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Clustering

@ Usually an unsupervised learning problem
@ Given: N unlabeled examples {x1, ..., xn}; the number of partitions K

® Goal: Group the examples into K partitions

(a) Input data (b) Desired clustering

@ Clustering groups examples based of their mutual similarities

@ A good clustering is one that achieves:
@ High within-cluster similarity

@ Low inter-cluster similarity

@ Examples: K-means, Spectral Clustering, Gaussian Mixture Model, etc.

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)
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Recap of last lecture..

Clustering and Gaussian Mixture Models

Refresher: K-means Clustering

@ Input: N examples {x1,..., xn}; xn, € RP; the number of partitions K

@ Initialize: K cluster means gy, ..., px, ft, € RP; many ways to initialize:
@ Usually initialized randomly, but good initialization is crucial; many smarter
initialization heuristics exist (e.g., K-means++-, Arthur & Vassilvitskii, 2007)
@ lterate:
@ (Re)-Assign each example x, to its closest cluster center

Co={n: k=argmin b, — |’}

(Ck is the set of examples assigned to cluster k with center p,)
@ Update the cluster means
1
1k = mean(Cx) = —— X
/ ©) =1z, > x

nECk

@ Repeat while not converged
@ A possible convergence criteria: cluster means do not change anymore

3 Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models.



The K-means Objective Function

@ Notation: Size K one-hot vector to denote membership of x, to cluster k
z, = [00...10 0]
———"
@ Also equivalent to just saying z, = k
@ K-means objective can be written in terms of the total distortion

N K
J(/,L7 Z) = Zzznknxn - M’k”z

n=1 k=1

o Distortion: Loss suffered on assigning points {x,}"_; to clusters {g,}X_,

@ Goal: To minimize the objective w.r.t. u and Z

@ Note: Non-convex objective. Also, exact optimization is NP-hard

@ The K-means algorithm is a heuristic; alternates b/w minimizing J w.r.t. p

and Z ; converges to a local minima
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Mixture Models

@ Data distribution p(x) assumed to be a weighted sum of K distributions
p(x) = kXK;mP(X\ek)
where 7,'s are the mixing weights: 22;1 m =1, mx >0 (intuitively, 7y is
the proportion of data generated by the k-th distribution)
e Each component distribution p(x|6x) represents a “cluster” in the data

@ Gaussian Mixture Model (GMM): component distributions are Gaussians

K
p(x) =D mN (x|, Tn)
k=1
N(x|p,Z,)

N(xlp,.z,)

@ Mixture models used in many data modeling problems, e.g.,

@ Unsupervised Learning: Clustering (+density estimation)
@ Supervised Learning: Mixture of Experts models
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K-means: Some Limitations

@ Makes hard assignments of points to clusters

@ A point either totally belongs to a cluster or not at all

@ No notion of a soft/fractional assignment (i.e., probability of being assigned to
each cluster: say K = 3 and for some point x,, pr = 0.7, p> = 0.2, p3 = 0.1)

@ K-means often doesn't work when clusters are not round shaped, and/or may

7

@ Gaussian Mixture Model: A probabilistic approach to clustering (and

overlap, and/or are unequal

ol

density estimation) addressing many of these problems
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GMM Clustering: Pictorially

0 05 2 0 05 1
Samples labeled using Soft clustering learned
their true component by a Gaussian mixture model

Notice the “mixed” colored points in the overlapping regions
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GMM as a Generative Model of Data GMM as a Generative Model of Data

@ Can think of the data {x1,xp,..., Xn} using a “generative story”

@ For each example x,, first choose its cluster assignment z, € {1.2,...,K} as

z, ~ Multinoulli(7y, 72, . .., k) @ Joint distribution of data and cluster assignments

@ Now generate x from the Gaussian with id z, p(x.z) = p(z)p(x|2)

Xn|zp ~ N(p,, . 2z, . T
olzn (s, ) @ Marginal distribution of data

(u) K K
@K Shaded nodes: Observed p(X) = Z p(Zk = 1)p(X|Zk = 1) = Zﬂ-k‘/\/’(xh‘l’k‘r Zk)
White nodes: Unknowns k=1 k=1
@ . ‘ N @ Thus the generative model leads to exactly the same p(x) that we defined

