Clustering and Gaussian Mixture Models

Piyush Rai IIT Kanpur

Probabilistic Machine Learning (CS772A)

Jan 25, 2016

Recap of last lecture..

Clustering

- Usually an unsupervised learning problem
- Given: N unlabeled examples $\{x_1, \dots, x_N\}$; the number of partitions K
- Goal: Group the examples into K partitions

- Clustering groups examples based of their mutual similarities
- A good clustering is one that achieves:
 - High within-cluster similarity
 - Low inter-cluster similarity
- Examples: K-means, Spectral Clustering, Gaussian Mixture Model, etc.

Refresher: K-means Clustering

- Input: N examples $\{x_1,\ldots,x_N\}$; $x_n\in\mathbb{R}^D$; the number of partitions K
- ullet Initialize: K cluster means $oldsymbol{\mu}_1,\ldots,oldsymbol{\mu}_K$, $oldsymbol{\mu}_k\in\mathbb{R}^D$; many ways to initialize:
 - Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)
- Iterate:
 - (Re)-Assign each example x_n to its closest cluster center

$$\boxed{\mathcal{C}_k = \{n: \quad k = \arg\min_{k} ||x_n - \mu_k||^2\}}$$

 $(\mathcal{C}_k$ is the set of examples assigned to cluster k with center $oldsymbol{\mu}_k)$

Update the cluster means

$$\mu_k = \mathsf{mean}(\mathcal{C}_k) = rac{1}{|\mathcal{C}_k|} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n$$

- Repeat while not converged
- A possible convergence criteria: cluster means do not change anymore

Picture courtesy: "Data Clustering: 50 Years Beyond K-Means", A.K. Jain (2008) Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models

The K-means Objective Function

• Notation: Size K one-hot vector to denote membership of x_n to cluster k

$$z_n = \underbrace{[0 \ 0 \dots 1 \ 0 \ 0]}_{\text{output}}$$

- Also equivalent to just saying $z_n = k$
- K-means objective can be written in terms of the total distortion

$$J(\mu, \mathbf{Z}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} || \mathbf{x}_{n} - \boldsymbol{\mu}_{k} ||^{2}$$

- ullet Distortion: Loss suffered on assigning points $\{x_n\}_{n=1}^N$ to clusters $\{\mu_k\}_{k=1}^K$
- Goal: To minimize the objective w.r.t. μ and **Z**
- Note: Non-convex objective. Also, exact optimization is NP-hard
- The K-means algorithm is a heuristic; alternates b/w minimizing J w.r.t. μ and \boldsymbol{Z} ; converges to a local minima

5 Probabilistic Machine Learning (CS772A)

• No notion of a soft/fractional assignment (i.e., probability of being assigned to

each cluster: say K = 3 and for some point x_n , $p_1 = 0.7$, $p_2 = 0.2$, $p_3 = 0.1$)

• K-means often doesn't work when clusters are not round shaped, and/or may

• Gaussian Mixture Model: A probabilistic approach to clustering (and density estimation) addressing many of these problems

Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models

Mixture Models

• Data distribution p(x) assumed to be a weighted sum of K distributions

$$p(x) = \sum_{k=1}^{K} \pi_k p(x|\theta_k)$$

where π_k 's are the mixing weights: $\sum_{k=1}^K \pi_k = 1$, $\pi_k \geq 0$ (intuitively, π_k is the proportion of data generated by the k-th distribution)

- Each component distribution $p(x|\theta_k)$ represents a "cluster" in the data
- Gaussian Mixture Model (GMM): component distributions are Gaussians

- Mixture models used in many data modeling problems, e.g.,
 - Unsupervised Learning: Clustering (+density estimation)
 - Supervised Learning: Mixture of Experts models

