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Abstract

The Polynomial Identity Testing problem (PIT) requires one to determine

whether a given polynomial is identically equal to the zero polynomial. In

the blackbox version we are promised that the polynomial belongs to a cer-

tain class, and are only provided input/output access to it. There is a strong

connection between efficent blackbox PIT algorithms for a class of polynomi-

als, and lower bounds against that class of polynomials. Coupled with the

recently proved ‘Chasm at Depth 3’, this can used to show that polynomial

time blackbox PIT for depth-3 circuits is enough for explicit polynomials with

subexponential lower bounds. This has motivated inquiry into blackbox PIT

algorithms for restricted classes of polynomials.

In this thesis, we provide alternate quasi-polynomial time algorithms for

two well studied classes – the Diagonal depth-3 model, and the Basic Set

Multilinear model. In the case of Diagonal depth-3, we design a map that

reduces the number of variables, while preserving the non-zeroness of such a

circuit. The running time of our algorithm is nO(logn).

We approach the Basic Set Multilinear model from the tensorial point of

view. We show that the correctness of our PIT algorithm is equivalent to tensor

rank lower bounds for a class of tensors we call simplicial tensors. These tensors

are a simple generalization of triangular matrices, and rank lower bounds for

them may be of independent interest – We direct most of our efforts here to

proving these bounds. The running time of our algorithm is nO(logn log logn).
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Chapter 1

Polynomial Identity Testing

Polynomial Identity Testing is one of the problems that sits at the heart of the-

oretical computer science. The problem seems innocent enough; To determine

whether a given polynomial is identically equal to the zero polynomial. A little

thought reveals that this is not surprising for two reasons – Polynomials are

ubiquitous in mathematics and theoretical computer science; Primarily, this is

because they are both, expressive 1 and tractable. Secondly, when studying

polynomials, identity is pretty much the most basic question about a polyno-

mial that one can ask; Essentially, whether a given polynomial does something

or nothing. Taken together, these points explain the wide ranging implications

of efficient PIT algorithms in areas of theory as diverse as graph theory [39],

number theory [3], the PCP theorem [7] and circuit lower bounds.

Another reason that PIT has a special place in the hearts of computer

scientists is that it beautifully captures the power of randomization – The

Schwartz-Zippel lemma tells us that the most obvious randomized algorithm

of evaluating at a bunch of random inputs works with high probability [35].

1By expressive, we mean that algorithmic questions in many diverse fields can be
rephrased, either exactly or approximately, as questions about polynomials.
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Chapter 1. Introduction 2

Moreover, this is a blackbox test; All it requires is a guarantee on the size of

the polynomial 2. Derandomizing blackbox PIT is one of the holy grails of our

field – Not least of all because even a sub-exponential time algorithm implies

circuit lower bounds, as demonstrated by [18, 1].

1.1 Current Status

Recently, depth reduction results starting with [5] and ending at [16] showed

that polynomial time blackbox PIT algorithms for depth-3 arithmetic circuits

would lead to quasi-polynomial PIT algorithms for general circuits (with low

degree) which is already enough to prove significant lower bounds. These

results showed that even very simple circuits capture a large amount of the

complexity of general circuits and motivated the community to examine the low

depth regime of arithmetic circuits in higher resolution. These ideas motivated

a long line of results, all examining PIT in different regimes of general depth-3

circuits such as constant top fan-in depth-3 circuits [9, 21, 20, 19, 33, 34], set-

multilinear circuits [28, 12, 4] and Read-once Oblivious Algebraic Branching

Programs (ROABPs) [28, 14, 11, 2].

1.2 Contributions of this Thesis

For any class of ploynomials, it is easy to see that a deterministic blackbox

identity test is equivalent to a hitting set – A set of evaluation points such that

any non-zero polynomial in the class has a non-zero evaluation on at least one

2 The size of a polynomial is typically given by it’s degree and the number of variables.
When talking about deterministic blackbox PIT, we also introduce other size parameters,
depending on the subclass of polynomial we consider. All these size parameters are assumed
to be polynomially related, since this is the regime where we can use Schwartz Zippel to
prove the existence of deterministic polynomial time blackbox PIT algorithms.
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of them. In this thesis, we give quasi-polynomial size hitting sets for two related

classes of polynomials. The polynomials we consider are depth-3 circuits of the

form: P (x) =
∑k

j=1Ej, where the Ej’s are elementary polynomials of some

kind, and k = poly(n). In Chapter 2, we consider the Diagonal depth-3 model

first proposed by Saxena, wherein the Ej’s are of the form of a linear function

raised to a power, i.e. E(x) = (
∑n

i=1 aixi)
d. The current best algorithm for

this model was given by [11] and requires nO(log logn) evaluations. In this thesis,

we provide an alternate hitting set for this model, with the same size. While

our proof is simpler, the result from [11] is much more general and applies

to all polynomials with a low dimensional space of partial derivatives. Our

strategy is to use a simple hash function that makes the number of variables

logarithmic and then use Saxena’s Duality Trick. This is a very useful lemma

from [30] whereby each linear power is further simplified to a sum of products

of univariates. In terms of the above notation, we rewrite P (x) as a sum of

K = k(nd+d+ 1) elementary polynomials, with each one of the form Ei(x) =

Πn
i=1(ai0+ai1xi+· · ·+aidxdi ). Such polynomials are referred to as Commutative

read-once Oblivious Algebraic Branching Programs, or Commutative ROABP

in short, and are widely studied. There are several elegant hitting sets for this

model of size kO(logn). Any of these can be used to test the log-variate ROABP

we reduce the Diagonal depth-3 circuit to, giving a total size of nO(log logn).

