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Parameter Estimation with Latent Variables

o If MLE on log p(X.Z|0) is easy then let's do it!

@ Problem: Well, we don't actually know Z, so we are still stuck. ®

@ Solution: Use the posterior p(Z|X, ) over latent variables Z to compute the

expected complete data log-likelihood and do MLE on that objective.
6 = arg max Ellog p(X, Z|6)]

= argmax ;p(z X.0)log p(X,Z|0)

@ But now we have a chicken-and-egg problem: the posterior p(Z|X, §) over Z

itself depends on the parameters 6
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Parameter Estimation with Latent Variables

Model p(X, Z|6), observed data X, latent variables Z, model parameters 6

Recall GMM, Z: cluster assignments, 0: GMM parameters {7, fo, i }o_;

Goal: Estimate the model parameters 6 via MLE

= 0) = D 0
arg max log p(X[0) arg max log %‘p(x, z|0)

Doing MLE in such models can be difficult because of the log-sum

@ /fwe "knew" Z, sum over all possible Z not needed. Just define “complete
data” {X,Z}, and do MLE on the complete data log-lik. log p(X, Z|6)

@ Assumption: MLE on log p(X. Z|0) is easy

@ It often indeed is, especially when p(X, Z|0) is exponential family distribution
(or product of exponential family distributions)
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Solution: An lterative Scheme (EM Algorithm)

Initialize the parameters: §°¢. Then alternate between these steps:

@ E (Expectation) step:

o Compute the posterior p(Z|X, %) over latent variables Z using §°¢
@ Compute the expected complete data log-likelihood w.r.t. this posterior

Q(0,0°) = E 71 goit)ll0g P(X, Z|0)] = > p(ZIX, 0°) log p(X, Z|0)
z

@ M (Maximization) step:
@ Maximize the expected complete data log-likelihood w.r.t. 6

0" = arg max Q(6,6°“)  (if doing MLE)

v = argmeax{Q(H,F)OId)-ﬁ-|ogp(9)} (if doing MAP)

@ |f the log-likelihood or the parameter values not converged then set
§°d = g% and go to the E step.

Why is this doing the right thing?
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lllustration: EM for GMM lllustration: EM for GMM (Contd.)

@ Recall that the GMM parameters 6 = {m, u, X} = {Wkﬁukﬁzk}£(=1 @ The only expectation we need to compute E,zx,ellog p(X, Z|7, i, E)] is
ikeli N (x|, T
@ The complete data likelihood Bzl = S zkp(znklxe. 7 s E) = plzm = 1m0y iy ) = — (X‘_\/’kf W
2p={0,1} =1 TN (xnlpj- %))
N K N K
p(X, Z|m, i, £) = [ [] plzn = K)p(xalza = k) = [T T 7N (xal i, )k @ Thus the expected complete data log-likelihood
n=1 k=1 n=1 k=1
N K
o Taking the log, we get: Eyzix.0llog p(X, Z|m, 1, E)] = D > Yok {log m¢ + log N (Xal e, Tu)}
n=1 k=1
N K
log p(X, Z|7, iy X) = > >z {log mk + log N (Xl sk Tk} @ M-step maximizes the the exp. complete data log-likelihood w.r.t. mx, pk, Lk
n=1 k=1

@ The update equations for these will be (shown on the board)

@ E-step computes the expected complete data log-likelihood:
1 1 X
K uk=FZ’)’nka ‘Zk=VZ”/nk(Xn*Mk)(Xn*uk)T- Th = —

Epzix,0)[log p(X. Z|7, 1, E)] = D > Elzuk] {log m + log N (Xa |11, Tk)} s ke
n=1 k=1
) ) where N, = SV, v, is “effective’ num. of examples assigned to k" Gaussian
where [E[z4] is the expected value of zp, under the posterior
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Justification 1

@ Consider the log likelihood on “incomplete” data X
p(X, Z|0)

————=  (where g(Z) is some distribution
T (here 4(2) )

logp(X|0) = logy_ p(X,Z|0) =log ) q(2)
z z

X.Z|0
> XZ: q(Z) log % (using Jensen's inequality for concave log)

logp(X|0) > > aq(Z)logp(X.Z|0) — > q(Z)log a(Z) = D  q(Z) log p(X, Z|0) + const.
z z z

