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Hilbert’s Nullstellensatz is an important theorem in Commutative Algebra and Al-

gebraic Geometry. It connects the notion of ideals (in Commutative Algebra) to

that of varieties (in Algebraic Geometry). In this project, we investigate the com-

putational version of this problem (HN) which basically translates to finding how

hard it is to decide whether or not 1 lies in the ideal generated by a set of poly-

nomials, say {f1, · · · , fk} in k[x1, · · · , xn]. In particular, we look at the two most

important results pertaining to the complexity of the above problem (for field k of

zero-characteristic): HN ∈ PSPACE, and under Generalized Riemann Hypothesis,

HN ∈ AM .
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Chapter 1

Introduction

In this project, we explore the complexity of determining whether a system of

polynomial equations is satisfiable. More precisely, given a set of polynomials

f1, f2, · · · , fk ∈ k[x1, x2, · · · , xn] (k is a field), do they have a common zero, i.e.

is the following system of equations satisfiable over k?

f1(x1, x2, · · · , xn) = 0

f2(x1, x2, · · · , xn) = 0

...

fk(x1, x2, · · · , xn) = 0

The above problem is closely related to the statement of Hilbert’s Nullstellensatz, a

theorem in Commutative Algebra and Algebraic Geometry. Hence, we define HN

to be the decision language consisting of those systems of polynomial equations

{f1 = 0, f2 = 0, · · · , fk = 0} which are satisfiable.

In Chapter 2, we see the proof of Hilbert’s Nullstellensatz. In Chapter 3, we prove

that the above problem (HN) is in PSPACE (due to Jelonek (2005)). In Chapter

4, we prove that HN belongs to the Arthur-Merlin class (AM) for field k = Q
(due to Koiran (1996)), assuming the Generalized Riemann Hypothesis. Finally in

Chapter 5, we mention some open problems related to the complexity of HN .
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Chapter 2

Proof of Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz is a theorem about any ideal in the ring of polynomials

k[x1, x2, · · · , xn] where we assume that k is an algebraically closed field. It’s weak

form states that such an ideal must either contain 1, or all member polynomials

must share a common zero in kn.

Let’s prove the Hilbert’s Nullstellensatz for k = C. The following proof is due to

Arrondo (2006).

2.1 Points in Cn correspond to Maximal Ideals in

C[x1, x2, · · · , xn]

Lemma 1. For a = (a1, · · · , an) ∈ Cn consider the ideal Ia in C[z1, · · · , zn] gener-

ated by z1 − a1, · · · , zn − an. Then the ideal Ia is maximal.

Proof. Consider the evaluation ring homomorphism φa : C[z1, · · · , zn] → C given

by φa(f) = f(a). Clearly, φa is surjective (since φa(z0) = z0, ∀z0 ∈ C). By

first isomorphism theorem, C[z1, · · · , zn]/kernel(φa) is isomorphic to C which, in

turn, is a field. So in order to prove the lemma, it is enough to show that Ia =

kernel(φa) = {f ∈ C[z1, · · · , zn]| f(a) = 0}, since it’s known that quotienting by

an ideal produces a field if and only if the ideal is maximal. It’s conspicuously

evident that Ia ⊆ kernel(φa). Let wi = zi − ai, ∀i = 1, 2, · · · , n and for any f ∈

2



Chapter 2: Proof of Hilbert’s Nullstellensatz 3

C[z1, · · · , zn], define gf ∈ C[w1, · · · , wn] where gf (w1, · · · , wn) = f(w1+a1, · · · , wn+

an). Clearly, gf (0) = 0 iff f(a) = 0. But gf (0) = 0 implies that gf (w1, · · · , wn) =∑n
i=1 αiwi +

∑n
i≤j=1 βijwiwj + · · · , i.e., a polynomial without a non-zero constant

term. Therefore, f(z1, · · · , zn) =
∑n

i=1 αi(zi−ai)+
∑n

i≤j=1 βij(zi−ai)(zj−aj)+· · · ∈
Ia, i.e. kernel(φa) ⊆ Ia. Hence, proved. �

2.2 Maximal Ideals in C[x1, x2, · · · , xn] correspond

to Points in Cn

In order to make our lives easy, we first prove the following two lemmas, which would

be used to finally prove Hilbert’s Nullstellensatz.

Lemma 2. (Noether Normalization) Suppose that f ∈ C[z1, · · · , zn] is of total

degree d. Then one can find scalars λ1, · · · , λn−1 ∈ C such that the coefficient of

zdn in f(z1 + λ1zn, · · · , zn−1 + λn−1zn, zn) is non-zero. In particular, the mapping

Λ : f(z1, · · · , zn)→ f(z1 + λ1zn, · · · , zn−1 + λn−1zn, zn) is a ring isomorphism from

C[z1, · · · , zn] onto itself.

Proof. Let fd be the homogenous part of f of degree d. Since fd 6= 0, ∃c =

(c1, c2, · · · , cn) ∈ Cn such that fd(c) 6= 0. Due to continuity of fd, we can assume

that cn 6= 0. Let λi = ci/cn, ∀i = 1, 2, 3, · · · , n − 1. The coefficient of zdn in

f(z1 + λ1zn, · · · , zn−1 + λn−1zn, zn)

= fd(λ1, · · · , λn−1, 1) = fd(c1/cn, · · · , cn/cn) = fd(c)/c
d
n 6= 0

The second part is easy to see, since the mapping Λ is clearly a bijection (define the

inverse mapping to complete the proof). �

(Note: The above lemma is true for other fields as well (and not just C), for proof

please refer to Atiyah and MacDonald (1994).)