Commutative ROABPs also bring us neatly to Chapter 3, where we develop

another approach to this model, by relying on it’s connection with the theory

of tensors.

For the uninitiated, tensors are basically higher dimensional analogs of ma-

trices – An n-dmensional array of field elements. Clearly, given an n-variate

polynomial, we can associate it with an n-dimensional tensor – Place the coef-

ficient of the monomial xii1 x
i2
2 · · ·xinn in the (i1, i2, · · · , in)th index of the tensor.

Like matrices, tensors also come equipped with an analogous notion of rank,
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which is essentially the minimal number of rank one tensors that must be

summed to obtain the given tensor. We will see the details later, but for now

we just state that the tensor associated with a polynomial of the form E(x)

(A product of univariates) has tensor rank one, and that hence Commutative

ROABPs correspond to tensors with rank ≤ k.

In Chapter 3, we study a simplification of Commutative ROABPs called the

Basic Set Multilinear model where the elementary polynomials are now of the

form E(x) = Πn
i=1(1+aixi), i.e. the individual degree of each univariate is one.

In this case, we exploit the tensorial connection to develop a blackbox PIT.

To do this, we define a class of tensors we call simplicial tensors – These are

basically tensorial analogs of triangular matrices and we can prove that their

rank exceeds k. This implies that a simplicial tensor can never be obtained

as the image of a Basic Set Multilinear polynomial. We then devise a set of

evaluations such that all non-trivial polynomials evaluating to zero on this set

correspond to simplicial tensors, which gives us an nO(logn log logn) time blackbox

PIT algorithm. At this point, it is worth stressing that [11] have already

devised an nO(log logn) time algorithm for this model. Why then, should someone

care about our results? In a nutshell, it seems that the techniques employed by

[11] have reached a saturation point, and it is unlikely that any straightforward

extension would allow us to jump from quasi-polynomial to polynomial time.

For the tensor rank approach, we seem to run into some interesting problems

that we hope can be resolved. In Chapter 4, we outline the next steps that

one could take in order to take the program forward.



Chapter 2

Diagonal Depth 3

2.1 Introduction

The Diagonal depth-3 model is one of the simplest models for which we do

not yet have polynomial time blackbox PIT. In this model, the polynomial is

expressed as the sum of powers of linear functions. The beauty of this model is

that it sits at a remarkably fruitful inflection point – It’s analytical tractability

and aesthetic appeal makes it a good workhorse for new ideas and the fact that

it is not easily solvable means that those ideas generally have a wide range of

applicability. We elucidate this point of view in the next section, by providing

a brief account of the previous work on the Diagonal model. First though, we

introduce the notation we use in the rest of the thesis.

2.2 Notation and Preliminaries

Boldface lower case letters denote tuples, such as x = (x1, x2, . . . , xn) which

is an an n-tuple of variables. For a degree tuple d = (d1, d2, . . . , dn) ∈

5



Chapter 2 6

[0, 1, 2, · · · d]n, we denote by xd the monomial
∏n

i=1 x
di
i , where d is the de-

gree of the polynomial. A degree tuple d can be, and is, viewed from a host

of different perspectives. It can be thought of as a vector, and in the spe-

cial case where the polynomial is multilinear (Each degree is either 0/1), it

can also be thought of as a subset of n elements, or a bit string. We abuse

notation and associate all of these instances with the same notation d. Natu-

rally, the associated notations from these different contexts carry over as well,

for example we use the 1-norm notation, which in this context translates to

|d|1 = d1 + d2 · · ·+ dn.

In these thesis, we deal with fields F of characteristic zero. Let A(x) be

a polynomial in F[x]. By coeffA(xd) ∈ F we denote the coefficient of the

monomial xd in A(x).

2.3 Previous Work

The Diagonal depth-3 model was first introduced by Saxena in [30]. This paper

showed how to perform polynomial time whitebox PIT, by introducing the now

famous Duality Trick. This is a simple lemma, stated as follows:

Lemma 2.1. [30] Let t = nd + d + 1. Then there can be found, in poly(nd)

time, univariate polynomials qij of degree at most d, such that:

(x1 + x2 + · · ·+ xn)d =
t∑

i=1

qi1(x1)qi2(x2) · · · qin(xn)

As we can see, this lemma helps us to decouple the polynomial into a product

over disjoint univariates. Applying this transform to a diagonal circuit gives

us a commutative ROABP, whitebox PIT for which was given by [28]. The
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Duality Trick was also one of the key ingredients in the recent beautiful depth

reduction work of [16].

In terms of blackbox PIT as well, there has been significant progress on this

model. The earliest results for this model were by [4] and [12], which both

gave nO(logn) time algorithms, albeit via completely different techniques. The

PIT algorithm given by [4] is one of the prototypical examples of the notion

called rank concentration. In order to comfortably discuss their approach we

must introduce the concept of Hadamard algebras. A friendly warning is in

order – At various points in this thesis we will utilise standard terminology

that is sometimes more complicated than it needs to be. At such points, we

advise the reader to read on without getting intimidated by the names, as the

underlying concepts are pretty simple.

Definition 2.2. The Hadamard algebra Hk(F) is a commutative ring given

by (Fk,+, ?), where (Fk,+) is simply the regular k-dimensional vector space,

and ? is the Hadamard product, which is a binary operation that multiplies

the vectors co-ordinatewise.

