for calculating responsibilities at test time or for learning)

• Careful! Do not compute this by doing log(sum(exp(b))).
You will get underflow and an incorrect answer.

• Instead do this:

– Add a constant exponent B to all the values bk such that the
largest value comes close to the maxiumum exponent allowed by
machine precision: B = MAXEXPONENT-log(K)-max(b).

– Compute log(sum(exp(b+B)))-B.

• Example: if log p(x|z = 1) = −120 and log p(x|z = 2) = −120,
what is log p(x) = log [p(x|z = 1) + p(x|z = 2)]?
Answer: log[2e−120] = −120 + log 2.