Lemma 3. Given two polynomials f, g ∈ C[z1, · · · , zn−1][zn] of degree d, e with

respect to zn, respectively, such that

f(z) = f0(z′) + f1(z′)zn + · · ·+ fd(z
′)zdn
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g(z) = g0(z′) + g1(z′)zn + · · ·+ ge(z
′)zen

where z = (z1, · · · , zn) and z′ = (z1, · · · , zn−1). Define Resultant of f, g, i.e.,

Res(f, g) as the determinant of the following (d+ e)× (d+ e) matrix:

f0 f1 . . . fd 0 . . . 0 0 0
0 f0 f1 . . . fd 0 . . . 0 0
...

. . . . . . . . . . . . . . . . . .
...

0 0 . . . 0 f0 f1 . . . . . . fd
g0 g1 . . . ge−2 ge−1 ge 0 . . . 0
0 g0 g1 . . . . . . . . . ge . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 0 . . . . . . 0 g0 g1 . . . ge


Then, f, g ∈ I in C[z1, · · · , zn−1, zn] implies that Res(f, g) ∈ I. (The usefulness of

Res(f, g) is that it’s devoid of the variable zn, i.e., Res(f, g) ∈ C[z1, · · · , zn−1])

Proof. The determinant of the matrix above would remain unchanged upon per-

forming elementary column operations. Upon applying the following operations

sequentially- C0 ← C0 + zinCi, ∀i = 2, 3, · · · , (d + e), all the elements of the first

column become multiples of either f(z1, . . . , zn) or g(z1, . . . , zn). Upon opening the

determinant along the first column, we obtain

Res(f, g) = fA+ gB

for some A,B ∈ C[z1, · · · , zn−1, zn]. Hence, proved. �

Theorem. (Hilbert’s Nullstellensatz Weak Form) Given any ideal I ⊆ C[z1, · · · , zn−1, zn],

either 1 ∈ I or all elements of I share a common zero.

Proof. It is enough to show that any maximal ideal in C[z1, · · · , zn−1, zn] is of the

form 〈z1 − a1, z2 − a2, · · · , zn − an〉 for some (a1, a2, · · · , an) ∈ Cn, since any ideal I

lies within a maximal ideal. We prove this by induction on the number of variables

n to be used in the ring of polynomials C[z1, · · · , zn]. Also, we assume the Hilbert’s

Basis Theorem which states that any ideal in C[z1, · · · , zn] is generated by finitely

many polynomials. Let J be a maximal ideal in C[z1, · · · , zn].

Base Case: n = 1. We know that every ideal in C[z1] is a principle ideal (use GCD

algorithm for univariate polynomials to find the generator). Let the generator of
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J be g(z1), which is assumed to be monic without loss of generality, i.e., J = 〈g〉.
Either g(z1) = 1 or g has degree d > 0. Since the underlying field is C, g can be

broken into d linear factors. Let one of those linear factors be z1−a for some a ∈ C.

Then clearly 〈g〉 ⊆ 〈z1−a〉 (since, any multiple of g is also a multiple of z−a). But

due to the assumed maximality of J , 〈z1 − a〉 = 〈g〉.

Inductive Step: Assumed true for n − 1. By Lemma 2, J contains a polynomial f

of total degree, say d, and the coefficient of zdn in f is 1, i.e.

f(z′, zn) = f0(z′) + · · ·+ fd−1(z′)zd−1
n + zdn

where z′ = (z1, · · · , zn−1) and fi ∈ C[z1, · · · , zn−1], ∀i = 1, · · · , n − 1. Let J ′ ⊆ J

be another ideal such that

J ′ = J ∩ C[z1, · · · , zn−1]

We observe that 1 ∈ J iff 1 ∈ J ′. Thus J ′ is a proper ideal, and therefore ∃a′ =

(a1, · · · , an−1) ∈ Cn−1 such that all polynomials in J ′ vanish on a′. Consider the

following ideal J ′′ ⊆ C[zn] defined as follows:

J ′′ = {p(a1, · · · , an−1, zn)| p ∈ J}

Either J ′′ = 〈1〉 or by the base case n = 1, all elements of J ′′ vanish on a certain

complex number an ∈ C. It is enough to show that J ′′ 6= 〈1〉. By contrast, let’s

suppose that 1 ∈ J ′′, i.e. ∃p ∈ J such that p(a1, · · · , an−1, zn) = 1, i.e.

p(z′, zn) = p0(z′) + · · ·+ pe−1(z′)ze−1
n + pe(z

′)zen

where p0(a′) = 1 and pi(a
′) = 0,∀i = 1, 2, · · · , e. We have Res(f, p) ∈ J ′ (since it’s

devoid of zn by definition), from which it follows that Res(f, p) vanishes at a′, but

this is a contradiction (evaluating the resultant determinant of Lemma 3. at a′, we

get Res(f, p)(a′) = 1). Hence, proved. �

Theorem. (Hilbert’s Nullstellensatz) Given any ideal I ⊆ C[z1, · · · , zn−1, zn], define

Z(I) to be the zero set of I, i.e.,

Z(I) = {a ∈ Cn| p(a) = 0 ∀p ∈ I}
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Suppose f ∈ C[z1, · · · , zn−1, zn] vanishes on Z(I), then ∃r ∈ N such that f r ∈ I.