Given this definition, it it easy to see that diagonal circuits can be rephrased

as the dot product of a depth-2 circuit over the Hadmard algebra with a vector

c, i.e. P (x) = cᵀ(1+α1x1+· · ·+αnxn)d, where αi ∈ Hk(F). Rank concentration

is the idea that the coefficient vectors of the low-support monomials span Fk,

and that hence, the dot product of at least one of them with c must be non-

zero. While the result did not eventually make it to the paper, [4] showed that

Diagonal depth-3 circuits are l-concentrated, where l = O(log n). The proof is

easy to follow and quite beautiful.
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Theorem 2.3. Consider a non zero diagonal circuit P (x) over the Hadamard

algebra Hk(F). Then P (x) is rank concentrated among the log-support mono-

mials, i.e. the co-efficients of the monomials with support ≤ log k span the

vector space Fk.

Proof. Expand out the depth-2 circuit and arrange the terms of the polynomial

in deg-lex order, i.e. order them first by lower to higher total degree, and within

each degree, arrange them according to a lexicographic order, i.e.

P (x) = 1︸︷︷︸
degree 0

+α1x1 + · · ·+ αnxn︸ ︷︷ ︸
degree 1

+α2
1x

2
1 + α1α2x1x2 + · · ·+ α2

nx
2
n︸ ︷︷ ︸

degree 2

+ · · ·

(2.1)

Relabel the coefficients under the deg-lex ordering as c1, c2, . . . cN , where N =∑d
i=0

(
i+n
n

)
. For any i, define Si to be the vector space spanned by the first i

coefficients. Then the least basis is a set of coefficients BL defined as follows:

BL = { ci : ci 6∈ Si−1, i ∈ [1, 2, · · · , N ]}. Observe that if the coefficient of a

monomial is in BL, the coefficients of all of it’s factors must be in BL as well.

In order to prove this, assume that coeffP (xa) ∈ BL and that coeffP (xb) 6∈ BL

for some factor xb of xa. In this case, if coeffP (xb) can be expressed as a linear

combination of lesser coefficients (Under the deg-lex ordering), we can multiply

both sides of the equation by coeffP (xa−b), and express coeffP (xa) as a linear

combination of lesser coefficients as well, which is a contradiction. In order

to show that this leads to log-concentration, note that an l-support monomial

has at least 2l factors. The number of elements in BL is at most k, which is

the dimension of the vector space. Together, these facts imply that the largest

support monomial whose coefficient can be in BL has support ≤ log k, which

shows that P (x) is log k rank concentrated.
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This gives us a simple nO(logn) time algorithm – We can simply interpolate

the polynomial and find the coefficients of all monomials that are a product

≤ l distinct variables – At least one of them is non-zero.

[12] also show the existence of an l-support monomial with non-zero coeffi-

cient, but to do this, they leverage lower bounds against the Diagonal depth-3

model. It was first observed by Kayal, and reported in [31], that the seminal

partial derivative techniqe of [26] can be used to obtain strong lower bounds

for diagonal circuits – In particular any diagonal circuit that computes the

monomial x1x2 · · ·xn must have exponential top fan-in. [12] scale this lower

bound down to show that a diagonal ciruit with polynomial top fan-in must

have low support monomials, and then proceed in the same way as before. We

do not give a formal statement of their proof, as it requires an introduction to

the theory of monomial orderings, which we want to avoid for now (Though

they make a guest appearance in Chapter 4).

These results were dramatically improved by [11], who gave an nO(log logn)

time algorithm. In their algorithm, they exploit the fact that diagonal circuits

are log-concentrated, and then use hashing techniques [36] to further reduce

the question of identity to a commutative ROABP over O(log n) variables.

After this they simply invoke one of the many existing identity tests for this

model, and end up with the desired result.

This Work: In this thesis, we provide an alternate nO(log logn) time algorithm.

At a high level, our algorithm works in much the same way as [11]. Our main

technical contribution is in designing a simple map that reduces the diagonal

circuit to a commutative ROABP over O(log n) variables.
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2.4 l-Support Preserving Variable Reduction

In this section we introduce a simple map, which reduces the number of vari-

ables in a polynomial to l, while preserving the coefficients of all the l-support

monomials. Note that this is a general result, and is not specific to diagonal

circuits. For ease of exposition, we will first introduce a related map, and then

convert it to our desired form by an application of the standard Kronecker

trick [23].

Definition 2.4. Define the map Ψ : F[x] → F[a, b, t], where |a| = |b| = l, as

follows:

xi →
l∑

j=1

aijb
i2

j t

Theorem 2.5. Under the map Ψ : F[x] → F[a, b, t], each ≤ l-support mono-

mial in P (x) is mapped to a unique monomial in P (Ψ(x)).

Proof. Let us fix an l-support monomial xr = xr1
i1
· · ·xrlil . Let i = (i1, i2, · · · , il).

