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The key idea behind the probabilistic framework to machine learn-
ing is that learning can be thought of as inferring plausible models 
to explain observed data. A machine can use such models to make 

predictions about future data, and take decisions that are rational given 
these predictions. Uncertainty plays a fundamental part in all of this. 
Observed data can be consistent with many models, and therefore which 
model is appropriate, given the data, is uncertain. Similarly, predictions 
about future data and the future consequences of actions are uncertain. 
Probability theory provides a framework for modelling uncertainty.

This Review starts with an introduction to the probabilistic approach 
to machine learning and Bayesian inference, and then discusses some of 
the state-of-the-art advances in the field. Many aspects of learning and 
intelligence crucially depend on the careful probabilistic representation of 
uncertainty. Probabilistic approaches have only recently become a main-
stream approach to artificial intelligence1, robotics2 and machine learn-
ing3,4. Even now, there is controversy in these fields about how important 
it is to fully represent uncertainty. For example, advances using deep neural 
networks to solve challenging pattern-recognition problems such as speech 
recognition5, image classification6,7, and prediction of words in text8, do not 
overtly represent the uncertainty in the structure or parameters of those 
neural networks. However, my focus will not be on these types of pattern-
recognition problems, characterized by the availability of large amounts 
of data, but on problems for which uncertainty is really a key ingredient, 
for example where a decision may depend on the amount of uncertainty. 

I highlight five areas of current research at the frontier of probabilistic 
machine learning, emphasizing areas that are of broad relevance to sci-
entists across many fields: probabilistic programming, which is a general 
framework for expressing probabilistic models as computer programs 
and which could have a major impact on scientific modelling; Bayes-
ian optimization, which is an approach to globally optimizing unknown 
functions; probabilistic data compression; automating the discovery of 
plausible and interpretable models from data; and hierarchical modelling 
for learning many related models, for example for personalized medicine 
or recommendation. Although considerable challenges remain, the com-
ing decade promises substantial advances in artificial intelligence and 
machine learning based on the probabilistic framework.

Probabilistic modelling and representing uncertainty
At the most basic level, machine learning seeks to develop methods for 
computers to improve their performance at certain tasks on the basis of 

observed data. Typical examples of such tasks might include detecting 
pedestrians in images taken from an autonomous vehicle, classifying 
gene-expression patterns from leukaemia patients into subtypes by clin-
ical outcome, or translating English sentences into French. However, as 
I discuss, the scope of machine-learning tasks is even broader than these 
pattern classification or mapping tasks, and can include optimization 
and decision making, compressing data and automatically extracting 
interpretable models from data.

Data are the key ingredients of all machine-learning systems. But 
data, even so-called big data, are useless on their own until one extracts 
knowledge or inferences from them. Almost all machine-learning 
tasks can be formulated as making inferences about missing or latent 
data from the observed data — I will variously use the terms inference, 
prediction or forecasting to refer to this general task. Elaborating the 
example mentioned, consider classifying people with leukaemia into 
one of the four main subtypes of this disease on the basis of each person’s 
measured gene-expression patterns. Here, the observed data are pairs of 
gene-expression patterns and labelled subtypes, and the unobserved or 
missing data to be inferred are the subtypes for new patients. To make 
inferences about unobserved data from the observed data, the learning 
system needs to make some assumptions; taken together these assump-
tions constitute a model. A model can be very simple and rigid, such as a 
classic statistical linear regression model, or complex and flexible, such 
as a large and deep neural network, or even a model with infinitely many 
parameters. I return to this point in the next section. A model is con-
sidered to be well defined if it can make forecasts or predictions about 
unobserved data having been trained on observed data (otherwise, if 
the model cannot make predictions it cannot be falsified, in the sense 
of the philosopher Karl Popper’s proposal for evaluating hypotheses, or 
as the theoretical physicist Wolfgang Pauli said the model is “not even 
wrong”). For example, in the classification setting, a well-defined model 
should be able to provide predictions of class labels for new patients. 
Since any sensible model will be uncertain when predicting unobserved 
data, uncertainty plays a fundamental part in modelling.