Proof. (Using Rabinowitsch trick) Let f1, . . . , fk be the generators of I (existence due

to Hilbert’s Basis Theorem). Then 1− z0f and f1, . . . , fk have no zero in common,

where z0 is a newly added free variable. The weak form of Hilbert’s Nullstellensatz

(previous theorem) states that ∃g0, g1, . . . gk ∈ C[z0, z1, · · · , zn−1, zn] such that

g0(1− z0f) +
k∑

i=1

gifi = 1

Since z0 is a free variable, putting z0 = 1/f , we get

k∑
i=1

gi(1/f, z1, · · · , zn)fi(z1, · · · , zn) = 1

which can be simplified further by multiplying by the lowest power of f , say r, to

get rid of f ’s from the denominators of every term in the sum. We finally obtain,

k∑
i=1

hi(z1, · · · , zn)fi(z1, · · · , zn) = f r(z1, · · · , zn)

Thus f r ∈ 〈f1, · · · , fk〉 = I. Hence, proved. �



Chapter 3

Effective Nullstellensatz

This chapter is much more mathematically involved than the previous chapter, and

also, most likely, as compared to any of the subsequent chapter.

3.1 Algebraic Geometry Preliminaries

In this section, we are going to introduce certain terminologies/definitions from the

fields of Commutative Algebra and Algebraic Geometry.

Let k be any field; for convenience, we assume k is algebraically closed. We define

the affine space An
k as follows

An
k = {(c1, · · · , cn)| ci ∈ k ∀i = 1, · · · , n}

Basically An
k is the same as kn, but we use different notations for them since kn

usually refers to the n-dimensional k-vector space, and An
k is devoid of such vector

space-like structure.

Let S ⊆ k[x1, · · · , xn] be a set of n-variate polynomials. Denote the ideal generated

by the polynomials in S by IS. Let V (S) ∈ An
k be the set of points such that all

polynomials in S vanish on any point in V (S), i.e.,

V (S) = {c ∈ An
k | p(c) = 0 ∀p ∈ S}

7
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. It is easy to see that

V (S) = V (IS)

Since algebraic geometry is the study of the common zeroes of a set of polynomi-

als, then due to the above equality, it is only natural to assume that such sets of

polynomials are ideals in k[x1, · · · , xn].

For any ideal I ⊆ k[x1, · · · , xn], we call V (I) to be the affine variety corresponding

to I. Similarly, we can define the polynomial ideal for any subset T of An
k as follows.

I(T ) = {p ∈ k[x1, · · · , xn]| p(t) = 0 ∀t ∈ T}

Let’s now define the radical
√
I of an ideal I in a commutative ring R (for our

purposes, R = k[x1, · · · , xn]). We say that

√
I = {x ∈ R| ∃r ∈ N xr ∈ I}

Hilbert’s Nullstellensatz (Strong Version) proved in the previous chapter can be

translated in terms of the notation we just learnt: For any ideal I0 ⊆ k[x1, · · · , xn],

we have- √
I0 = I(V (I0))

This is the relation that connects polynomial ideals to affine varieties. We call

a variety irreducible if it can’t be written as the union of 2 strictly smaller non-

empty varieties. Every variety can be expressed as the union of a finite number

of irreducible varieties (components) (proof follows from primary decomposition of

ideals, refer Atiyah and MacDonald (1994)).

Now we consider the notion of dimension of a variety. For simplicity and ease in

visualisation, we take k = R, n = 2. Consider the polynomial p(x, y) = x2 + y2 − 1.

We know that V ({p}) is the unit circle around (0, 0) which is a curve of dimension 1.

For our next example, take k = R, n = 3 and let p(x, y, z) = x+y+z. Then we know

that V ({p}) is a plane passing through the point (0, 0, 0) and is of dimension 2. Next

take q(x, y, z) = x − y. Then V ({p, q}) is the line given by the parameterization

(using t) (t, t,−2t) of dimension 1. Now consider the variety V ({xz, yz}); it is

easy to see that it is the union of the xy−plane (which is 2-dimensional) and the

z−axis (which is 1-dimensional). In this case, dimension of the variety is taken to
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Figure 3.1: Circle Figure 3.2: Strophoid

be max(1, 2) = 2. In general, the dimension of a variety is defined as the maximum

among the dimensions of its irreducible components. (For a more detailed theory

on dimension of varieties, please refer Cox et al. (2015))

For a variety V of dimension d in the affine space An
k , the codimension of V is defines

as n − d. Now let’s investigate how to define the degree of a variety. First we look

at the degree of curves defined by a single polynomial. We say that the degree of a

curve (zero-set) of a polynomial f ∈ k[x1, · · · , xn] is equal to the total-degree of the

polynomial itself. For example, a circle given by x2 +y2 = 1 should have degree 2 by

the above definition. See that any line in general position cuts the circle at maximum

2 points (Fig. 3.1). Next see a strophoid given by the equation (a−x)y2 = x2(a+x)

(Fig. 3.2). Any line in general position cuts it at 3 points (max.) and 3 is also

the degree of the curve upon inspection of the defining equation. Also, similarly in

R3(C3), the hyperplane defined by x + y + z = 1 has degree 1 and the unit sphere

x2 +y2 +z2 = 1 has degree 2. And it is evident that a line (in R3) in general position

cuts the above curves in 1 and 2 points (max.), respectively.

This leads to the following definition: the degree of a curve in An
k is equal to the max-

imum number of points of intersection with any line (1-dimensional linear space in

An
k) in general position. And the above definition can be generalized as follows: the

degree of a variety V in An
k of codimension r is equal to the number of points of in-

tersection of V with a sufficiently general linear subspace of dimension r (Hartshorne

(1977)).

