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Abstract

Traditional models of decision-making assume the existence
of an external frame of reference for measuring the value of
possible outcomes. We show that this fundamental assump-
tion prevents classical decision models from predicting realis-
tic decision-making behavior. Making an alternative relativis-
tic assumption about the nature of reward leads us to formalize
a rational agent as one which minimizes its internal decision-
computational costs while retaining satisfactorily predictive
models of its external environment. In computational evalu-
ation, our model replicates previously unexplained ‘irrational’
behavior of human subjects.
Keywords: Cognitive models; neural coding; decision theory;
behavioral biases

Introduction
Economists have used the terms ‘animal spirits’ and ‘cogni-
tive biases’ (Akerlof & Shiller, 2009) to explain the persis-
tence of behaviors incompatible with accepted definitions of
rationality. Consistent observation of such ‘predictably irra-
tional’ (Ariely, 2009) behavior in both controlled and uncon-
trolled settings has reduced confidence in the neo-classical
view of human decision-making as a rational enterprise.

Contemporary explanations for these biases typically draw
on evolutionary arguments (Gigerenzer & Goldstein, 1996),
especially the idea of that deviations from traditional ratio-
nality represent specialized adaptations to the social and en-
vironmental conditions of mankind’s early history. Thus,
while on one hand, rational models of decision-making lie
discredited through their inability to explain the existence of
cognitive biases, the prominent alternative approaches create
heuristic-based theories that are limited in their ability to pro-
duce generalizable causal explanations for decision-making
processes. The absence of a realistic, principled theory of hu-
man decision-making is deeply problematic, since models of
decision-making are central to the formulation of immensely
consequential social and economic policies.

Given the continued failure of variants of existing theories
to offer compelling explanations for how biological agents
make decisions, we believe that it is necessary to re-evaluate
the foundational assumptions in these theories and find plau-
sible alternatives. How does an agent represent its possi-
ble options in an environment? How does it assign value
to various options? On what basis does it select between
these options? The canonical responses to these questions,
obtained through a history of research stretching from J S
Mill (Mill, 1874) to von Neumann (Neumann & Morgenstern,

1953), are that option possibilities are represented as environ-
mental states, value is assigned to these options in the form
of numerical reward, and the goal of the agent is assumed
to be the maximization of its long-term cumulative reward.
These assumptions are foundational to both homo economi-
cus (Persky, 1995) models of economic choice and reinforce-
ment learning (Barto & Sutton, 1998). In this paper, we ques-
tion each of these three dogmas and replace them with alter-
natives obtained from a relativistic view of both how agents
evaluate possible outcomes and how they evaluate their own
existence as predictive agents.

At a fundamental level, the assignment of reward values as-
sumes the existence of some fixed reference against which the
value of its actions can be measured. This simple assumption
causes us to formulate rewards as absolute numeric quanti-
ties, with a “no reward” state as the origin. Furthermore, this
view renders us unable to consider any meaningful goal for
an agent other than maximal reward accumulation. That is, if
we detach the notion of value from the agent’s environment-
specific need at the moment of the decision and instead fix it
with respect to some Platonic origin, we can no longer mean-
ingfully speak of satisfying needs, only of optimizing utility.

In this paper, we try to capture the notion of value as the
agent’s needs by making the valuation process relative to both
the agent’s current policy and current set of options. This
changes the canonical decision modeling approach in three
ways: one, it captures the embodied view of cognition; two,
we discard the association of numerical rewards to particu-
lar outcomes - all rewards are relative comparisons of value;
three, decision-making is seen to be a process of identify-
ing outcomes from the agent’s current situation and evaluat-
ing those options relative to the agents understanding of what
has constituted the best policy for this situation, based on the
agent’s past experience.

By formalizing these insights, we show that the assump-
tion of value relativity, while exotic at first sight, can be eas-
ily adapted into a tractable choice-learning algorithm. We
further show that the choice predictions of this algorithm pre-
dict the choices of human subjects across different decision
tasks that have heretofore been considered irrational. The
unforced emergence of a number of previously unconnected
cognitive biases from our decision model provides empirical
support for its foundational premises. We conclude with a
brief discussion of some implications of our findings.
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Principles of self-motivated learning
Any realistic model of decision-making must be consonant
with the structure of human motivation, i.e., the intrinsic fac-
tors that affect an agent’s choice behavior. Building upon the
relativistic view of the sequential choice selection problem,
we now develop a mathematical model of learning choice-
selection that appears to be self-motivated and demonstrates
realistic learning behavior.