On applying the substitution Ψ, we have:

Ψ(xr) = apbqt|r|1 + other monomials . . .

where p = r ? i, q = r ? i ? i and |r|1 = (r1 + · · · + rl). For the sake of

convenience, we have abused notation a bit and used the Hadamard product

(?) for the exponent vectors as well. It is easy to see how the first monomial

occurs in the image Ψ(xr) – On expanding the substitution, simply pick the

first term = ai11 b
i21
1 from the first r1 brackets, the second term from the next

r2 brackets and so on. We will now show that this monomial can occur only

in the image Ψ(xr). Let us say that in forming this monomial, we picked the

first term from k1 brackets. Further, assume that the exponents of a1 in each

of these brackets were (e1, e2, · · · , ek1). Then, we have the relations:



Chapter 2 11

k1∑
j=1

ej = r1i1

k1∑
j=1

e2
j = r1i

2
1

k1∑
j=1

e2
j ≥

1

k1

(
k1∑
j=1

ej

)2

The third equation is the Cauchy-Schwartz inequality, which implies that k1 ≥

r1, with equality occurring if and only if e1 = e2 = · · · = ek1 = i1. In fact, we

can prove relations of the form kj ≥ rj, for all values of j. We now use the

information in the degree counter t, which enforces the relation
∑
kj =

∑
rj.

This means that each of the inequalities were equalities (kj = rj, for all j),

which in turn fixes each of the individual exponents for (a1, a2, · · · , al). This

uniquely gives us the degrees and the variables of the pre-image monomial.

Now that we have proved that this map preserves the l-support monomials of

a polynomial, we can convert it to a more convenient form via the application

of Kronecker trick. In the image polynomial P (Ψ(x)), the individual degree of

each variable is bounded above by D = n2d + 1. This means that for each j,

we can merge aj and bj into a single variable zj by performing the substitution

aj → zj and bj → zDj . Such tricks are standard in the PIT literature, and

we can use them to arrive at a map Φ : F[x] → F[z], |z| = l, which preserves

l-support monomials:

Φ(xi) =
l∑

j=1

(zj)
h(i)

where h(i) = i2D2 + iD + 1.
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2.5 Diagonal Circuit Identity Test

We can now combine the above ideas to arrive at a simple nO(log logn) time PIT

algorithm for Diagonal depth-3. Set l = log k and make the substitution x→

Φ(x). On rearranging the terms a little, the polynomial becomes P (z) = cᵀ(1+

g(z1) + · · ·+ g(zl))
d, where g is a univariate polynomial over Hk(F). Saxena’s

Duality can now be applied to convert this to a commutative ROABP over

l variables, whose degree and top fan-in are both bounded above by poly(n),

following which we may directly apply the results of [12] to get an nO(log l) =

nO(log logn) time algorithm, as promised.

2.6 Addendum

It is worth noting that our map Φ also gives us, as a byproduct, a way to

reduce blackbox PIT for a general polynomial to blackbox PIT for a symmetric

polynomial, i.e. a polynomial that is unchanged under permutation of it’s

variables. In order to see this, note that every non-zero polynomial in n variable

is n-supported. Following our theorem, we can define a map that preserves the

n-support monomials and transforms the polynomial to a symmetric one.



Chapter 3

Basic Set Multilinear

3.1 Introduction

The Basic Set Multilinear model is arguably the simplest model for which we

currently do not have explicit hitting sets. In terms of the Hadamard algebra

introduced in Chapter 3, we can write a Basic Set Multilinear circuit A(x) as:

A(x) = cᵀΠ(1 + αixi), where αi ∈ Hk(F). The first explicit mention of the

problem that we can find is in [32], where it was shown that such polynomials

can be transformed to a log-concentrated polynomial by appropriately shifting

each one of the variables i.e. xi → xi + ti. As in Chapter 2, this immediately

gives an nO(logn) time algorithm. The current best algorithm for this problem

has time complexity nO(log logn) [11]. This algorithm follows the same strategy

as the blackbox test for Diagonal depth-3 – It uses a hash function family to

reduce the circuit to an ROABP over O(log n) variables, and then uses the

algorithm from [12]. In this work, we approach PIT for this model via tensor

rank lower bounds and provide an algorithm with time complexity nÕ(logn),

where Õ(log n) is O(log n log log n). Readers will notice that the running time

of our algorithm is (much) worse than existing bounds. Why then, should

13
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one care about this result? The potential value of our method stems from it’s

freshness – The hope is that we can push the results of this thesis further in

order to achieve polynomial size hitting sets; Something that we do not think

is possible with existing methods. Whether this turns out to be possible or

not remains to be seen, but in Chapter 4 we outline the problems that would

need to be solved in order to achieve this. Along the way, we also prove a

tensorial generalization of a simple result in linear algebra, which may be of

independent interest.

3.2 Notation and Preliminaries

We continue using the notation from Chapter 2, wherein lowercase boldfont x

is used to denote an n-tuple. This n-tuple can, once again be used in different

contexts, as the index of a tensor entry, as the degree of a monomial, or as

an element of a vector space. As before, we abuse notation and address these

different versions of the tuple by the same name, and carry over all associated

notions, such as the dot product: 〈x,y〉 = x · y, and the 1-norm.

Given a subset S ⊂ [n], the restriction of the vector x to S is the vector

composed of the entries {xi : i ∈ S} and is denoted by xS. In this chapter,

we also make use of uppercase bold font R to denote a tuple of vectors, or a

matrix. Such uses will be made clear in the context.

A tensor is an n-dimensional array of field elements, and for our purposes,

we can think of a tensor as a map T : {0, 1, · · · , d}n → F. Given n maps

vi : {0, 1, · · · , d} → F, their tensor product V = ⊗n
i=1vi is an n-dimensional

tensor, with entries: V (b) =
∏n

i=1 vi(bi). Any tensor that can be expressed

as such a product is called a rank one tensor. The rank of tensor T is then

defined as rank(T ) = min {k : T =
∑k

j=1 Vj; rank(Vj) = 1}.
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As noted in Chapter 1, there is a simple correspondence between a n-variate,

d degree polynomial, and an n-dimensional tensor, with side length d – The

coefficient of a monomial xi11 x
i2
2 · · ·xinn is the (i1, i2, · · · , in)th entry of the tensor.