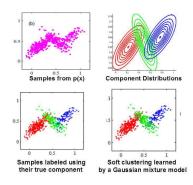
GMM Clustering: Pictorially

K-means: Some Limitations

overlap, and/or are unequal

Makes hard assignments of points to clusters

• A point either totally belongs to a cluster or not at all



Notice the "mixed" colored points in the overlapping regions

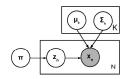
GMM as a Generative Model of Data

- Can think of the data $\{x_1, x_n, \dots, x_N\}$ using a "generative story"
 - For each example x_n , first choose its cluster assignment $z_n \in \{1, 2, \dots, K\}$ as

 $z_n \sim \mathsf{Multinoulli}(\pi_1, \pi_2, \dots, \pi_K)$

• Now generate x from the Gaussian with id z_n

 $x_n|z_n \sim \mathcal{N}(\mu_{z_n}, \mathbf{\Sigma}_{z_n})$



• Note: $p(z_{nk} = 1) = \pi_k$ is the prior probability of x_n going to cluster k and

$$p(\mathbf{z}_n) = \prod_{k=1}^{n} \pi_k^{\mathbf{z}_{nk}}$$

p(x,z) = p(z)p(x|z)

 $p(\mathbf{x}) = \sum_{k=1}^{K} p(z_k = 1) p(\mathbf{x}|z_k = 1) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

• Thus the generative model leads to exactly the same p(x) that we defined

GMM as a Generative Model of Data

Joint distribution of data and cluster assignments

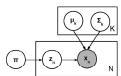
Marginal distribution of data

Learning GMM

• Given N observations $\{x_1, x_2, \dots, x_N\}$ drawn from mixture distribution p(x)

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Learning the GMM involves the following:
 - Learning the cluster assignments $\{z_1, z_2, \dots, z_N\}$
 - ullet Estimating the mixing weights $oldsymbol{\pi}=\{\pi_1,\ldots,\pi_K\}$ and the parameters $\theta = \{\mu_k, \mathbf{\Sigma}_k\}_{k=1}^K$ of each of the K Gaussians



• GMM, being probabilistic, allows learning probabilities of cluster assignments

GMM: Learning Cluster Assignment Probabilities

- For now, assume $\boldsymbol{\pi} = \{\pi_1, \dots, \pi_K\}$ and $\boldsymbol{\theta} = \{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$ are known
- \bullet Given θ , the posterior probabilities of cluster assignments, using Bayes rule

$$\boxed{ \gamma_{nk} = \rho(z_{nk} = 1 | x_n) = \frac{\rho(z_{nk} = 1) \rho(x_n | z_{nk} = 1)}{\sum_{j=1}^K \rho(z_{nj} = 1) \rho(x_n | z_{nj} = 1)} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)} }$$

- Here γ_{nk} denotes the posterior probability that x_n belongs to cluster k
- Posterior prob. $\gamma_{nk} \propto \text{prior probability } \pi_k \text{ times likelihood } \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
- Note that unlike K-means, there is a non-zero posterior probability of x_n belonging to each of the K clusters (i.e., probabilistic/soft clustering)
- ullet Therefore for each example x_n , we have a vector γ_n of cluster probabilities

$$\gamma_n = [\gamma_{n1} \ \gamma_{n2} \ \dots \ \gamma_{nK}], \ \sum_{k=1}^K \gamma_{nk} = 1, \gamma_{nk} > 0$$

(ラ・ミミ・ミミ) 夏 かくで 11 Probabilistic Machine Learning(CS772A) Clustering and Gaussian Mixture Models 12

GMM: Estimating Parameters

- ullet Now assume the cluster probabilities γ_1,\ldots,γ_N are known
- Let us write down the log-likelihood of the model

$$\mathcal{L} = \log \rho(\mathbf{X}) = \log \prod_{n=1}^N \rho(x_n) = \sum_{n=1}^N \log \rho(x_n) = \sum_{n=1}^N \log \left\{ \sum_{k=1}^K \pi_k \mathcal{N}(x_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

• Taking derivative w.r.t. μ_k (done on black board) and setting to zero

$$\sum_{n=1}^{N} \underbrace{\frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}}_{\gamma_{nk}} \boldsymbol{\Sigma}_k^{-1}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$
• Plugging and chugging, we get

$$\boldsymbol{\mu}_{k} = \frac{\sum_{n=1}^{N} \gamma_{nk} \boldsymbol{X}_{n}}{\sum_{n=1}^{N} \gamma_{nk}} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk} \boldsymbol{X}_{n}$$