We begin by obtaining alternatives to three assumptions
that underpin traditional decision theories - the ontological
assumption of an agent-environment duality, the epistemo-
logical assumption of absolute numerical utility values and
the teleological assumption of utility maximization from our
relativistic standpoint.

Embodied representation of preferences
The embodied and embedded view of cognition historically
arose as a response to the mainstream computational theory
of mind (CTM) that assumes that the mind literally is a digital
computer and that thought processes are therefore neural, rep-
resentational and computational. It suggests that rather than
being an isolated observer and computer, the mind acts in in-
separable conjunction with the environment to create mental
processes (Brooks, 1991). Our relativistic view emphasizes
the absence of a unique privileged view of a decision event,
and as such, rejects the presence of a disembodied observer.
The embodied view of cognition, therefore, lends itself better
to our agent-environment description.

Relative utility
Traditional models of cognition have perpetually had an un-
easy relationship with quantitative theories of value. The re-
peated failures of neo-classical economic theories in modern
times are traced by behavioral economists to the former’s fun-
damental dependence on a model of reward/value.

Almost all existing decision theories presuppose the exis-
tence of state-specific quantified reward. This assumption ig-
nores the failure of the persistent efforts made by early 20th
century psychologists towards finding tractable mappings be-
tween physical stimuli and the value judgments of human
subjects. In fact, it was not until von Neumann and Mor-
genstern (Neumann & Morgenstern, 1953) showed that it is
possible, under a set of mathematical axioms (henceforth the
VNM axioms) governing the nature of human preferences, to
obtain consistent additive values of relative expected utility
among various options that quantifications of human prefer-
ences could be meaningfully addressed. The von Neumann
program is fundamental to the development of reward-based
models of decision-making and planning in AI.

However, two major problems have arisen in the course of
the adaptation of the VNM approach to computational deci-
sion models. First, it has been established by multiple em-
pirical studies that the VNM axioms do not apply to human
preferences. Second, in adapting the VNM approach to com-
putational models, the idea that the additive utilities obtained
are relative has been ignored, leading to absolute scalar values

of reward unhesitatingly (and errantly!) being used in both
the AI and reinforcement learning (Barto & Sutton, 1998) lit-
erature.

In our formulation of self-motivated learning, we retreat to
the pre-VNM state of understanding of preferences, by as-
suming that agents can only adopt preferences for particular
outcomes relative to others observed in the same context.

Cognitive efficiency

Basic rational choice theory assumes that rational agents at-
tempt to maximize the reward that they can obtain through
their actions. However, this assumption has been shown by
multiple behavioral studies to be unrealistic. The princi-
pal alternative to this assumption is the bounded rationality
approach. However, traditional views of bounded rational-
ity (Rubinstein, 2003) continue to assume that agents attempt
to maximize reward under computational constraints. From a
relativistic standpoint, environmental phenomena are judged
to be valuable to the extent they have been judged valuable
in the past. Judging utility by whether an option has been
useful in the past as opposed to how useful it is removes the
necessity to postulate Platonic rewards embedded in the envi-
ronment. In our relativistic formulation, the relative value of
possible outcomes must emerge from the process of sequen-
tial choice selection itself.

In our formal model, described below, we postulate that
humans are essentially searching for minimal-cost theories
about how to choose high value options, where the cost is
measured in terms of the complexity of encoding and storing
the information needed to reliably make these decisions. We
term this cost cognitive processing cost, which is equivalent
to the cost of accessing past beliefs in the agent’s memory.

In brief, rather than view humans and other natural
decision-making agents as reward maximizers, or even con-
strained reward maximizers, we view them as efficient need-
satisficers. The expectation of efficiency allows us to pose
the optimal control and decision problems using standard op-
timization techniques, with the relevant quantities to be opti-
mized possessing internal as opposed to external ontological
significance.

The decision model

Informally, to make a sequence of decisions, the agent cy-
cles between forming beliefs about the relative worth of op-
tions by accessing past experience, termed policies, making
choices, experiencing outcomes and updating these policies
to minimize processing costs for future decisions.

As we show in Figure 1 and discuss in greater detail in
(Srivastava & Schrater, 2010), the formal structure of our
model is homologous to the statistical minimum description
length principle, with the core premise that an agent tries to
minimize its cognitive processing cost T while maintaining
a ‘satisficingly’ high level of predictive confidence C in the
quality of its choices. The self-motivated learning objective
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(a) A schematic of obtaining a good theory from data following
a minimum description length approach.

