Basics of Parameter Estimation in Probabilistic Models

Piyush Rai
IIT Kanpur
Probabilistic Machine Learning (CS772A)
Jan 11, 2016

Parameter Estimation

- Given: data $X = \{x_1, x_2, \ldots, x_N\}$ generated i.i.d. from a probabilistic model

 \[x_n \sim p(x|\theta) \quad \forall n = 1, \ldots, N \]

- Goal: estimate parameter θ from the observed data D

- First, recall the Bayes rule: The posterior probability $p(\theta|X)$ is

 \[p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)} = \frac{p(X|\theta)p(\theta)}{\int p(X|\theta)p(\theta)d\theta} = \frac{\text{likelihood} \times \text{prior}}{\text{marginal probability}} \]

- $p(X|\theta)$: probability of data X (or “likelihood”) for a specific θ
- $p(\theta)$: prior distribution (our prior belief about θ without seeing any data)
- $p(X)$: marginal probability (or “evidence”) - likelihood averaged over all θ’s (also normalizes the numerator to make $p(\theta|X)$ a probability distribution)

Maximum Likelihood Estimation (MLE)

- Perhaps the simplest (but widely used) parameter estimation method

- Finds the parameter $\hat{\theta}$ that maximizes the likelihood $p(X|\theta)$

 \[\mathcal{L}(\theta) = p(X|\theta) = p(x_1, \ldots, x_N | \theta) = \prod_{n=1}^{N} p(x_n | \theta) \]

- Note: Likelihood is a function of θ

- Maximum Likelihood parameter estimation

 \[\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} \mathcal{L}(\theta) = \arg \max_{\theta} \sum_{n=1}^{N} \log p(x_n | \theta) \]

- MLE typically maximizes the log-likelihood instead of the likelihood (doesn’t affect the estimation because log is monotonic)

- Log-likelihood:

 \[\log \mathcal{L}(\theta) = \log p(X | \theta) = \log \prod_{n=1}^{N} p(x_n | \theta) = \sum_{n=1}^{N} \log p(x_n | \theta) \]
MLE: Consistency

- If the assumed model \(p(x|\theta) \) has the same form as the true underlying model, then the MLE is consistent as the number of observations \(N \to \infty \)

\[
\hat{\theta}_{MLE} \to \theta,
\]

where \(\theta \) is the parameter of the true underlying model \(p(x|\theta) \) that generated the data.

- A rough informal proof: In the limit \(N \to \infty \)

\[
\mathcal{L}(\theta) = \mathbb{E}_{p(x|\theta)}[\log p(x|\theta)]
\]

\[
= -\text{KL}(p(x|\theta) || p(x|\theta)) + \mathbb{E}_{p(x|\theta)}[\log p(x|\theta)]
\]

(proof on the board)

- Thus \(\hat{\theta}_{MLE} \), the maximizer of \(\mathcal{L}(\theta) \), minimizes the KL divergence between \(p(x|\theta) \) and \(p(x|\theta) \). Since both have the same form, \(\theta = \theta \).

MLE via a simple example

- Consider a sequence of \(N \) coin tosses (call head = 0, tail = 1)
- Each outcome \(x_n \) is a binary random variable \(\in \{0,1\} \)
- Assume \(\theta \) to be probability of a head (parameter we wish to estimate)
- Each likelihood term \(p(x_n | \theta) \) is Bernoulli: \(p(x_n | \theta) = \theta^{x_n}(1-\theta)^{1-x_n} \)
- Log-likelihood: \(\sum_{n=1}^{N} \log p(x_n | \theta) = \sum_{n=1}^{N} x_n \log \theta + (1-x_n) \log(1-\theta) \)
- Taking derivative of the log-likelihood w.r.t. \(\theta \), and setting it to zero gives

\[
\hat{\theta}_{MLE} = \frac{\sum_{n=1}^{N} x_n}{N}
\]

\(\hat{\theta}_{MLE} \) in this example is simply the fraction of heads!