There are many forms of uncertainty in modelling. At the lowest 
level, model uncertainty is introduced from measurement noise, for 
example, pixel noise or blur in images. At higher levels, a model may 
have many parameters, such as the coefficients of a linear regression, 
and there is uncertainty about which values of these parameters will 
be good at predicting new data. Finally, at the highest levels, there is 
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often uncertainty about even the general structure of the model: is linear 
regression or a neural network appropriate, if the latter, how many layers 
should it have, and so on. 

The probabilistic approach to modelling uses probability theory to 
express all forms of uncertainty9. Probability theory is the mathematical 
language for representing and manipulating uncertainty10, in much the 
same way as calculus is the language for representing and manipulating 
rates of change. Fortunately, the probabilistic approach to modelling is 
conceptually very simple: probability distributions are used to represent 
all the uncertain unobserved quantities in a model (including structural, 
parametric and noise-related) and how they relate to the data. Then the 
basic rules of probability theory are used to infer the unobserved quan-
tities given the observed data. Learning from data occurs through the 
transformation of the prior probability distributions (defined before 
observing the data), into posterior distributions (after observing data). 
The application of probability theory to learning from data is called 
Bayesian learning (Box 1). 

Apart from its conceptual simplicity, there are several appealing prop-
erties of the probabilistic framework for machine intelligence. Simple 
probability distributions over single or a few variables can be com-
posed to form the building blocks of larger, more complex models. The 
dominant paradigm in machine learning over the past two decades for 
representing such compositional probabilistic models has been graphi-
cal models11, with variants including directed graphs (also known as 
Bayesian networks and belief networks), undirected graphs (also known 
as Markov networks and random fields), and mixed graphs with both 
directed and undirected edges (Fig. 1). As discussed later, probabilistic 
programming offers an elegant way of generalizing graphical models, 
allowing a much richer representation of models. The compositionality 
of probabilistic models means that the behaviour of these building blocks 
in the context of the larger model is often much easier to understand 
than, say, what will happen if one couples a non-linear dynamical system 
(for example, a recurrent neural network) to another. In particular, for 
a well-defined probabilistic model, it is always possible to generate data 
from the model; such ‘imaginary’ data provide a window into the ‘mind’ 
of the probabilistic model, helping us to understand both the initial prior 
assumptions and what the model has learned at any later stage.

Probabilistic modelling also has some conceptual advantages over 
alternatives because it is a normative theory for learning in artificially 
intelligent systems. How should an artificially intelligent system represent 
and update its beliefs about the world in light of data? The Cox axioms 
define some desiderata for representing beliefs; a consequence of these 
axioms is that ‘degrees of belief ’, ranging from ‘impossible’ to ‘absolutely 
certain’, must follow all the rules of probability theory10,12,13. This justifies 
the use of subjective Bayesian probabilistic representations in artificial 
intelligence. An argument for Bayesian representations in artificial intel-
ligence that is motivated by decision theory is given by the Dutch book 
theorem. The argument rests on the idea that the strength of beliefs of an 
agent can be assessed by asking the agent whether it would be willing to 
accept bets at various odds (ratios of payoffs). The Dutch book theorem 
states that unless an artificial intelligence system’s (or human’s, for that 
matter) degrees of beliefs are consistent with the rules of probability it 
will be willing to accept bets that are guaranteed to lose money14. Because 
of the force of these and many other arguments on the importance of a 
principled handling of uncertainty for intelligence, Bayesian probabilistic 
modelling has emerged not only as the theoretical foundation for ration-
ality in artificial intelligence systems, but also as a model for normative 
behaviour in humans and animals15–18 (but see refs 19, 20 for a discussion), 
and much research is devoted to understanding how neural circuitry may 
be implementing Bayesian inference21,22.

Although conceptually simple, a fully probabilistic approach to 
machine learning poses a number of computational and modelling chal-
lenges. Computationally, the main challenge is that learning involves mar-
ginalizing (summing out) all the variables in the model except for the 
variables of interest (Box 1). Such high-dimensional sums and integrals 
are generally computationally hard, in the sense that for many models 

There are two simple rules that underlie probability theory: the sum 
rule:

and the product rule:

Here x and y correspond to observed or uncertain quantities, taking 
values in some sets X and Y, respectively. For example, x and y might 
relate to the weather in Cambridge and London, respectively, both 
taking values in the set X = Y = {rainy,cloudy,sunny}. P(x) corresponds 
to the probability of x, which can be either a statement about the 
frequency of observing a particular value, or a subjective belief about 
it. P(x,y) is the joint probability of observing x and y, and P(y|x) is the 
probability of y conditioned on observing the value of x. The sum rule 
states that the marginal of x is obtained by summing (or integrating 
for continuous variables) the joint over y. The product rule states that 
the joint can be decomposed as the product of the marginal and the 
conditional. Bayes rule is a corollary of these two rules:

We can apply probability theory to machine learning by replacing 
the symbols above: we replace x by D to denote the observed data, 
we replace y by θ to denote the unknown parameters of a model, and 
we condition all terms on m, the class of probabilistic models we are 
considering. For learning, we thus get:

where P(D|θ,m) is the likelihood of parameters θ in model m, 
P(θ|m) is the prior probability of θ and P(θ|D, m) is the posterior of θ 
given data D.  

For example, the data D might be a time series of hourly 
observations of the weather in Cambridge and London, and the 
model might attempt to capture the joint weather patterns at both 
locations over successive hours, with parameters θ modelling 
correlations over time and space. Learning is the transformation 
of prior knowledge or assumptions about the parameters P(θ|m), 
through the data D, into posterior knowledge about the parameters, 
P(θ|D,m). This posterior is now the prior to be used for future data. 
A learned model can be used to predict or forecast new unseen test 
data, Dtest, by simply applying the sum and product rule to get the 
prediction:

Finally, different models can be compared by applying Bayes rule 
at the level of m: 

The term P(D|m) is the marginal likelihood or model evidence, 
and implements a preference for simpler models known as 
Bayesian Ockham’s razor 78,96,97.

BOX 1

Bayesian machine learning
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there is no known polynomial time algorithm for performing them 
exactly. Fortunately, a number of approximate integration algorithms have 
been developed, including Markov chain Monte Carlo (MCMC) meth-
ods, variational approximations, expectation propagation and sequential 
Monte Carlo23–26. It is worth noting that computational techniques are one 
area in which Bayesian machine learning differs from much of the rest 
of machine learning: for Bayesian researchers the main computational 
problem is integration, whereas for much of the rest of the community the 
focus is on optimization of model parameters. However, this dichotomy 
is not as stark as it appears: many gradient-based optimization meth-
ods can be turned into integration methods through the use of Langevin 
and Hamiltonian Monte Carlo methods27,28, while integration problems 
can be turned into optimization problems through the use of variational 
approximations24. I revisit optimization in a later section. 

The main modelling challenge for probabilistic machine learning is 
that the model should be flexible enough to capture all the properties of 
the data required to achieve the prediction task of interest. One approach 
to addressing this challenge is to develop a prior distribution that encom-
passes an open-ended universe of models that can adapt in complexity to 
the data. The key statistical concept underlying flexible models that grow 
in complexity with the data is non-parametrics.

Flexibility through non-parametrics
One of the lessons of modern machine learning is that the best predic-
tive performance is often obtained from highly flexible learning systems, 
especially when learning from large data sets. Flexible models can make 
better predictions because to a greater extent they allow data to ‘speak 
for themselves’. (But note that all predictions involve assumptions and 

therefore the data are never exclusively ‘speaking for themselves’.) There 
are essentially two ways of achieving flexibility. The model could have 
a large number of parameters compared with the data set (for exam-
ple, the neural network recently used to achieve translations of English 
and French sentences that approached the accuracy of state-of-the-art 
methods is a probabilistic model with 384 million parameters29). Alter-
natively, the model can be defined using non-parametric components. 

The best way to understand non-parametric models is through com-
parison to parametric ones. In a parametric model, there are a fixed, 
finite number of parameters, and no matter how much training data 
are observed, all the data can do is set these finitely many parameters 
that control future predictions. By contrast, non-parametric approaches 
have predictions that grow in complexity with the amount of training 
data, either by considering a nested sequence of parametric models with 
increasing numbers of parameters or by starting out with a model with 
infinitely many parameters. For example, in a classification problem, 
whereas a linear (parametric) classifier will always make predictions 
using a linear boundary between classes, a non-parametric classifier can 
learn a non-linear boundary whose shape becomes more complex with 
more data. Many non-parametric models can be derived starting from 
a parametric model and considering what happens as the model grows 
to the limit of infinitely many parameters30. Clearly, fitting a model with 
infinitely many parameters to finite training data would result in ‘over-
fitting’, in the sense that the model’s predictions might reflect quirks 
of the training data rather than regularities that can be generalized to 
test data. Fortunately, Bayesian approaches are not prone to this kind 
of overfitting since they average over, rather than fit, the parameters 
(Box 1). Moreover, for many applications we have such huge data sets 
that the main concern is underfitting from the choice of an overly sim-
plistic parametric model, rather than overfitting. 