It is easy to see that (in k[x, y, z], since k[x, y, z] is an integral domain)

V ({x+ y + z}) = V ({(x+ y + z)2}) = V ({(x+ y + z)3})
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and

V ({(x2 + y2 + z2)(x2 − y3 − 3)}) = V ({(x2 + y2 + z2)2(x2 − y3 − 3)3})

What is worth noting in the above two examples is the fact that if k[x1, · · · , xn] ∈g =

f r1
1 f

r2
2 · · · f

rl
l where fi is irreducible and ri ∈ N ∀i = 1, · · · l, then V ({g}) = V ({

∏l
i=1 fi}).

We say that
∏l

i=1 fi is a reduced polynomial. In fact, it is also easy to see that

V ({g}) = V ({f1f2 · · · fl}) = V ({f1}) ∪ V ({f2}) · · · ∪ V ({fl})

and V ({fi})’s are called the components of V ({g}).

As a corollary of Bezout’s theorem, given two curves C,D of degrees m,n (these are

the degrees of the corresponding reduced polynomials), respectively, which do not

share any component, the number of points of in their intersection is less than or

equal to mn (In fact, equality holds if the curves are seen in projective space and

intersection multiplicities are accounted for; refer Cox et al. (2015)).

A subset S of An
k is said to be closed (as per Zariski topology) iff S = V (I) for some

ideal I ∈ k[x1, · · · , xn]. The closure of T ∈ An
k (abbreviation cl(T )) is defined as the

smallest closed set containing T . Let X be a variety in An
k , and let T ⊆ X, then T

is said to be dense in X, iff cl(T ) = X.

Let f be a polynomial in k[x1, · · · , xn] and let P be a point in X = V ({f}). Point P

is said to be singular in X if all the partial derivatives of f , i.e., fx1 , · · · , fxn vanish

at P . Any point Q ∈ X which is not singular in X is said to be non-singular or

smooth in X. For example, in the strophoid s(x, y) = (a − x)y2 − x2(a + x) = 0,

(0, 0) is a singular point since sx(x, y) = −y2 − 2ax− 3x2 and sy(x, y) = 2(a− x)y

both vanish at (0, 0), in fact, it can be easily checked that (0, 0) is the only singular

point in the strophoid, i.e., all other points therein are smooth. Moreover, it can be

proved (Shafarevich (1988)) that for any variety, the set of its smooth points is dense

in the variety, i.e., ∇f for a reduced polynomial f does not vanish on any of the

irreducible components of the variety. This leads to the following characterization

of reduced polynomials.

Lemma. A polynomial f ∈ k[x1, · · · , xn] is reduced if and only if∇f = (fx1 , · · · , fxn)

does not vanish on any of the irreducible components of the set V ({f}).
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Proof. (Forward direction proved above) If f is not reduced, then f = g2h and

therefore, ∇f = g2∇h+2gh∇g = g(g∇h+2h∇g) which vanishes on the component

given by g = 0. �

Let B be a ring and A be its subring such that A contains 1B. We say that b ∈ B
is integral over A if b satisfies the following

bq + aq−1b
q−1 + · · ·+ a1b+ a0 = 0

for some choice of ai ∈ A, ∀i = 1, · · · , q − 1 and q ∈ N. Notice that the above

polynomial is monic in b. We say that B is integral over A if every element in B is

integral over A.

Let V be a variety in An
k . A function f : V → k is called regular if there exists

a polynomial F ∈ k[x1, · · · , xn] such that f(x) = F (x) ∀x ∈ V . Then define

k[V ] = k[x1, · · · , xn]/I(V ) to be the coordinate ring of V , which is simply the set of

all regular functions defined on V .

Now let X ⊆ An
k and Y ⊆ Am

k be two varieties. Then a map f : X → Y is

said to be a regular map if there exists functions fi ∈ k[X] such that f(x) =

(f1(x) · · · , fm(x)),∀x ∈ X and i = 1, · · · ,m. If f(X) is dense in Y then f defines a

map f ∗ from k[Y ]→ k[X] as follows:

f ∗(p) = p ◦ f

The above map is an embedding of k[Y ] in k[X]. So one can think of k[Y ] as a

subring of k[X]. Now if k[X] is integral over k[Y ], then f is said to be a finite map

(Shafarevich (1988)).

3.2 Proof Idea for Effective Nullstellensatz

The subsequent proof of Effective Nullstellensatz is due to Jelonek (2005). A first-

time reader is strongly advised to go through Section 3.1 before moving forward.

We have mentioned the theorems and proofs/ideas in connection with the material

presented in Jelonek (2005), with the intention to simplify the complex nature of
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the paper and make it palatable to new readers, and have neither necessarily repli-

cated the proof as it is, nor given all the rigorous details everywhere. In short, the

primary purpose of this section is to build an intuition for the proof of Effective

Nullstellensatz.

Theorem 1. Let f1, f2, . . . , fn+1 ∈ k[x1, x2, · · · , xn] be n−variate polynomials,

where k is a field. Then ∃W ∈ k[X1, X2, · · · , Xn, Xn+1] such that W (f1, f2, . . . , fn+1) =

0, i.e., f1, f2, . . . , fn+1 are algebraically dependent.

Proof. Let the total degree of fi be di > 0, ∀i = 1, 2, · · · , n + 1. Let N be a large

enough natural number (how large it should be would get clearer consequently).