- MLE doesn’t have a way to express our prior belief about \(\theta \). Can be problematic especially when the number of observations is very small (e.g., suppose we only observed heads in a small number of coin-tosses).

Maximum-a-Posteriori Estimation (MAP)

- Allows incorporating our prior belief (without having seen any data) about \(\theta \) via a prior distribution \(p(\theta) \)
- \(p(\theta) \) specifies what the parameter looks like a priori
- Finds the parameter \(\hat{\theta} \) that maximizes the posterior probability of \(\theta \) (i.e., probability in the light of the observed data)

\[
\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta|X)
\]

Maximum-a-Posteriori (MAP) Estimation

- Maximum-a-Posteriori parameter estimation: Find the \(\theta \) that maximizes the (log of) posterior probability of \(\theta \)

\[
\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta|X) = \arg \max_{\theta} \frac{p(X|\theta)p(\theta)}{p(X)} = \arg \max_{\theta} p(X|\theta)p(\theta) = \arg \max_{\theta} \log p(X|\theta)p(\theta) = \arg \max_{\theta} (\log p(X|\theta) + \log p(\theta))
\]

\[
\hat{\theta}_{MAP} = \arg \max_{\theta} \sum_{n=1}^{N} \log p(x_n|\theta) + \log p(\theta)
\]

- Same as MLE except the extra log-prior-distribution term!
- Note: When \(p(\theta) \) is a uniform prior, MAP reduces to MLE
MAP via a simple example

- Let's again consider the coin-toss problem (estimating the bias of the coin).
- Each likelihood term is Bernoulli: \(p(x_n|\theta) = \theta^{x_n}(1 - \theta)^{1-x_n} \).
- Since \(\theta \in (0, 1) \), we assume a Beta prior: \(\theta \sim \text{Beta}(\alpha, \beta) \).
 \[p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1}(1 - \theta)^{\beta-1} \]
- \(\alpha, \beta \) are called hyperparameters of the prior.

![Graph of p(\theta) vs \theta](image)

- The log posterior probability is \(\sum_{n=1}^{N} \log p(x_n|\theta) + \log p(\theta) \).
- Ignoring the constants w.r.t. \(\theta \), the log posterior probability:
 \[\sum_{n=1}^{N} x_n \log \theta + (1 - x_n) \log(1 - \theta) + (\alpha - 1) \log \theta + (\beta - 1) \log(1 - \theta) \]
- Taking derivative w.r.t. \(\theta \) and setting to zero gives
 \[\hat{\theta}_{\text{MAP}} = \frac{\sum_{n=1}^{N} x_n + \alpha - 1}{N + \alpha + \beta - 2} \]

- Note: For \(\alpha = 1, \beta = 1 \), i.e., \(p(\theta) = \text{Beta}(1,1) \) (which is equivalent to a uniform prior), we get the same solution as \(\hat{\theta}_{\text{MLE}} \).

- Note: Hyperparameters of the prior (in this case \(\alpha, \beta \)) can often be thought of as "pseudo-observations". E.g., in the coin-toss example, \(\alpha - 1, \beta - 1 \) are the expected numbers of heads and tails, respectively, before seeing any data.

Point Estimation vs Full Posterior

- Note that MLE and MAP only provide us with a best "point estimate" of \(\theta \):
 - MLE gives \(\theta \) that maximizes \(p(X|\theta) \) (likelihood, or probability of data given \(\theta \)).
 - MAP gives \(\theta \) that maximizes \(p(\theta|X) \) (posterior probability of the parameter \(\theta \)).

- MLE does not incorporate any prior knowledge about parameters.
- MAP does incorporate prior knowledge but still only gives a point estimate.

- Point estimate doesn’t capture the uncertainty about the parameter \(\theta \).
- The full posterior \(p(\theta|X) \) gives a more complete picture (e.g., gives an estimate of uncertainty in the learned parameters, gives more robust predictions/uncertainty in predictions, and many other benefits that we will see later during the semester).