(b) A schematic of obtaining a good belief from environmental
stimuli using an evolutionary MDL principle

Figure 1: This graphic outlines the homologous nature of an evolutionarily optimal meta-cognitive decision strategy with
minimum description length principles.

is to minimize a function of the form,

argmin
x

T (1)

Cnew ≥Cold.

where T and C are quantified below in terms of policies.
Let the discrete probability distribution x(s) represent an

agent’s policy, viz., belief about the relative quality of out-
comes s ∈ S available to it. The surprise experienced by an
agent operating with a policy xa in comparison with policy xb
can be quantified with an information divergence (Kullback
& Leibler, 1951) of the form,

R(xa,xb) =
na

∑
j=1

x j
a(s) log

x j
a(s)

x j
b(s)

. (2)

We propose that processing costs are determined by the
cost of accessing a belief. Using information-theoretic ar-
guments, we suggest that the access cost of a belief is de-
termined by its predictive exceptionality, which in turn can
be measured as a departure from the usual level of surprise
that the agent experiences in making its predictions. We mea-
sure the informational exceptionality of a past policy xold (and
hence the ease with which it will be available for recall to the
agent) as the deviation from the average surprise experienced
by the agent R’:

A(xold) = |R(x,xold)−R|, (3)

where x is the agent’s current policy.
Given this measure of ease of memory access for each past

policy, a reasonable measure of the processing cost of se-
lecting a subset M’ out of the set M of all past policies is
the inverse availability-weighted sum of the nominal cost of
accessing all policies in M’. Assuming the nominal cost of

accessing each policy to be unity, the total cost of memory
access T becomes,

T = ∑
xi∈M ′

A−1(xi), (4)

Our measure of the agent’s confidence in its ability to pre-
dict its environment, C : x→ [0,1] captures the idea that con-
fidence grows when the policies have low uncertainty and low
surprise:

C =
1

Cmax

log |x|−H(x)
∑memory R(x,xold)

, (5)

where the numerator is a monotonically decreasing function
of the Shannon entropy H(x) of the policy. Note that C is
normalized with respect to the greatest value it has previously
been observed to achieve.

Any algorithmic solution of our agent’s objective func-
tion must solve three problems - one, specify a memory up-
date specifying how existing policies are integrated into the
agent’s current policy; two, specify an environmental up-
date, which shows how the perceived goodness of various
outcomes at the present moment, which we call reward-
inference1, are integrated into the agent’s current policy;
three, specify a combinatorial optimization algorithm spec-
ifying which subset of existing policies the agent will recall
to form its new policy, such that the objective function we
have defined above is satisfied. In (Srivastava & Schrater,
2010), we present a direct policy search-based solution to all
three problems for simple outcome spaces, resulting in a self-
motivated learning algorithm for predicting choices made by
agents in sequential settings. The resultant algorithm outputs

1Our model assumes that sensory data is encoded into the space
of possible outcomes as a relative preference by existing neuronal
processes. Thus, our usage of the term reward-inference accentuates
the fact that it is obtained after perceptual processing of environmen-
tal stimuli.
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beliefs corresponding to the relative preference for each of
the possible outcomes in the agent’s decision context.

While simply constructing a choice-learning algorithm ca-
pable of quantifying internal motivations would pass for an
interesting theoretical exercise, in the next section, we present
evidence below to show that our approach makes strong fal-
sifiable predictions about classes of behaviors in human sub-
jects that classical approaches are unable to explain.

Irrational behavior is rational
Counter-examples to the expected utility axioms have a his-
tory nearly as old as rational choice theory itself. Deviations
from the predictions of expected utility theories, when con-
sistently observed in human subjects under controlled exper-
imental settings, have been defined as cognitive ‘biases’, im-
plying a somewhat paternalistic premise that people would
behave the way expected utility theory predicts if they were
unbiased (smart) enough. However, the epistemic value of
decision theories that are consistently mistaken cannot be rea-
sonably justified2.

While the weakness of existing neo-classical decision
models have been critiqued exhaustively in the behavioral
economics literature, incremental fixes to the basic frame-
work and the use of ad hoc heuristics has created a frag-
mented universe of predictive models, each successful at ex-
plaining one specific set of cognitive biases. We believe that
a causally valid theory of decision-making must necessarily
present a unified explanation for multiple families of cogni-
tive biases.

To demonstrate the plausibility of our self-motivated de-
cision model, we show how its predictions replicate biases
observed in two different cognitive domains and heretofore
explained separately using generalized utility theories in one
case and evolutionary heuristics in the other. Similar results
for other families of biases are described in a longer technical
report (Srivastava & Schrater, 2010), but are omitted in this
paper due to space constraints. We suggest that the unforced
emergence of multiple classes of cognitive biases from our
model provides support for its cognitive realism.