Consider the vector space V of all polynomials in k[x1, x2, · · · , xn] of total degree

≤ N , a basis for which could be as follows:

B = {
n∏

i=1

xeii |
n∑

i=1

ei ≤ N}

Here, |B| = N+nCn which is a degree n polynomial in N, i.e., |B| = Θ(Nn). Now

consider the following set of polynomials:

S = {
n+1∏
i=1

f ri
i | ri ≤

N

(n+ 1)di
, i ∈ {0, 1, 2, · · · , n+ 1}} − 1

Here, each g ∈ S has total degree ≤ N , i.e., S ⊆ V and there are more than
Nn+1

(n+1)n+1
∏n+1

i=1 di
elements in S, in fact more accurately, |S| = Θ(Nn+1). Choose N

such that dimension of V (i.e., size of B) becomes smaller than size of S. Then,

there are elements in S which have a linear dependency, which leads to an algebraic

dependency among fi’s. �

Theorem 2. Suppose V is an affine variety of degree d in Am
k . Let f = (f1, f2, · · · , fn)

be a polynomial map, (hence a “morphism of finite type”), from V to a variety

W = cl(f(V )) ⊆ An
k such that dim V = dim W = r. If the degrees of fi’s are

bounded by e, then deg(W ) ≤ der.

Proof. Let L ⊆ An
k be a generic linear subspace of codimension r of W. Then by

definition, the cardinality of the (finite) intersection L∩W is equal to deg(W ), and

this is bounded above by the (finite) cardinality of f−1(L∩W ) = f−1(L)∩f−1(W ) =

f−1(L)∩V , since f is finite and has generically non-empty finite fibres. But f−1(L)∩
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V is the intersection of V with the zero loci of r generic linear combinations of the

fi’s. Now let’s state the following generalisation of the Bezout’s theorem: given a

closed subset X with degree deg(X) and suppose H is a hypersurface of degree e,

then deg(X ∩ H) = e × deg(X). This implies that the degree of f−1(L) ∩ V , that

is, its cardinality, is at most deg(V )×deg(f−1(L)) = der, which gives us the desired

result. �

Theorem 3. (Generalized Perron’s Theorem) Let k be a field and let F1, ..., Fn+1 ∈
k[x1, · · · , xm] be non-constant polynomials with deg(Fi) = di. Assume that X ⊆
Am

k is an affine variety of dimension n and of degree D. If the mapping φ =

(F1, ..., Fn+1) : X → An+1
k is generically (locally) finite, then there exists a non-

zero polynomial W (T1, ..., Tn+1) ∈ k[T1, ..., Tn+1] such that

1. W (F1, ..., Fn+1) = 0 on X

2. deg(W (T d1
1 , · · · , T dn+1

n+1 )) ≤ D
∏n+1

j=1 dj

Proof. Let W (T1, ..., Tn+1) ∈ k[T1, ..., Tn+1] be an irreducible polynomial such that

W (F1, ..., Fn+1) = 0 on X, whose existence is due to Theorem 1 and the fact that

k[T1, ..., Tn+1] is an integral domain. Let P (T1, · · · , Tn+1) = W (T d1
1 , · · · , T dn+1

n+1 ).

Since W is irreducible, it must be reduced, therefore ∇P = ∇W · (d1T
d1−1 +

1, · · · , dn+1T
dn+1−1 + 1) 6= 0 (where · is the coordinate/component-wise product).

Hence by lemma proved in the previous section, P is also reduced. Define Y =

{y ∈ kn+1| P (y) = 0} where evidently, deg(Y ) = deg(P ) and dimension of Y is n

(∵ Y is a hyperplane in kn+1). Form a new set X̃ = {(x,w) ∈ X × kn+1| Fi(x) =

wi if di = 1; Fi(x) = wdi
i + wi, otherwise}. Clearly, dim X = dim X̃ since each

of the n + 1 polynomials involving wi’s (used in the definition of X̃) reduces the

dimension of X×kn+1 by 1. And by Bezout’s theorem, deg(X̃) ≤ D
∏n+1

j=1 dj. Thus,

dim X̃ = n = dim Y and we consider the following map

π : X̃ ∈(x,w) → w ∈ Y

which is clearly a finite map. We therefore apply Theorem 2. on the map π and

obtain the following relation

deg(Y ) ≤ deg(X̃)
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that is,

deg(W (T d1
1 , · · · , T dn+1

n+1 )) = deg(P (T1, ..., Tn+1)) = deg(Y ) ≤ deg(X̃) ≤ D

n+1∏
j=1

dj

Hence, proved. �

Lemma. (Noether Normalization) Assume k is an infinite field. Then if X ⊆ Am
k

be an affine variety of dimension n. Then for sufficiently general aij ∈ k, the

mapping

α : X

∈(x1, · · · , xm) →

(
m∑
j=1

a1jxj,

m∑
j=2

a2jxj, · · · ,
m∑

j=n

anjxj

)
∈ An

k

is a finite projection of X on An
k .

Proof. Refer Atiyah and MacDonald (1994), and Shafarevich (1988).