We can sharpen this correspondence by observing that the coefficients of a

Basic Set Multinear polynomial A(x) with top fan-in bounded by k, can be

thought of as coming from the entries of a tensor TA, with rank(TA) ≤ k.

Our approach to identity testing ( also outlined in [12] ) relies on this corre-

spondence as follows: The polynomial evaluating to zero at a particular point

corresponds to linear relationship holding among the entries of the tensor.

Hence, in this setting, a hitting set can be thought of as a low dimensional

subspace L, spanned by rank-one tensors1, such that all non-zero tensors in

the orthogonal complement Null(L) have rank > k.

Hopping to a higher level of abstraction, it is clear that we need a structural

property that distinguishes high rank tensors. At this point, we should prob-

ably clarify our usage of the term ‘high rank tensor’ in this thesis. Finding

explicit tensors with high tensor rank is a famous open problem – We still do

not have explicit three-dimensional tensor whose rank is ω(d), while a simple

counting argument shows a rank lower bound of Ω(d2) for almost all such ten-

sors2. If we do not even have an explicit example, how can we hope to specify a

general pattern that forces high rank? The catch of course, is that in this work

we consider any tensor with rank ≥ k as ‘high rank’. This is (comparatively)

a meagre demand, since for generic tensors, the rank grows exponentially with

the dimension, i.e. as dΩ(n). In order to bound the rank, we introduce the con-

cept of reshaping, a classic tensor rank lower bound that has (unfortunately)

1The tensors are rank-one because evaluating it the polynomial can be viewed as tak-
ing it’s dot product with a tensor formed with the evaluated values of the corresponding
monomials. The tensor formed by taking the values of each monomial evaluation is of rank
one.

2For those that smell a connection with circuit lower bounds and want to know more,
wait for a couple of paragraphs.
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stood the test of time. Reshaping gives us rank lower bounds for the tensor in

terms of the rank of a derived matrix, which is easier to reason about.

The simplest example of a high rank matrix pattern (and the one that we

exploit) is a triangular matrix – With non-zero entries on the diagonal and all

entries above (or below) set to zero. The tensors we show have high rank are a

simple higher-dimensional twist on triangular matrices that we call simplicial

tensors. We define this property formally later in the chapter; The following

intuition should suffice for now – Consider a matrix with a particular zero-

nonzero pattern: It contains a right triangular region of zero entries, with a

large number of nonzero entries on the hypotenuse. It is clear, from the fact

that triangular matrices have full rank, that such a matrix has high rank.

We show that an obvious generalization of this result also holds for tensors

(Though the parameteric dependence of tensor rank on the size of the triangle,

or rather the simplex, is much weaker, which is probably a manifestation of

the intractability of tensor rank.)

Happily enough, it turns out that simplicial tensors are ‘PIT compatible’. As

it turns out, the property of being a polynomial corresponding to a simplicial

tensor can easily be enforced by composing two simple PIT tools, namely

interpolation followed by sparse PIT [22].

3.3 Tensor Rank Lower Bounds

In this section we explore the notion of tensor rank in greater detail. From a

computational perspective, while matrix rank is in P , for even 3-dimensional

tensors, tensor rank is known to be NP -hard [17], which is a strong hint about

the expressiveness of this notion. Indeed tensor rank is a fundamental concept

in the study of arithmetic circuits, and is strongly linked with circuit lower
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bounds.The first work to explore this connection was [38], and proved the

following result:

Theorem 3.1 ([38]). Given a tensor T : [d]3 → F, the smallest size of

the arithmetic circuit computing the polynomial
∑

(i,j,k)∈[d] T (i, j, k)xiyjzk is

Ω(rank(T )).

Most recently, [27] showed that for a tensor T with rank(T ) ≥ dn(1−o(1)),

and n = log d
log log d

, the associated polynomial has super polynomial formula com-

plexity. Given these connections, and how little we know about circuit lower

bounds, it should come as no surprise that we do not know much about tensor

lower bounds either.

Having ensured that the reader is intimidated enough by tensors, we now

describe the most basic technique for lower bounding tensor rank. In mathe-

matics, whenever one encounters a hard nonlinear problem, one possible strat-

egy is to replace it by an easy linear problem, and in this case we achieve that

by reshaping the tensor into a matrix [24, 26]:

Definition 3.2. Let T be an n-dimensional tensor. Given a subset of indices,

S ⊂ [n], define the reshaped matrix MS(T ) to be the matrix with rows indexed

by subsets of S and columns indexed by subsets of the complement S̄. Hence,

the (i, j)-th entry of the matrix MS is given by the tensor entry T (S = i, S̄ = j)

i.e. the entry is found by taking the indices in S to be set to i and the ones in

S̄ to be set to j.

Lemma 3.3 ([24]). For a tensor T , and a reshaping S, we have rank (MS(T )) ≤

rank (T ).