Risk aversion
Kahneman and Tversky (Tversky & Kahneman, 1992) pro-
posed prospect theory largely to explain deviations from ex-
pected value predictions in certainty-equivalence studies on
evaluations of risky prospects in human subjects. They ob-
served that subjects consistently exhibited a four-fold pattern
of behavior when confronted with risk: risk seeking for gains
with low probability, risk aversion for gains with high prob-
ability, risk seeking for losses with high probability, and risk
aversion for losses with low probability. (Tversky & Kahne-
man, 1973) explain the emergence of this pattern as a conse-

2The dismissal of various cognitive phenomena as ‘biases’ is
rather reminiscent of the construction of epicycles in Ptolemaic as-
tronomy - it is not the theory that does not fit the observations, it is
the observations that are so inconsiderate that they don’t obediently
fit the theory!

quence of the disproportionate weighting of low-probability
outcomes in human subjects. This explanation was subse-
quently amended in (Tversky & Kahneman, 1992) to restrict
over-weighting only to ‘extreme’ low-probability events as
opposed to all low probability events.

(a) Results from experiments on human subjects
attempting to find subjects’ implicit certainty-
equivalence with respect to gains/losses and its de-
viation from mathematical expectation. Histori-
cally, this was the predominating motivation for
the development of prospect theory.

(b) Results from simulation of prospect theory experiment using
existential agents as subjects. The blue line represents the ide-
alized expected value prediction while the red markers indicate
average preference of 200 agents having experienced a history
of repeated exposure to a choice selection task between a risky
gamble with a certain (x-axis) probability of succeeding and a
safe choice.

Figure 2: Existential learning generatively reproduces exper-
imental results previously explained only empirically using
prospect theory.

The experimental setup for their experiments is fairly
straightforward: subjects are asked to select between a ‘safe’
gain/loss prospect of known value and one of unknown value
determined as a Bernoulli choice between two known out-
comes. For example, a subject could be asked to choose be-
tween selecting a prospect that pays $0 with a probability of
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0.9 and $50 with a probability of 0.1 and a set of prospects
guaranteed to pay anywhere between $2 and $20 (say). The
subjects were required to indicate their preference between
the risky and safe prospects for all the safe prospects pre-
sented to them. The certainty equivalent value was estimated
as the midpoint between the lowest accepted and the high-
est rejected value from among the safe prospects. Selections
where the certainty equivalent value exceeded the expected
value of the risky prospect ($5 in this case) were considered
risk-seeking, while those that were lower were counted as risk
averse.

In order to simulate the experimental setup described in
(Tversky & Kahneman, 1992), we design our outcome space
to consist of two possible outcomes: select safe prospect or
select risky prospect. For every decision instance, the payoff
for the risky prospect is sampled from a Bernoulli distribution
appropriate for the gamble. For the gamble in the example
above, this means that the risky prospect will pay $0 in about
9 out of every 10 decision instances. The reward-inference
signal is constructed to assign a preference of 1 to the bet-
ter prospect (and 0 to the worse prospect) at every instantia-
tion. Thus, a choice between a gamble with a 0.1 probability
of paying off against a certain safe outcome is modeled as a
generative mechanism for reward-inference that reflects a se-
lection {0 1} biased towards the safe choice 90% of the time
and the alternate risky choice {1 0} 10% percent of the time.

We provided each one of a population of 200 agents with a
series of 100 such reward-inference signals. A series is pre-
sumed to indicate the ‘learning’ phase for an agent with re-
spect to a particular choice problem involving risk evaluation.
At the end of a series, the agent is assumed to possess, in the
form of its final preference, an evaluative model for selecting
between the prospects offered in the (Tversky & Kahneman,
1992) selection task. We modify the probability of winning
or losing the gamble by modifying the Bernoulli distribution
parameterizing the reward inference distribution.

In Figure 2, we see that our simulation replicates results
that are qualitatively similar to the experimental results ob-
tained from human subjects in (Tversky & Kahneman, 1992).
Remarkably, agents running our existential learning algo-
rithm consistently present the same four-fold pattern of risk
aversion observed in human subjects. This leads us to hy-
pothesize that the biases documented by Kahneman and Tver-
sky, which have subsequently motivated the development of
prospect theory and other generalized expected utility theo-
ries are, in fact, adaptive in nature rather than existing a priori
in human decision-makers. Our model produces, to the best
of our knowledge, the first generative mechanism for esti-
mating and potentially quantifying Kahneman and Tversky’s
four-fold pattern of risk aversion.