A full discussion of Bayesian non-parametrics is outside the scope of 
this Review (see refs 9, 31, 32 for this), but it is worth mentioning a few 
of the key models. Gaussian processes are a very flexible non-paramet-
ric model for unknown functions, and are widely used for regression, 
classification, and many other applications that require inference on 
functions33. Consider learning a function that relates the dose of some 
chemical to the response of an organism to that chemical. Instead of 
modelling this relationship with, say, a linear parametric function, a 
Gaussian process could be used to learn directly a non-parametric dis-
tribution of non-linear functions consistent with the data. A notable 
example of a recent application of Gaussian processes is GaussianFace, a 
state-of-the-art approach to face recognition that outperforms humans 
and deep-learning methods34. Dirichlet processes are a non-paramet-
ric model with a long history in statistics35 and are used for density 
estimation, clustering, time-series analysis and modelling the topics 
of documents36. To illustrate Dirichlet processes, consider an applica-
tion to modelling friendships in a social network, where each person 
can belong to one of many communities. A Dirichlet process makes it 
possible to have a model whereby the number of inferred communities 
(that is, clusters) grows with the number of people37. Dirichlet processes 
have also been used for clustering gene-expression patterns38,39. The 
Indian buffet process (IBP)40 is a non-parametric model that can be 
used for latent feature modelling, learning overlapping clusters, sparse 
matrix factorization, or to non-parametrically learn the structure of 
a deep network41. Elaborating the social network modelling example, 
an IBP-based model allows each person to belong to some subset of a 
large number of potential communities (for example, as defined by dif-
ferent families, workplaces, schools, hobbies, and so on) rather than a 
single community, and the probability of friendship between two people 
depends on the number of overlapping communities they have42. In this 
case, the latent features of each person correspond to the communities, 
which are not assumed to be observed directly. The IBP can be thought 
of as a way of endowing Bayesian non-parametric models with ‘distrib-
uted representations’, as popularized in the neural network literature43. 
An interesting link between Bayesian non-parametrics and neural net-
works is that, under fairly general conditions, a neural network with 

Figure 1 | Bayesian inference. A simple example of Bayesian inference 
applied to a medical diagnosis problem. Here the problem is diagnosing a rare 
disease using information from the patient’s symptoms and, potentially, the 
patient’s genetic marker measurements, which indicate predisposition (gen 
pred) to this disease. In this example, all variables are assumed to be binary. 
T, true; F, false. The relationships between variables are indicated by directed 
arrows and the probability of each variable given other variables they directly 
depend on is also shown. Yellow nodes denote measurable variables, whereas 
green nodes denote hidden variables. Using the sum rule (Box 1), the prior 
probability of the patient having the rare disease is: P(rare disease = T) = P(rare 
disease = T|gen pred = T) p(gen pred = T) + p(rare disease = T|gen pred = F) p(gen 
pred = F) = 1.1 × 10−5. Applying Bayes rule we find that for a patient observed 
to have the symptom, the probability of the rare disease is: p(rare disease =  
T|symptom = T) = 8.8 × 10−4, whereas for a patient observed to have the genetic 
marker (gen marker) it is p(rare disease = T|gen marker = T) = 7.9 × 10−4. 
Assuming that the patient has both the symptom and the genetic marker the 
probability of the rare disease increases to p(rare disease = T|symptom = T, 
gen marker = T) = 0.06. Here, we have shown fixed, known model parameters, 
that is, the numbers θ = (10−4, 0.1, 10−6, 0.8, 0.01, 0.8, 0.01). However, both these 
parameters and the structure of the model (the presence or absence of arrows 
and additional hidden variables) could be learned from a data set of patient 
records using the methods in Box 1. 