- Thus mean of k-th Gaussian is the weighted empirical mean of all examples
- $N_k = \sum_{n=1}^N \gamma_{nk}$: "effective" num. of examples assigned to k-th Gaussian (note that each example belongs to each Gaussian, but "partially")

GMM: Estimating Parameters

• Doing the same, this time w.r.t. the covariance matrix Σ_k of k-th Gaussian:

$$\boxed{\boldsymbol{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^\top}$$

using similar computations as MLE of the covariance matrix of a single Gaussian (shown on board)

- Thus Σ_k is the weighted empirical covariance of all examples
- ullet Finally, the MLE objective for estimating $\pi = \{\pi_1, \pi_2, \dots, \pi_K\}$ $\sum_{n=1}^{N}\log\sum_{k=1}^{K}\pi_{k}\mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}) + \lambda(\sum_{k=1}^{K}\pi_{k}-1) \qquad (\lambda \text{ is the Lagrange multiplier for }\sum_{k=1}^{K}\pi_{k}=1)$
- Taking derivative w.r.t. π_k and setting it to zero gives Lagrange multiplier $\lambda=-{\it N}.$ Plugging it back and chugging, we get

$$\pi_k = \frac{N_k}{N}$$

which makes intuitive sense (fraction of examples assigned to cluster k)

13 Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models

Summary of GMM Estimation

- Initialize parameters $\theta = \{\mu_k, \Sigma_k\}_{k=1}^K$ and mixing weights $\pi = \{\pi_1, \dots, \pi_K\}$, and alternate between the following steps until convergence:
 - ullet Given current estimates of $\theta = \{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$ and $oldsymbol{\pi}$
 - Estimate the posterior probabilities of cluster assignments

$$\gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \qquad \forall n, k$$

- Given the current estimates of cluster assignment probabilities $\{\gamma_{nk}\}$
 - Estimate the mean of each Gaussian

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n \qquad \forall k, \text{where } N_k = \sum_{n=1}^N \gamma_{nk}$$
 • Estimate the covariance matrix of each Gaussian

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (x_n - \mu_k) (x_n - \mu_k)^{\top} \quad \forall k$$

Estimate the mixing proportion of each Gaussian

$$\boxed{\pi_k = \frac{11}{N} \quad \forall k}$$

K-means: A Special Case of GMM

• Assume the covariance matrix of each Gaussian to be spherical

$$\mathbf{\Sigma}_k = \sigma^2 \mathbf{I}$$

• Consider the posterior probabilities of cluster assignments

$$\gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = \frac{\pi_k \exp\{-\frac{1}{2\sigma^2} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2\}}{\sum_{j=1}^K \pi_j \exp\{-\frac{1}{2\sigma^2} ||\mathbf{x}_n - \boldsymbol{\mu}_j||^2\}}$$

ullet As $\sigma^2
ightarrow 0$, the summation of denominator will be dominated by the term with the smallest $||\mathbf{x}_n - \boldsymbol{\mu}_i||^2$. For that j,

$$\gamma_{nj} \approx \frac{\pi_{j} \exp\{-\frac{1}{2\sigma^{2}}||\mathbf{x}_{n} - \boldsymbol{\mu}_{j}||^{2}\}}{\pi_{j} \exp\{-\frac{1}{2\sigma^{2}}||\mathbf{x}_{n} - \boldsymbol{\mu}_{j}||^{2}\}} = 1$$

- For $\ell \neq j$, $\gamma_{n\ell} \approx 0 \Rightarrow \text{hard assignment}$ with $\gamma_{nj} \approx 1$ for a single cluster j
- Thus, for $\Sigma_k = \sigma^2 \mathbf{I}$ (spherical) and $\sigma^2 \to 0$, GMM reduces to K-means

15 Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models

Next class: The Expectation Maximization Algorithm

Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models 17