Why does EM work?

doesn't depend on 6

@ If we set q(z) — p(z|X,0) then the above inequality becomes equality

p(%.2Z]0) _

o@X.0) ~ 2 PEIX.0)log

z

S o@)iog BX2D S p(zix. 0) 1o
z

PZXT) p(X|0)
7 q(2) p(Z%T)

= > p(ZIX. 0)log p(X|0)
z
= logp(X|0) > p(Z|X, 0) = log p(X|0)
@ Thus for q(z) = p(z|X. 6), we have !
log p(X]0) = Zp(Z\X, 0) log p(X. Z|0) + const. = E[log p(X. Z|0)] + const.
@ EM maximizes E[logp(zx,zw)] , a tight lower-bound on log p(X|0)
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Justification 2

@ We can also write the incomplete log likelihood

[Iog p(XI0) = £(a.6) + KL(allp.)

where g is some distr. on Z, p, = p(Z|X, 0) is the posterior over Z, and

can = Saene{ 2520 }
_ og d PEX.0)
Kl(glle) = szq(Z)lg{ @) }
KL(allp)
L(q.0) Inp(X|6)

(to verify, use log p(X. Z|0) = log p(Z|X, 0) + log p(X|0) in the expression of £(q,0))

@ Since KL(ql|p:) >0, £(q.0) is a lower-bound on log p(X|#) for any g

Picture courtesy: PRML (Bishop, 2006)
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Justification 2 (contd.)

E-step: £L(q, 9°’d) increases and becomes equal to log p(X|6°¥), KL(g||p,) becomes 0
because we set ¢ = p(Z|X, 0)

£(q.0°)

KL(gllp) =

Inp(X|6°)

M-step: 0" makes L(q,0"™") go further up, makes KL(g||p;) > 0 again
because q # p(Z|X, 0"") and thus ensures that log p(X|0™") > log p(X|0°9)

e 11

£(0.6"™) Inp(X %)

Thus the E and M steps never decrease the log-likelihood p(X|6)

Picture courtesy: PRML (Bishop, 2006)
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Justification 2 (contd.)

Recall log p(X[0) = L(q,0) + KL(g||p-). EM can also be seen as:

@ With 0 fixed to #°', maximize £(q,0°?) w.rt. q

§ = argmax £(g, 6°)
q

which is equivalent to making KL(q||p,) = 0 or setting § = p(Z|X, 6°')
(This step makes £(§,0°¢) = log p(X|0°9); see next slide)
@ With g fixed at p(Z|X,6°9), maximize £(§,0) w.r.t. 8, where

£a.0) = > pzIX.0%)log p(X.Z|0) = 3 p(Z|X, 0°") log p(Z|X, 07)
z z

constant w.r.t. 6

= 90.0°) + const

0" = arg max Q(0, 0°4)

(This step ensures that log p(X|6"*) > log p(X|0°'); see next slide)
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A View in the Parameter Space

E-step: Update of g makes the £(q,6) curve touch the log p(X|6) curve
@ M-step gives the maxima 0" of £(q,0)
@ Next E-step readjusts £(q, 0) curve (green) to meet log p(X|6) curve again

This continues until a local maxima of log p(X|6) is reached

Inp(X|0)

- gold gnew ;
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Some EM Variants

Generalized EM: M step doesn't require maximization w.r.t. 6; even if the
new 6 just increases the lower bound, we will still converge to a local optima

Variational EM and MCMC EM: If the E step of computing the posterior

p(Z|X, 0) is intractable, we can use variational Bayes (VB) or MCMC to . 1 .

approximate the posterior NeXt Up PrOba bIIIStIC PCA and
Expectation Conditional Maximization: Parameters are partitioned in .

groups. M step consists of multiple steps (each optimizing one group of Fa Ctor An d IySIS

parameters, treating all other groups as fixed)

@ Online/incremental EM: E step only processes one (or a small number of)
observation, computing posteriors/expectations only w.r.t. that minibatch of
data. For exponential famility distributions, the sufficient statistics needed in
the M step can be easily updated incrementally, leading to simple form of
incremental parameter updates. Very useful for scalable inference. See:

(1) Online EM Algorithm for Latent Data Models (Cappé & Moulines, 2009)
(2) Online EM for Unsupervised Models (Liang & Klein, 2009)
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