Rare 
disease

Genetic 
predisposition

Symptom Genetic 
markers

P(gen pred = T) = 10–4

P(gen marker = T | gen pred = T) = 0.8

P(gen marker = T | gen pred = F) = 0.01  

P(symptom = T | rare disease = T) = 0.8

P(symptom = T | rare disease = F) = 0.01

P(rare disease = T | gen pred = T) = 0.1

P(rare disease = T | gen pred = F) = 10–6
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infinitely many hidden units is equivalent to a Gaussian process44. Note 
that the above non-parametric components should be thought of again 
as building blocks, which can be composed into more complex models 
as described earlier. The next section describes an even more power-
ful way of composing models — through probabilistic programming.

Probabilistic programming
The basic idea in probabilistic programming is to use computer pro-
grams to represent probabilistic models (http://probabilistic-program-
ming.org)45–47. One way to do this is for the computer program to define 
a generator for data from the probabilistic model, that is, a simulator 
(Fig. 2). This simulator makes calls to a random number generator in 
such a way that repeated runs from the simulator would sample different 
possible data sets from the model. This simulation framework is more 
general than the graphical model framework described previously since 
computer programs can allow constructs such as recursion (functions 
calling themselves) and control flow statements (for example, ‘if ’ state-
ments that result in multiple paths a program can follow), which are 
difficult or impossible to represent in a finite graph. In fact, for many 
of the recent probabilistic programming languages that are based on 
extending Turing-complete languages (a class that includes almost all 
commonly used languages), it is possible to represent any computable 
probability distribution as a probabilistic program48.

The full potential of probabilistic programming comes from automat-
ing the process of inferring unobserved variables in the model condi-
tioned on the observed data (Box 1). Conceptually, conditioning needs 
to compute input states of the program that generate data matching the 
observed data. Whereas normally we think of programs running from 
inputs to outputs, conditioning involves solving the inverse problem of 
inferring the inputs (in particular the random number calls) that match 
a certain program output. Such conditioning is performed by a ‘univer-
sal inference engine’, usually implemented by Monte Carlo sampling 
over possible executions of the simulator program that are consistent 
with the observed data. The fact that defining such universal inference 
algorithms for computer programs is even possible is somewhat surpris-
ing, but it is related to the generality of certain key ideas from sampling 
such as rejection sampling, sequential Monte Carlo methods25 and 
‘approximate Bayesian computation’49.

As an example, imagine you write a probabilistic program that simu-
lates a gene regulatory model that relates unmeasured transcription 

factors to the expression levels of certain genes. Your uncertainty in each 
part of the model would be represented by the probability distributions 
used in the simulator. The universal inference engine can then condition 
the output of this program on the measured expression levels, and auto-
matically infer the activity of the unmeasured transcription factors and 
other uncertain model parameters. Another application of probabilistic 
programming implements a computer vision system as the inverse of a 
computer graphics program50. 

There are several reasons why probabilistic programming could 
prove to be revolutionary for machine intelligence and scientific mod-
elling (its potential has been noticed by US Defense Advanced Research 
Projects Agency, which is currently funding a major programme called 
Probabilistic Programming for Advancing Machine Learning). First, 
the universal inference engine obviates the need to manually derive 
inference methods for models. Since deriving and implementing 
inference methods is generally the most rate-limiting and bug-prone 
step in modelling, often taking months, automating this step so that 
it takes minutes or seconds will greatly accelerate the deployment of 
machine learning systems. Second, probabilistic programming could 
be potentially transformative for the sciences, since it allows for rapid 
prototyping and testing of different models of data. Probabilistic pro-
gramming languages create a very clear separation between the model 
and the inference procedures, encouraging model-based thinking51. 
There are a growing number of probabilistic programming languages. 
BUGS52, Stan53, AutoBayes54 and Infer.NET55 allow only a restrictive 
class of models to be represented compared with systems based on 
Turing-complete languages. In return for this restriction, inference 
in such languages can be much faster than for the more general lan-
guages56, such as IBAL57, BLOG58, Church59, Figaro60, Venture61, and 
Anglican62. A major emphasis of recent work is on fast inference in 
general languages (see for example ref. 63). Nearly all approaches to 
probabilistic programming are Bayesian since it is hard to create other 
coherent frameworks for automated reasoning about uncertainty. 
Notable exceptions are systems such as Theano, which is not itself a 
probabilistic programming language but uses symbolic differentia-
tion to speed up and automate optimization of parameters of neural 
networks and other probabilistic models64. 