Theorem 4. (Effective Nullstellensatz) Let K be an algebraically closed field and

let f1, · · · , fk ∈ k[x1, · · · , xm] be non-zero polynomials. Let X ⊆ Am
K be an affine

algebraic variety of dimension n and of degree D. Let deg(fi) = di, where d1 ≥
· · · ≥ dk. If V ({f1, · · · , fk}) ∩X = φ then there exist polynomials gi, such that

1. deg(figi) ≤ D
∏k

j=1 dj

2. 1 =
∑k

i=1 figi on X

Proof. Assume k ≤ n. Consider the mapping

φ : X ×K ∈(x, z) → (x, f1(x)z, · · · , fk(x)z) ∈ Km ×Kk

Since, by Hilbert’s Nullstellensatz, ∃gi’s such that
∑k

i=1 figi = 1, given (x,w1, · · · , wk) ∈
X ×Kk, we can obtain φ−1(x,w1, · · · , wk) = (x,

∑k
i=1wigi(x)), that is, φ is an em-

bedding (or that φ : X ×K → φ(X ×K) is a bijection). In particular, the set

φ(X×K) =

{
(x,w1, · · · , wk) ∈ X ×Kk

∣∣∣∣∣ x ∈ X and ∀i, wi − fi(x) ·

(
k∑

j=1

wjgj(x)

)
= 0

}

is closed of dimension n+ 1, and φ : X ×K → φ(X ×K) is finite.
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Let π : φ(X ×K)→ Kn+1 be a generic projection and is therefore finite; consider it

to be of the form described in the previous lemma. Define ψ := π ◦ φ which is finite

again. This is because the composition of finite maps is finite (can be easily proved

using the fact that if ring A is integral over ring B and B is integral over another

ring C, then A is integral over C, refer Atiyah and MacDonald (1994)). In fact, ψ

is a generic projection of X ×K on Kn+1 and is of the form

ψ : X ×K ∈(x, z) → (
n∑

j=1

γ1jfj(x)z + l1(x),
n∑

j=2

γ2jfj(x)z + l2(x),

· · · ,
n∑

j=n

γnjfj(x)z + ln(x), ln+1(x)) ∈ Kn+1

where lj’s are linear polynomials and fj := 0 for j > k. Set ψ = (ψ1, · · · , ψn+1).

Now we apply the Generalized Perron’s Theorem on ψ1, · · · , ψn+1 ⊆ K(z)[x1, · · · , xm]

over field K(z) and the variety X is also considered over K(z). Then there exists a

polynomial W ∈ K(z)[T1, · · · , Tm] such that

1. W (ψ1, ..., ψn+1) = 0 on X

2. deg(W (T d1
1 , · · · , T dk

k , Tk+1, · · · , Tn+1)) ≤ D
∏k

j=1 dj

Here, the coefficients of W are in K(z). Multiplying with the least common multiple

of all denominators we get W̃ ∈ K[T1, · · · , Tm, Y ] such that

1. W̃ (ψ1(x, z), ..., ψn+1(x, z), z) = 0.

2. degT (W̃ (T d1
1 , · · · , T dk

k , Tk+1, · · · , Tn+1, Y )) ≤ D
∏k

j=1 dj where degT denotes

the degree with respect to the variables T = (T1, · · · , Tn+1).

Since ψ = (ψ1, · · · , ψn+1) : X × K → Kn+1 is a finite mapping, K[X][z] is in-

tegral over K[T1, · · · , Tn+1] (by definition of finite mapping, refer Section 3.1),

i.e. for any polynomial H ∈ K[X][z], there exists a minimal polynomial PH ∈
K[T1, · · · , Tn+1][Y ] monic in Y such that

PH(ψ1, · · · , ψn+1, H) = Hr +
r−1∑
j=1

bj(ψ1, · · · , ψn+1)Hj = 0
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.

Take H = z. By the minimality of Pz, we get Pz(T, Y ) divides W̃ (T, Y ) and therefore

degT (Pz(T
d1
1 , · · · , T dk

k , Tk+1, · · · , Tn+1, Y )) ≤ D
k∏

j=1

dj

.

Let the degree of Pz with respect to Y be N . Then

Pz(ψ1, · · · , ψn+1, z) = zN +
N−1∑
j=1

bj(ψ1, · · · , ψn+1)zj = 0

that is

zN +
N−1∑
j=1

bj

(
n∑

j=1

γ1jfj(x)z + l1(x), · · · ,
n∑

j=n

γnjfj(x)z + ln(x), ln+1(x)

)
zj = 0

The terms involving zN in the expansion of

N−1∑
j=1

bj

(
n∑

j=1

γ1jfj(x)z + l1(x), · · · ,
n∑

j=n

γnjfj(x)z + ln(x), ln+1(x)

)
zj

must be of the form zNU(x)
∏k

j=1 f
uj

j (x) for some polynomial U ∈ K[x1, · · · , xm]

and the powers uj’s are such that
∑k

j=1 uj > 0. This leads to obtaining polynomials

gi ∈ K[x1, · · · , xm], i = 1, · · · , k such that conditions 1. and 2. in the theorem

statement hold (the degree bound is sharp in this case, i.e., when k < n).

Now consider the case k > n; it’s known that if now 1 ∈ 〈f1, · · · , fk〉, then 1

also belongs to the ideal generated by n + 1 random linear combinations of these

polynomials. Call them f̃1, · · · , f̃n+1. Hence, the above proof would work for this

case as well, but with a little adjustment - one can increase the dimension of the

variety X by 1, by adding another independent coordinate xm+1, so we now have

n+ 1 polynomials and an n+ 1 dimensional variety. Thus, the case k > n has been

reduced to k = n (although the degree bound won’t be sharp in this case). �
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3.3 HN ∈ PSPACE

PSPACE is defined as the set of all decision problems that can be solved by Turing

Machine in polynomial (with respect to input size) space. More precisely,

PSPACE = ∪k∈NSPACE(nk)

where SPACE(s(n)) is the set of all decision problems that can be solved by a

Turing Machine in O(s(n)) space for some function s of the input size n.

Since we have the degree bound on gi’s, which is exponential in the size of the input,

one can form a linear system of equations with the unknowns being the coefficients

of gi’s, and solve it in PSPACE (the crux is not to store the linear system, instead

one should compute the matrix entries on demand, Berkowitz (1984)).