Proof. Observe that if T were a rank one tensor, MS would be a rank one

matrix. This implies that any k-rank decomposition of the tensor T yields a

k-rank decomposition of MS. Hence rank (MS(T )) ≤ rank (T ).
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Once we reshape our tensor, we are still left with the task of enforcing rank

lower bounds for MS, with the important difference that we are now in the

world of matrices, with a rich menagerie of high-rank patterns to choose from.

In this work, we only make use of triangular matrices – Arguably the simplest

pattern that causes high rank. The reasons for this choice become clear later,

but for now note that the rank of this pattern depends only on the support of

the matrix. Having already referred to it many times so far, we finally provide

a formal definition of the triangular pattern:

Definition 3.4. A matrix M is said to contain an upper k-triangle, if there

exists a sequence of matrix indices {(r1, c1), (r2, c2), . . . , (rk, ck)}, such that

• ∀ i ∈ [k]: M(ri, ci) 6= 0, and

• ∀ i, j ∈ [k], such that i < j: M(rj, ci) = 0

The index (rj, ci) is referred to as the index between (ri, ci) and (rj, cj).

The fact the matrix is upper triangular is not essential, and is mentioned to

provide geometric clarity to the definition. Hence, the strategy we pursue in

order to prove tensor rank lower bounds is to show that there exists a reshaping

of the tensor that contains a k-triangle (In fact, we prove a stronger result –

That a random reshaping contains a triangle with high probability). What

kind of tensor would be likely to contain a triangle? We answer this question

in the next section.

3.4 Simplicial Tensors

In this section we give a description of simplicial tensors, which are a natural,

higher dimensional generalization of triangular matrices. We will show that
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under a random reshaping (corresponding to a uniformly chosen subset of

variables S), such simplicial tensors contain a k-triangle, with high probability.

By 3.3, this proves that the rank of simplicial tensors is lower bounded by k.

Definition 3.5. An n-dimensional tensor T is said to be (r, ρ)-simplicial,

where r ∈ Nn, and ρ ∈ N, if it has the following structure: Define the weight

function as Wt(b) = 〈r, b〉 and partition the tensor indices into the level sets

{L1, L2, . . . , Lm} of this function, i.e. Lj = {b ∈ {0, 1}n : Wt(b) = j}. In

order for the tensor to be (r, ρ) simplicial, we require that for each set Lj,

it’s support (the number of non-zero tensor entries in it) is either large or

non-existent, i.e. ∀j : | supp(Lj)| ≥ ρ or | supp(Lj)| = 0.

3.4.1 Connection with PIT

This definition may seem a little artificial, but those familiar with PIT will

realise that the property of being (r, ρ)-simplicial can be enforced with some

basic techniques. First we map our variables xi → xi · tri . This gives us the

polynomial A(x, t) = A0(x) + A1(x) · t + · · · + Am(x) · tm, where m = |r|1.

By interpolating this polynomial in t, we can isolate the monomials with equal

weighted degree, and conduct sparse PIT with sparsity ρ for each of these

groups. Then every non-zero polynomial mapped to zero by this test will be

(r, ρ)-simplicial. Assuming an appropriate choice of parameters, no Basic Set

Multilinear polynomial with top fan-in ≤ k can be (r, ρ)-simplicial. Hence

this test preserves the non-zeroness of Basic Set Multilinear circuits. The time

complexity of this PIT algorithm is O(mρ). All that is left is to show rank

lower bounds on simplicial tensors.
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3.5 Triangles in a Simplex?

Having defined simplicial tensors, and understood their correspondence with

PIT, we will list a few obvious facts about them. Note that the number of level

sets is m = r1 + · · ·+ rn + 1. Also note that the tail sets, corresponding to the

smallest and largest values will be quite small, and as such, the sparsity con-

straint will ensure that all those entries are zero. Looking at it geometrically,

the resulting tensor will have a large simplicial region of zero entries, with the

first bounding plane containing many non-zero entries. Vague geometric intu-

ition suggests that such a tensor would contain triangles – Under a reshaping

S, the index between two non-zero indices in the bounding plane most likely

belongs to a lower set, and is thus a zero entry.

Let p be the smallest integer such that supp(Lp) 6= 0. Let {b1, b2, . . . , bk} be

the indices of k non-zero entries in Lp. Given a reshaping S, define the weight

under a reshaping WtS(b) = 〈rS, bS〉. Note that we have the general relation

Wt(b) = WtS(b) + WtS̄(b).

Lemma 3.6. Under a reshaping S, if the value WtS(bi) is distinct for each

index bi, the indices form a k-triangle in the reshaped matrix MS.

Proof. Since the weights under reshaping are all distinct, assume w.l.o.g. that

WtS(b1) > WtS(b2) > · · · > WtS(bk). Under the reshaping S, a pair of indices

y and z are mapped to (yS,yS̄) and (zS, zS̄) and the index between them is

(zS,yS̄). Hence, for any i < j, the weight of the index between bi and bj is

given by WtS(bj) + WtS̄(bi) = p+ (WtS(bj)−WtS(bi)), which, by the above

inequalities, is clearly less than p. As p was taken to be the weight of the first

non-zero plane, for any ordered pair of indices in this set, the index between

them contains a zero entry.
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In the next section, we look at the conditions on a set of indices, and a

weight vector r, that give us a set of k distinct weights under a reshaping.