Point Estimation vs Full Posterior

- Estimating (or "inferring") the full posterior can be hard in general.

- In some cases, however, we can analytically compute the full posterior (e.g., when the prior distribution is "conjugate" to the likelihood).
- In other cases, it can be approximated via approximate Bayesian inference (more on this later during the semester).
Estimating the Full Posterior: A Simple Example

- Let’s come back once more to the coin-toss example.
- Recall that each likelihood term was Bernoulli: \(p(x_n|\theta) = \theta^{x_n}(1 - \theta)^{1-x_n} \).
- The prior \(p(\theta) \) was Beta: \(p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1} \).
- The posterior is given by:

\[
p(\theta|X) \propto \prod_{n=1}^{N} p(x_n|\theta)p(\theta) \propto \theta^{\alpha + \sum_{n=1}^{N} x_n - 1} (1 - \theta)^{\beta + N - \sum_{n=1}^{N} x_n - 1}
\]

- It can be verified (exercise) that the normalization constant in the above is a Beta function \(\frac{\Gamma(\alpha + \sum_{n=1}^{N} x_n)(\beta + N - \sum_{n=1}^{N} x_n)}{\Gamma(\alpha + \beta + N)} \).
- Thus the posterior \(p(\theta|X) = \text{Beta}(\alpha + \sum_{n=1}^{N} x_n, \beta + N - \sum_{n=1}^{N} x_n) \).
- Here, the posterior has the same form as the prior (both Beta).
- Also very easy to perform online inference (posterior can be used as a prior for the next batch of data).

Posterior Evolution with Observed Data

- Assume starting with a uniform prior (equivalent to Beta(1,1)) in the coin-toss example and observing a sequence of heads and tails.

Conjugate Priors

- If the prior distribution is conjugate to the likelihood, posterior inference is simplified significantly.
- When the prior is conjugate to the likelihood, posterior also belongs to the same family of distributions as the prior.
- Many pairs of distributions are conjugate to each other. E.g.,
 - Bernoulli (likelihood) + Beta (prior) \(\Rightarrow \) Beta posterior
 - Binomial (likelihood) + Beta (prior) \(\Rightarrow \) Beta posterior
 - Multinomial (likelihood) + Dirichlet (prior) \(\Rightarrow \) Dirichlet posterior
 - Poisson (likelihood) +Gamma (prior) \(\Rightarrow \) Gamma posterior
 - Gaussian (likelihood) + Gaussian (prior) \(\Rightarrow \) Gaussian posterior
 - and many other such pairs.
- Easy to identify if two distributions are conjugate to each other: their functional forms are similar. E.g., multinomial and Dirichlet
 - Multinomial \(\propto \theta_1^{x_1} \cdots \theta_N^{x_N} \), Dirichlet \(\propto \theta_1^{\alpha_1} \cdots \theta_N^{\alpha_N} \).

Conjugate Priors and Exponential Family

- Recall the exponential family of distributions
 \(p(x|\theta) = h(x)\exp(\eta(\theta)^T T(x) - A(\theta)) \).
- \(\eta(\cdot) \) is parameter of the family. \(h(x) \), \(\eta(\theta) \), \(T(x) \), and \(A(\theta) \) are known functions.
- \(p(.) \) depends on data \(x \) only through its sufficient statistics \(T(x) \).
- For each exp. family distribution \(p(x|\theta) \), there is a conjugate prior of the form
 \[
p(\theta) \propto \exp(\eta(\theta)^T \alpha - \gamma(\theta))
\]
 where \(\alpha \), \(\gamma \) are the hyperparameters of the prior.
- Updated posterior: posterior will also have the same form as the prior
 \[
p(\theta|x) \propto p(x|\theta)p(\theta) \propto \exp(\eta(\theta)^T T(x) + \alpha - \gamma(\theta))
\]
 Updates by adding the sufficient statistics \(T(x) \) to prior’s hyperparameters.
Next Class:
Probabilistic Linear Regression