Chapter 4

HN is in AM under Generalized

Riemann Hypothesis

We will divide this chapter into two sections: the first would be concerned with

developing a general understanding of the complexity class AM (Arthur-Merlin)

and the second would contain the proof idea for the proposition HN ∈ AM under

Generalized Riemann Hypothesis (GRH). This proof is due to Koiran (1996).

4.1 Arthur-Merlin Class

The class Arthur-Merlin (AM) (Arora and Barak (2009)) is the set of those lan-

guages L for which membership can be ascertained with the help of an Arthur-Merlin

game having constant number of rounds. An Arthur-Merlin game is simply an in-

teractive protocol involving public coins where Merlin is an all-powerful prover and

is trying to prove to Arthur, a probabilistic polynomial-time verifier that a certain

element x is in the language L. In the beginning, Arthur produces random bits (say,

by flipping truly random coins) and gives them to Merlin, hence the name public

coins (since they are visible to Merlin). These random coins are like challenges to

Merlin who has to provide a response to Arthur, and the response is usually trying

to convince Arthur about the membership of x in L. Lastly, Arthur, using the ran-

dom bits he generated and Merlin’s responses, verifies the claims made by Merlin by

18
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doing certain polynomial time computations (very much like NP ). Merlin can make

Arthur accept with probability at least 2/3 for a yes-instance x and with probability

at most 1/3 for a no-instance x, no matter what Merlin does (that is, even if he

tries to cheat).

AM is most useful in identifying a language L where proving membership of x in

L leads to the following scenario. Assume that there is a universe U and every

candidate x for membership in L defines a “good” set Good(x) ⊆ U such that

membership of some y ∈ U in Good(x) is a problem in NP , i.e., given an appropriate

(polynomial-sized) certificate, membership in Good(x) can be verified in polynomial-

time and also the set Good(x) is such that if x is a yes-instance (x ∈ L), then

|Good(x)| ≥ P1 and if x is a no-instance (x /∈ L), then |Good(x)| ≤ P2, where P1 >

4P2. For the explicit AM protocol and the proof of L ∈ AM , refer Sudan (1998).

Let’s build on the terminology introduced in the previous paragraph. In the subse-

quent section, we take L = HN and x = S = {f1, · · · , fm}, fi ∈ Z[x1. · · · , xn] of

degree at most d. We have S ∈ HN iff ∃c ∈ Cn such that f(c) = 0, ∀f ∈ S. For

any b ∈ N, define [b] to be the set {1, · · · , b}. Let U = [N ] for some N ∈ N. We

define

Good(S) := {p ∈ [N ]| p is a prime and S has a solution in Zp}

Clearly, membership in Good(S) ⊆ [N ] is in NP , because one can provide a cer-

tificate cp ∈ Zn
p such that f(cp) = 0 in Zp for all f ∈ S. Also, the size of S, i.e.,

|S| = poly(n,m, d, logC) where C is the bound on the coefficients of f ∈ S.

4.2 Proof of HN ∈ AM under GRH

At this point, it only remains to show why we defined Good(S) the way we defined

it and the bounds P1 and P2 on its size when S is a yes-instance or no-instance,

respectively. When S is a yes-instance, it means that the system of equations f = 0

for f ∈ S is satisfiable (we say S is satisfiable) and has a solution in Cn. On the

other hand, when S is a no-instance, the system of equations f = 0 for f ∈ S is

unsatisfiable (we say S is unsatisfiable) and has no solution in Cn. The following

two theorems precisely state that the fact that when S is satisfiable, the number of
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primes p for which the system of equations f = 0 (mod p) for f ∈ S has a solution,

is far greater than the the case when S is not sastisfiable. In fact, the number of

such primes is infinite in the former case and finite in the latter.

Theorem 1. In case S is unsatisfiable over C, there are at most P2 = exp(|S|)
primes p such that S is satisfiable over Zp.

Theorem 2. In case S is satisfiable over C, there exists two constants N2, N3 such

that are at least P1 =
π(N)

N2

− N3 − O(
√
N logN) primes p ≤ N such that S is

satisfiable over Zp. Moreover, N2, N3 are exp(|S|). (Here, O(
√
N logN) is the error

term, and π is the prime-counting function, i.e., π(N) := number of primes ≤ N

and it’s known that π(N) ≈ N/ logN .)

We take N to be sufficiently large so that P1 > 4P2 (as discussed in the previ-

ous section). In the following subsections we present the proof idea for the above

theorems.

4.2.1 Unsatisfiable System of Equations

If S is unsatisfiable, then due to Chapter 2, there exist polynomials g1, · · · , gm such

that

f1g1 + · · ·+ fmgm = 1

The degrees of gi’s are bounded by exp(|S|) due to Effective Nullstellensatz, and the

above equation, therefore, reduces to a linear system with exp(|S|) unknowns, i.e.,

the coefficients of gi’s. Since the coefficients of fi’s belong to Q, so do those of gi’s,

a proof of which is apparent using Cramer’s rule. In fact, more can be said using

Cramer’s rule. The denominators of gi’s coefficients are determinants of exp(|S|)-
sized matrices, and the denominators, in worst case, are exponential in the size of

them matrix. Therefore, the denominators of gi’s are bounded by exp(exp(|S|)). If

we take the LCM of the denominators of the coefficients of gi, call it α (which is

also bounded by exp(exp(|S|))), then the above equation becomes

f1G1 + · · ·+ fmGm = α

where Gi’s are polynomials with integer coefficients.
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Let p be a prime such that S is satisfiable over Zp, i.e., there exists a solution

(mod p) for S in Zn. Putting that solution in the above equation we get

α = 0 (mod p)

that is, p divides α and the number of such p’s is bounded by log2 α. In order to

prove Theorem 1., it remains to show that α = O(exp(exp(|S|))) = P2 which has

been already proved in the preceding paragraph.