3.6 Random Reshapings and Flat Distributions

Let W (b) denote the random variable corresponding to the weight of b over a

random reshaping, i.e. W (b) = WtS(b) : S ⊆R [n]. Hence, W (y) and W (z)

are random variables over N, and we are required to show that with high

probability, they are distinct. In this section, we show the following result:

Theorem 3.7. Let l = max(10 log k, log n). There exists a set on n integers r,

with |r|1 = kO(l log l), such that for all pairs of indices y, z : |y⊕ z| > Ω(log k),

the probability Pr(W (y) = W (z)) is upper bounded by 1
k2 .

Given this theorem, we can appeal to the union bound and get a reshaping

across which the weights of k indices are distinct. We can ensure the existence

of a set of k non-zero, pairwise Ω(l)-distant binary indices, by setting the

sparsity ρ of the simplicial tensor to be knΩ(l).

We start by analysing the expression Pr(W (y) = W (z)). It is handy to re-

express the probability in terms of the set difference: It is clear that Pr(W (y) =

W (z)) = Pr(W (y\z) = W (z\y)) (Here set difference is defined in the regular

way: y\z = y − (y ⊕ z)). Since y\z and z\y are disjoint, the corresponding

random variables are independent, and we can write Pr(W (y\z) = W (z\y)) =∑
i∈[m] Pr(W (y\z) = i) · Pr(W (z\y) = i). Hence, one way to reduce the

probability of equality, would be to ensure that these random variables are ‘well

spread out’, that the probability that either Pr(W (y\z) = i) or Pr(W (z\y) =

i) is low for every i. To flesh out this idea, we define ε-flat distributions and

prove a couple of simple lemmas about them.
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Definition 3.8. The distribution of a discrete random variable X over N is

said to be ε-flat if ∀ i ∈ N : Pr(X = i) ≤ ε.

Lemma 3.9. If Y and Z are independent random variables, such that the

distribution of Y is ε-flat, then:

1. Pr( Y = Z) ≤ ε, and

2. Y + Z is ε-flat distributed.

Proof. The proofs of these statements are almost identical:

1. Pr( Y = Z) =
∑

i∈[m] Pr(Y = i)·Pr(Z = i) ≤ ε·
∑

i∈[m] Pr(Z = i) ≤ ε.

2. Pr( Y +Z = j) =
∑

i∈[m] Pr(Y = j− i) ·Pr(Z = i) ≤ ε ·
∑

i∈[m] Pr(Z =

i) ≤ ε.

To recap, we expressed the probability Pr(W (y) = W (z)) in terms of the

probability that W (y\z) (w.l.o.g) takes on any one particular value. Setting

b = y\z, we note that the lowest possible flatness of a random variable W (b)

is 1
2|b|

, which corresponds to a value of m = 2|b|, i.e. each non-empty subset of

the set bits of b gives rise to a distinct sum. Setting ri = 2i helps us attain this

bound, but since the cost of the algorithm is proportional to
∑
ri, this idea

is no good (Note that this ‘solution’ corresponds exactly to brute force by the

Kronecker trick discussed in Chapter 2).

It is clear that we wish to pick the integers r = (r1, r2, · · · rn) such that the

weights across random subsets of any Ω(log k)-sized subset of r, corresponding

to the set bits in b = y\z, are distributed across many distinct values. If the

ri’s were vectors instead of integers, proving the distinctness of these subset

weights might be easier – Given a set of linearly independent vectors, the sum

of each subset of these vectors would be distinct. From this point of view, the
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problem reduces to looking for a set of vectors that are (approximately) l-wise

linearly independent, i.e. a set of n vectors R, such that for any l-sized subset

of R, the dimension of the space span(Ri1 , Ri2 , · · · , Ril) is at least l/2 (Say).

Note that this results in a flatness of ≤ 2−l/2, since every subset of these l/2

vectors gives a distinct sum.

To proceed, we solve the above problem for vectors, and then map the vectors

to integers in a way that the addition of the integers mimics the addition of

the vectors. The technical term for such a map is a Freiman Isomorphism:

Definition 3.10 ([15]). Let A be a subset of an abelian group G. Then a

Freiman Isomorphism of order l is a map Φ : G→ Z such that a1+a2+· · ·+al =

a′1+a′2+· · · a′l if and only if Φ(a1)+Φ(a2)+· · ·+Φ(al) = Φ(a′1)+Φ(a′2)+· · ·Φ(a′l).

Note that if G is the vector space RL, and A is the set of binary strings,

A = {0, 1}L, then for a ∈ A, the map Φ(a) = a1+a2 ·(l+1)+· · · aL ·(l+1)L−1 is

a Freiman Isomorphism of order l. Basically, the map ‘embeds’ vector addition

in integer addition by expressing the vectors as integers in a sufficently high

base, and treating each digit of the representation as a different dimension.

Since the base is large enough, there are no carries and addition happens digit-

wise, just as in a vector.

3.7 l-wise Linearly Independent Vectors

Approximate l-wise independence of a set of vectors means that any subset

of l vectors should span a space of dimension at least l/2. In this section,

we design a set of n approximately l-wise independent bit vectors. This is

done using combinatorial designs, an extremely handy tool when it comes to

notions of approximate independence, and thus heavily used when it comes to

pseudorandom generation and randomness extraction.
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Definition 3.11. A collection of subsets D = (D1, D2, · · · , Dm) of a universe

U , is called an (q, r) design if, for every i, |Di| = q and for every i 6= j,

|Di ∩Dj| < r.

Such designs were first constructed by [25]. If L = l2, [25] show how we

can build an (l3/2, l) design over a universe of L elements. Such a design is

guaranteed to have at least n subsets, because of the way in which we chose l.