Although parameter optimization is commonly used to improve 
probabilistic models, in the next section I will describe recent work 
on how probabilistic modelling can be used to improve optimization. 

Figure 2 | Probabilistic programming. A probabilistic program in Julia 
(left) defining a simple three-state hidden Markov model (HMM), inspired 
by an example in ref. 62. The HMM is a widely used probabilistic model for 
sequential and time-series data, which assumes the data were obtained by 
transitioning stochastically between a discrete number of hidden states98. 
The first four lines define the model parameters and the data. Here ‘trans’ is 
the 3 × 3 state-transition matrix, ‘initial’ is the initial state distribution, and 
‘statesmean’ are the mean observations for each of the three states; actual 
observations are assumed to be noisy versions of this mean with Gaussian 
noise. The function hmm starts the definition of the HMM, drawing the 

sequence of states with the @assume statements, and conditioning on the 
observed data with the @observe statements. Finally @predict states that we 
wish to infer the states and data; this inference is done automatically by the 
universal inference engine, which reasons over the configurations of this 
computer program. It would be trivial to modify this program so that the 
HMM parameters are unknown rather than fixed. A graphical model (right) 
corresponding to the HMM probabilistic program showing dependencies 
between the parameters (blue), hidden state variables (green) and observed 
data (yellow). This graphical model highlights the compositional nature of 
probabilistic models.  

statesmean = [-1, 1, 0]  # Emission parameters.
initial    = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].
trans      = [Categorical([0.1, 0.5, 0.4]), Categorical([0.2, 0.2, 0.6]), 
              Categorical([0.15, 0.15, 0.7])]   # Trans distr for each state. 
data       = [Nil, 0.9, 0.8, 0.7, 0, -0.025, -5, -2, -0.1, 0, 0.13] 

@model hmm begin # Define a model hmm.
 states = Array(Int, length(data))
 @assume(states[1] ~ initial)
 for i = 2:length(data)
   @assume(states[i] ~ trans[states[i-1]])
   @observe(data[i]  ~ Normal(statesmean[states[i]], 0.4))
 end
 @predict states
end

states[1] states[2] states[3] …

…data[1] data[2] data[3]

initial trans

statesmean
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Bayesian optimization
Consider the very general problem of finding the global maximum of an 
unknown function that is expensive to evaluate (say, evaluating the func-
tion requires performing lots of computation or conducting an experi-
ment). Mathematically, for a function f on a domain X, the goal is to find 
a global maximizer x*:
   

Bayesian optimization poses this as a problem in sequential deci-
sion theory: where should one evaluate next so as most quickly to 
maximize f, taking into account the gain in information about the 
unknown function f  (refs 65,66)? For example, having evaluated at 
three points, measuring the corresponding values of the function at 
those points, [(x1, f(x1)), (x2,f(x2)),(x3,f(x3))], which point x should 
the algorithm evaluate next, and where does it believe the maximum 
to be? This is a classic machine-intelligence problem with a wide 
range of applications in science and engineering, from drug design 
(where the function could be the drug’s efficacy) to robotics (where 
the function could be the speed of a robot’s gait). It can be applied 
to any problem involving the optimization of expensive functions; 
the qualifier ‘expensive’ comes because Bayesian optimization might 
use substantial computational resources to decide where to evaluate 
next, and a trade-off for these resources has to be made with the cost 
of function evaluations.

The current best-performing global optimization methods maintain a 
Bayesian representation of the probability distribution over the uncertain 
function f  being optimized, and use this uncertainty to decide where 
(in X) to query next67–69. In continuous spaces, most Bayesian optimiza-
tion methods (Fig. 3) use Gaussian processes (as described in the section 
on non-parametrics) to model the unknown function. A recent high-
impact application has been the optimization of the training process for 
machine-learning models, including deep neural networks70. This and 
related recent work71 are further examples of the application of machine 
intelligence to improve machine intelligence. 