Confirmation biases
The term ‘confirmation bias’ often references biased hypoth-
esis evaluation, differential memory recall, belief divergence,
attitude polarization and other biases arising in different ex-
perimental contexts. The fundamental similarity shared by

all these biases is the tendency for subjects to prefer informa-
tion that confirms their existing preconceptions/hypotheses
over objective evidence. Confirmation biases are generally
explained using availability or priority heuristics in the biases
and heuristics literature (Ayal & Hochman, 2009). Rational
choice theories find it difficult to account for their presence.

(a) Existential agent evidencing confirmation bias

(b) Percentage of high and low surprise instances
active in agent’s salient set for runs of different
lengths.

Figure 3: Different flavors of confirmation bias exhibited by
existential learning algorithm.

Figure 3(a) displays typical performance of an existential
agent on a binary prediction task. Given consistent reward-
inference favoring one outcome (say 0, 1), the agent’s pref-
erence for this outcome increases, which is entirely rational.
Then, consistent reward-inference favoring the other outcome
1, 0 is provided, causing the agent to reverse its preference
(after a brief delay), which, again is entirely rational.

However, when the reward-inference is switched yet again
back to the original outcome, the agent does not switch, but
continues to confirm its recent preference for the other out-
come. This superficially irrational behavior follows naturally
from the tendency of our agent to retain its existing theory if
formulating a newer theory would cause its predictive confi-
dence to drop.

The first scientific evaluation of confirmation bias is his-
torically assigned to Wason’s (Wason, 1960) rule-discovery
experiments. However, Klayman and Ha (Klayman & Ha,
1987) proved that what Wason had actually shown was that
human subjects prefer using positive test strategies, i.e., in-
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stead of trying to find counter-examples to a hypothesis, they
seek to validate it. Interpreting these findings in our frame-
work, observe that a disconfirming negative test strategy of
trying to rigorously disprove a held hypothesis would create
several high surprise/regret decision instances for an existen-
tial agent.

Conversely, deploying positive test strategies would cre-
ate (given a predictable environment) low surprise/regret in-
stances. Since part of the agent’s existential goal is to maxi-
mize its expectation of future reward, and since this expec-
tation, in the form of confidence, will vary inversely with
the cumulative surprise in the agent’s recalled history, it will
strongly prefer making choices that lead to low surprise, and
hence will prospectively prefer positive test strategies. Figure
3(b) shows the existential agent’s preference for low surprise
decision instances.

Very interestingly, we find that the agent’s preference for
positive test strategies appears to emerge gradually as it be-
comes surer of its existing hypothesis. This corroborates
the information-theoretic intuition (Klayman & Ha, 1987)
that such a preference arises as an information-processing re-
sponse to environments where positive queries have higher
informational content than negative queries.

Discussion
In this work, we have showed how two different families of
cognitive biases can, in fact, be generated from a single causal
model of decision-making, merely by shifting the objective of
a classical bounded rational agent from resource-constrained
utility maximization to prediction-constrained cognitive ef-
fort minimization. This change in perspective, in turn, is ob-
tained from a relativized view of the nature of preferences,
arising from the intuition that, however an agent may be en-
gaged with its environment, it sees, from its own existentially
stationary vantage point, a set of options that it has seen in
the past, recalls its previous experience of choice selection
amongst them, and uses its memory recall to make a new
choice selection. Thus, the principal quantity of interest in
decision-making becomes the cost of memory recall, optimiz-
ing which results in a novel rational decision theory.

Note further that, by retaining a sense of optimality, we
have essentially proposed a new way of defining rational
utility, which subsumes positive aspects of both the clas-
sical expected utility paradigm (Neumann & Morgenstern,
1953) and recent heuristic-based methods (Ayal & Hochman,
2009) while avoiding their defects. Specifically, our model
retains the analytical tractability and causal interpretability
of the traditional expected utility/rational choice paradigm
while adapting the definition of rationality to confirm with
Gigerenzer’s (Gigerenzer & Goldstein, 1996) idea of ‘ecolog-
ical rationality’. By adopting an embodied representation of
the agent-environment interface, and an information-theoretic
basis for defining costs, we are able to generalize our model’s
dependence across the ecology of different domains. This al-
lows our model to retain predictive accuracy both in typical

environmental settings, where it replicates the predictions of
classical rational choice models, as well as in atypical en-
vironmental settings, where it faithfully replicates biases ob-
served in human subjects. As a consequence, our results show
that a number of important cognitive biases emerge as natural
consequences of the way a metacognitive agent encodes in-
formation about the environment. However, our model is as
yet unable to account for set size and framing effects, since
it currently considers a particular embodied representation of
the agent-environment as persistent across choices. Extend-
ing our model to capture these effects is an exciting direction
for future work, with cross-disciplinary implications.
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