@ Note: p(zp = 1) = 7k is the prior probability of x, going to cluster k and

K
p(zo) = [ [ mk
k=1
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Learning GMM GMM: Learning Cluster Assignment Probabilities
e Given N observations {x1, X2, ..., xy} drawn from mixture distribution p(x) @ For now, assume m = {my,..., 7k} and 0 = {p,, Zx}f_; are known

p(x) = XK:mN(X\uk.Zk) @ Given 0, the posterior probabilities of cluster assignments, using Bayes rule

k=1

@ Learning the GMM involves the following:

Pzok = 1)p(Xnlzok = 1)  _  meN(Xn|pi, Tk)
Zjil p(znj = 1)p(xn|zo = 1) Zjil TUN(XH‘I»‘/W %))

Yk = p(znk = 1[xn) =

@ Learning the cluster assignments {z1,z2,...,zn}

@ Estimating the mixing weights 7w = {m1...., 7« } and the parameters @ Here .« denotes the posterior probability that x, belongs to cluster k
0 = {11, Ta i, of each of the K Gaussians
@ Posterior prob. vy, o prior probability 7, times likelihood N'(x |, )

@ @K @ Note that unlike K-means, there is a non-zero posterior probability of x,,
belonging to each of the K clusters (i.e., probabilistic/soft clustering)

@— @ Therefore for each example x,,, we have a vector -y, of cluster probabilities
N

K
TYn = ['Ynl Yn2 .- ’YnK]: Z’)’nk = 1‘,’\/nk >0
k=1

@ GMM, being probabilistic, allows learning probabilities of cluster assignments
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GMM: Estimating Parameters

@ Now assume the cluster probabilities vy, ...,y are known
@ Let us write down the log-likelihood of the model
N N N K
£ =logp(X) = log [ [ p(xn) = > log p(xs) = log { D mN (xal b, zk)}
n=1 n=1 n=1 k=1
@ Taking derivative w.r.t. g, (done on black board) and setting to zero

i TN (Xnl s Tk)

LS Ll bl T T ]
K TN (£ "
—_

nk

B
® Plugging and chugging, we get

N N

D1 YnkXn 1

pyo= 2T = N
Do Yok Ni o=

@ Thus mean of k-th Gaussian is the weighted empirical mean of all examples
o N, = ZHN=1 Ynk: “effective” num. of examples assigned to k-th Gaussian
(note that each example belongs to each Gaussian, but “partially”)
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Summary of GMM Estimation
o Initialize parameters 0 = {p,, L, }K_; and mixing weights m = {m1,..., 7k},
and alternate between the following steps until convergence:
o Given current estimates of 0 = {p,, X4}f_; and 7

s Estimate the posterior probabilities of cluster assignments

kN (Xn |y Zk)

—_— Vn, k
E/K:l WJN(XHWJ: z))

Tk =

e Given the current estimates of cluster assignment probabilities {7, }

» Estimate the mean of each Gaussian

N N
1
e = g Dk Vo where N =3

n=1 n=1

» Estimate the covariance matrix of each Gaussian

N
= — > vuklxn — ) (xa — i) VK

n=1

» Estimate the mixing proportion of each Gaussian
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GMM: Estimating Parameters

@ Doing the same, this time w.r.t. the covariance matrix X, of k-th Gaussian:

N

Ti= > k(%o — ) (x0 — )
Nk n=1

. using similar computations as MLE of the covariance matrix of a single
Gaussian (shown on board)

@ Thus Xy is the weighted empirical covariance of all examples

@ Finally, the MLE objective for estimating m = {71, m2,.... 7k}
N K K K
Z Iogz TN (X0 |y, Zie) + /\(Z e — 1) (A is the Lagrange multiplier for Z”k =1)
n=1 k=1 k=1 k=1

@ Taking derivative w.r.t. 7, and setting it to zero gives Lagrange multiplier
A = —N. Plugging it back and chugging, we get

which makes intuitive sense (fraction of examples assigned to cluster k)
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K-means: A Special Case of GMM

@ Assume the covariance matrix of each Gaussian to be spherical
X, =02l
@ Consider the posterior probabilities of cluster assignments
N (Xalp, i) Tk exp{—5m[1xn — P}

Tnk = =K = =K
i TN (%slp;, Z5) it WJEXP{—ﬁH"n—W”z}

@ As 02 — 0, the summation of denominator will be dominated by the term
with the smallest ||x, — p;||*. For that j,

_mep{—gallxa — P}

Ynj = =
Y mjexp{ =gy lixn — ml2}

@ For £ # j, Yo = 0 = hard assignment with v,; = 1 for a single cluster j

@ Thus, for X = o2l (spherical) and 02 — 0, GMM reduces to K-means
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Next class: The Expectation
Maximization Algorithm
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