There are interesting links between Bayesian optimization and rein-
forcement learning. Specifically, Bayesian optimization is a sequential 
decision problem where the decisions (choices of x to evaluate) do 
not affect the state of the system (the actual function f). Such state-less 
sequential decision problems fall under the rubric of multi-arm bandits72, 

a subclass of reinforcement-learning problems. More broadly, important 
recent work takes a Bayesian approach to learning to control uncertain 
systems73 (for a review see ref. 74). Faithfully representing uncertainty 
about the future outcome of actions is particularly important in decision 
and control problems. Good decisions rely on good representations of 
the probability of different outcomes and their relative payoffs. 

More generally, Bayesian optimization is a special case of Bayesian 
numerical computation75,76, which is re-emerging as a very active area of 
research (http://www.probabilistic-numerics.org), and includes topics 
such as solving ordinary differential equations and numerical integration. 
In all these cases, probability theory is being used to represent computa-
tional uncertainty; that is, the uncertainty that one has about the outcome 
of a deterministic computation. 

Data compression
Consider the problem of compressing data so as to communicate them 
or store them in as few bits as possible in such a manner that the original 
data can be recovered exactly from the compressed data. Methods for such 
lossless data compression are ubiquitous in information technology, from 
computer hard drives to data transfer over the internet. Data compression 
and probabilistic modelling are two sides of the same coin, and Bayesian 
machine-learning methods are increasingly advancing the state-of-the-art 
in compression. The connection between compression and probabilistic 
modelling was established in the mathematician Claude Shannon’s semi-
nal work on the source coding theorem77, which states that the number 
of bits required to compress data in a lossless manner is bounded by the 
entropy of the probability distribution of the data. All commonly used 
lossless data compression algorithms (for example, gzip) can be viewed 
as probabilistic models of sequences of symbols. 

The link to Bayesian machine learning is that the better the 
probabilistic model one learns, the higher the compression rate 
can be78. These models need to be flexible and adaptive, since dif-
ferent kinds of sequences have very different statistical patterns 
(say, Shakespeare’s plays or computer source code). It turns out 
that some of the world’s best compression algorithms (for example, 
Sequence Memoizer79 and PPM with dynamic parameter updates80) 
are equivalent to Bayesian non-parametric models of sequences, 
and improvements to compression are being made through a better 
understanding of how to learn the statistical structure of sequences. 
Future advances in compression will come with advances in 

Figure 3 | Bayesian optimization. A simple illustration of Bayesian 
optimization in one dimension. The goal is to maximize some true 
unknown function f (not shown). Information about this function is 
gained by making observations (circles, top), which are evaluations of 
the function at specific x values. These observations are used to infer a 
posterior distribution over the function values (shown as mean, blue line; 
and standard deviations, blue shaded area) representing the distribution of 
possible functions; note that uncertainty grows away from the observations. 
On the basis of this distribution over functions, an acquisition function is 

computed (green shaded area, bottom panels), which represents the gain 
from evaluating the unknown function f at different x values; note that the 
acquisition function is high where the posterior over f has both high mean 
and large uncertainty. Different acquisition functions can be used such as 
‘expected improvement’ or ‘information gain’. The peak of the acquisition 
function (red line) is the best next point to evaluate, and is therefore chosen 
for evaluation (red dot, new observation). The left and right panels show 
an example of what could happen after three and four function evaluations, 
respectively. 
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probabilistic machine learning, including special compression 
methods for non-sequence data such as images, graphs and other 
structured objects.

Automatic discovery of interpretable models from data
One of the grand challenges of machine learning is to fully automate the 
process of learning and explaining statistical models from data. This is the 
goal of the Automatic Statistician (http://www.automaticstatistician.com), 
a system that can automatically discover plausible models from data, and 
explain what it has discovered in plain English81. This could be useful 
to almost any field of endeavour that is reliant on extracting knowledge 
from data. In contrast to the methods described in much of the machine-
learning literature, which have been focused on extracting increasing 

performance improvements on pattern-recognition problems using 
techniques such as kernel methods, random forests or deep learning, the 
Automatic Statistician builds models that are composed of interpretable 
components, and has a principled way of representing uncertainty about 
model structures given the data. It also gives reasonable answers not just 
for big data sets, but also for small ones. Bayesian approaches provide an 
elegant way of trading off the complexity of the model and the complexity 
of the data, and probabilistic models are compositional and interpretable, 
as already described. 