The set R is a set of vectors in {0, 1}L, and is simply obtained by taking the

indicator vectors of each of the Di’s – This means that the jth entry of Ri is 1

if j ∈ Di and 0 otherwise. Using some simple linear algebra, we can re-express

the dimension of a subset of l vectors as the rank of a diagonally dominant

matrix and then appeal to the following result from [6]:

Theorem 3.12. Let A = (aij) be an n×n real, symmetric matrix, with aii = 1

and aij <
1√
n

, for all i 6= j. Then rank(A) ≥ n/2.

This shows us that the collection of vectors R is l-wise linearly independent.

A more general analysis of these design matrices was carried out by [8], but

given the importance of this result to our thesis, we include the proof for

completeness:

Theorem 3.13. Let R be an N×L matrix whose rows are the indicator vectors

of an (l3/2, l) design, as constructed above. Let P be the submatrix formed by

taking any l rows of R. Then rank(P) > l/2.

Proof. We wish to show a lower bound on (P). It is well known that for any

real matrix P, we have rank(P) = rank(PᵀP). In this case, we can argue that

the matrix PᵀP is an l× l diagonally dominant matrix – The diagonal entries

are much larger than the off diagonal entries. This is simply because the rows

of P formed a design, hence the value of each diagonal entry in PᵀP is l3/2,



Chapter 3 25

while the value of each off-diagonal entry is ≤ l. Dividing each column by l3/2

preserves the rank of the matrix, and appealing to the previous theorem, we

get a lower bound of l/2 for rank(P).

This theorem shows that any P contains a set of l/2 linearly independent

rows. All linear combinations of these rows are distinct: In particular, we have

a set of l/2 vectors (Ri1 , Ri2 , · · · , Ril/2
) such that the sum (s1Ri1 +s2Ri2 + · · ·+

sl/2Ril/2
) is unique for every possible binary assignment of the variables si. If

we use the order l Freiman isomorphism to obtain ri = Φ(Ri), we can conclude

that for any b ∈ {0, 1}n such that |b| = l, the distribution of the random

variable W (b) is 1
2l/2 ≤ 1

k2 -flat. The vectors Ri are L dimensional and hence

applying Φ give numbers ri whose size is upper bounded by lL = nO(l log l).

3.8 Putting it all together

Having seen all the different components of our algorithm, we provide a broad

summary of what we did. We defined simplicial tensors and proved the exis-

tence of r : |r|1 = nO(l log l) and ρ = knO(l), such that the rank of every non-zero

(r, ρ)-simplicial tensor is greater than k. This is achieved for two reasons:

The sparsity lower bound of ρ on the first non-zero slice guarantees the

existence of k non-zero indices that are a Hamming distance of ≥ l from each

other. For a suitable choice of r, the weights of any two l-separated indices

are different under a random reshaping with probability 1 − O( 1
k2 ). Using

the Union bound, we can obtain the existence of reshaping under which the

weights of all k points are different. As we proved, this is a sufficient condition

to obtain a rank lower bound of k for the tensor.
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The PIT algorithm corresponding to this, as we mentioned, is to isolate the

indices x with the same value of Wt(x) by interpolation, and then apply the

sparsity bound across this slice by sparse PIT. This ensures that the only non-

zero polynomials that evaluate to zero on our test correspond to high rank

tensors. The running time of the PIT algorithm is dominated in this case by

the interpolation step, or the size of the ri’s, which is nÕ(logn).
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Conclusion

4.1 Further Work

In terms of future work, one candidate for improvement is the weight vector

r we use for the simplicial tensor. Recall that we designed a set of numbers

r = (r1, r2, · · · , rn) such that for any x : |x| = l the distribution of W (x) is 1
2Ω(l)

flat. In order to achieve this, the numbers in r could get as large as nÕ(logn).

One obvious improvement we desire is to achieve the same flatness, but with

polynomially large ri’s instead. At this point, we are unsure of whether such a

design even exists. If, instead of a flatness of 1
2Ω(l) , we require the lowest possible

flatness of 1
2l

, we can easily show that such designs do not exist for |r| = nO(1).

Note that a flatness of 1
2l

implies that any subset of an ≤ l-size subset of r

would sum to a unique value. Consider the Hamming ball of radius l/2 centred

at the origin (say). Given two points x and y in this ball, if Wt(x) = Wt(y),

we have Wt(x\y) = Wt(y\x). Since x and y are in the same Hamming ball,

we have |x\y|+|y\x| ≤ l. This gives an ≤ l-size subset, two distinct subsets of

which have the same weight. This means that all points in the Hamming ball

must have different weights. Since there are nΩ(l) points inside the Hamming

27
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ball, this immediately gives a quasi-polynomial lower bound for |r|, in the case

where we require the flattest posible distribution. Fortunately, this simple ‘top

kill’ does not seem to extend to the relaxed version given above, which gives

us hope that it may be possible to come up with polynomially large designs

after all.

4.2 Results and Conclusion

In this thesis we have obtained blackbox PIT algorithms for the Diagonal

depth-3 model and the Basic Set Multilinear model. The recent work [11] gives

algorithms with running time nO(log logn) for both these models. For Diagonal

depth-3, we match their result with a runtime of nO(log logn). For the Basic

Set MultiLinear Model, we achieve a runtime of nO(logn log logn). In this case,

our main technical innovation is to define a class of tensors called simplicial

tensors and to prove rank lower bounds for them. Our hope is that our results

on simplicial tensors can be tightened.
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