4.2.2 Satisfiable System of Equations

The case where S is satisfiable, is harder of the two cases. In order to develop more

intuition about what is happening in this situation, we start with a few motivating

examples.

Example 1. Consider the following system of equations in Z[x, y]

xy − 30 = 0

x− 5 = 0

y − 6 = 0

This has a solution x = 5, y = 6. In fact, for every prime p, there is a solution

modulo p to the above system of equations, namely x = 5 (mod p), y = 6 (mod p)

Example 2. Consider the following system of equations in Z[x, y, z]

xy − z2 = 0

2x− 1 = 0

x− 9y = 0

This has a solution (x, y, z) = (1/2, 1/18,±1/6) = (9/18, 1/18,±3/18). Observe

that unlike the previous example this equation has no solution modulo p = 2. Since

0 6= 1 = −1 = 2x− 1 (mod 2) for any x ∈ Z2. But there exists a solution modulo 5,

namely (x, y, z) = (3 (mod 5), 2 (mod 5), ±1 (mod 5)). In fact, it is easy to check

that for every prime p 6= 2, 3, there is a solution modulo p to the above system of
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equations, namely (x, y, z) = (18−1 (mod p)) · (9, 1, ±3). Observe that 2,3 are the

only primes that divide 18, the least common denominator of the components of the

common solution over Q.

Example 3. Consider the following system of equations in Z[x, y, z]

x3 − 2 = 0

y − 1 = 0

z − 3xy = 0

This has a solution (x, y, z) = ( 3
√

2, 1, 3 3
√

2). Observe that the methodology used to

find solutions modulo p in the previous example fails to apply in this one.

So now that we have enough motivation about the kinds of scenario we might end up

in if S is satisfiable, let’s take a more general approach. Let a = (a1, · · · , an) ∈ Qn

such that a is a zero of all the polynomials in S. If all ai’s are in Z or Q, then

we take approaches similar to those in Examples 1 and 2. Otherwise, we do the

following. Obviously, ai belongs to the field extension Q(ai) for each i. Therefore

each ai belongs to the field extension Q(ai, · · · , an), which is equal to Q(α) for some

α ∈ Q due to the Primitive Element Theorem (for an elementary proof, refer Brown

(2010)). Let R(x) ∈ Z[x] be the minimal annihilator of α. Since ai, · · · , an ∈ Q(α),

ai can be written as a polynomial in α over Q, i.e., ai = pi(α)/q for all i (q is the

least natural number such that pi(x) ∈ Z[x] for all i). The following lemma helps us

in getting upper bounds on q and the degree and coefficients of R.

Lemma. If a = (a1, · · · , an) (the common zero of polynomials in S) is chosen

appropriately, then the degree of R is exp(|S|) and q and the coefficients of R are

exp(exp(|S|).

Proof. Sudan (1998) �

Let for each i = 1, · · · ,m

gi(x) = qd × fi
(
p1(x)

q
, · · · , pn(x)

q

)
Notice that each of the gi’s is a univariate (in x).
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We have gi(α) = qd × fi
(
p1(α)

q
, · · · , pn(α)

q

)
= qd × fi(a1 · · · , an) = 0. Hence, R

divides gi for each i, since R(x) is the minimal polynomial in Q[x] one of whose

zeroes is α.

If p is a prime ≤ N not dividing q such that R(x) has a zero modulo p, say αp ∈ Zp,

then αp is also a zero of every gi, and by the technique used in Example 2., we obtain

a common zero

(
p1(αp)

q
, · · · , pn(αp)

q

)
. The number of such primes p is what we

desire to count (this is exactly equal to the size of Good(S)).

Suppose R has degree D and ∆ = Res(f, f ′) where Res was defined in Chapter 2.

Define Np as follows

Np := |{b ∈ Zp| R(b) = 0 (mod p)}|

Theorem 3. (Effective Chebotarev Density Theorem, Adleman and Odlyzko (1983))

Under Generalized Riemann Hypothesis,

 ∑
p ∈ P ∩ [N ]

Np

 =

 ∑
p ∈ P ∩ [N ]

p - ∆

1

−O(
√
N log(∆N))

where P is the set of primes.

We want |Good(S)| =
∑

p ∈ P ∩ [N ]
p - q

R has zero over Zp

1 which is greater than

∑
p ∈ P ∩ [N ]

Np

D
− log q

(since there are at most D zeros of R in Zp) which in turn equals

P1 =
(π(N)− log ∆)−O(

√
N log(∆N))

D
− log q

(due to the Theorem 3.). We have repeatedly used the fact the number of prime

factors of M ∈ N is O(logM).

Hence, Theorem 2. has been proved (use the preceding lemma as well for bounds

on D and ∆).



Chapter 5

Conclusion and Future Scope

In Chapter 3, we saw that the computational version of the Hilbert’s Nullstellensatz,

HN , is in PSPACE. In Chapter 4, we saw that HN is in AM when the polynomials

are considered over the ring of integers and Generalized Riemann Hypothesis is

assumed. The following problems are open for the future. Can one put HN in AM

for integer polynomials without assuming the Generalized Riemann Hypothesis?

Can one put HN in AM for polynomials over all fields (particularly those having

positive characteristic)? Is it possible to put HN in NP ⊆ AM? These questions

are yet to be answered.
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