A prototype version of the Automatic Statistician takes in time-series 
data and automatically generates 5–15 page reports describing the model 
it has discovered (Fig. 4). This system is based on the idea that proba-
bilistic building blocks can be combined through a grammar to build 

Figure 4 | The Automatic Statistician. A flow diagram describing the 
Automatic Statistician. The input to the system is data, in this case 
represented as time series (top left). The system searches over a grammar 
of models to discover a good interpretation of the data (bottom left), using 
Bayesian inference to score the models (Box 1). Components of the model 

discovered are translated into English phrases (bottom right). The end 
result is a report with text, figures and tables, describing in detail what has 
been inferred about the data, including a section on model checking and 
criticism (top right)99,100. Data and the report are for illustrative purposes 
only.
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an open-ended language of models82. In contrast to work on equation 
learning (see for example ref. 83), the models attempt to capture general 
properties of functions (for example, smoothness, periodicity or trends) 
rather than a precise equation. Handling uncertainty is at the core of the 
Automatic Statistician; it makes use of Bayesian non-parametrics to give 
it the flexibility to obtain state-of-the-art predictive performance, and 
uses the metric marginal likelihood (Box 1) to search the space of models. 

Important earlier work includes statistical expert systems84,85 and the 
Robot Scientist, which integrates machine learning and scientific discov-
ery in a closed loop with an experimental platform in microbiology to 
automate the design and execution of new experiments86. Auto-WEKA 
is a recent project that automates learning classifiers, making heavy use of 
the Bayesian optimization techniques already described71. Efforts to auto-
mate the application of machine-learning methods to data have recently 
gained momentum, and may ultimately result in artificial intelligence 
systems for data science.

Perspective
The information revolution has resulted in the availability of ever larger 
collections of data. What is the role of uncertainty in modelling such big 
data? Classic statistical results state that under certain regularity condi-
tions, in the limit of large data sets the posterior distribution of the param-
eters for Bayesian parametric models converges to a single point around 
the maximum likelihood estimate. Does this mean that Bayesian proba-
bilistic modelling of uncertainty is unnecessary if you have a lot of data?

There are at least two reasons this is not the case87. First, as we have 
seen, Bayesian non-parametric models have essentially infinitely many 
parameters, so no matter how many data one has, their capacity to learn 
should not saturate, and their predictions should continue to improve. 

Second, many large data sets are in fact large collections of small data 
sets. For example, in areas such as personalized medicine and recom-
mendation systems, there might be a large amount of data, but there is still 
a relatively small amount of data for each patient or client, respectively. 
To customize predictions for each person it becomes necessary to build a 
model for each person — with its inherent uncertainties — and to couple 
these models together in a hierarchy so that information can be borrowed 
from other similar people. We call this the personalization of models, and 
it is naturally implemented using hierarchical Bayesian approaches such 
as hierarchical Dirichlet processes36, and Bayesian multitask learning88,89. 

Probabilistic approaches to machine learning and intelligence are a very 
active area of research with wide-ranging impact beyond conventional 
pattern-recognition problems. As I have outlined, these problems include 
data compression, optimization, decision making, scientific model dis-
covery and interpretation, and personalization. The key distinction 
between problems in which a probabilistic approach is important and 
problems that can be solved using non-probabilistic machine-learning 
approaches is whether uncertainty has a central role. Moreover, most 
conventional optimization-based machine-learning approaches have 
probabilistic analogues that handle uncertainty in a more principled 
manner. For example, Bayesian neural networks represent the parameter 
uncertainty in neural networks44, and mixture models are a probabilistic 
analogue for clustering methods78. Although probabilistic machine learn-
ing often defines how to solve a problem in principle, the central chal-
lenge in the field is finding how to do so in practice in a computationally 
efficient manner90,91. There are many approaches to the efficient approxi-
mation of computationally hard inference problems. Modern inference 
methods have made it possible to scale to millions of data points, making 
probabilistic methods computationally competitive with conventional 
methods92–95. Ultimately, intelligence relies on understanding and acting 
in an imperfectly sensed and uncertain world. Probabilistic modelling will 
continue to play a central part in the development of ever more powerful 
machine learning and artificial intelligence systems. ■
Received 12 February; accepted 21 April 2015. 
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