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1 Introduction
Polynomial factorization is a central question in computer algebra having applications in areas such as
cryptography [CR88], list decoding [VG99],[Sud97] and derandomization [KI04].The study of factoriza-
tion of sparse polynomials was initiated by [VZGK85], where von zur Gathen and Kaltofen gave the first
randomized algorithm of factorization of sparse multivariate polynomials. The runtime of this algorithm
has a polynomial dependence on the sparsity of its factors.

Kopparty et al [KSS14] showed the equivalence of the problem of derandomizing polynomial identi-
tiy testing for general arithmetic circuits and the problem of derandomizing multivariate polynomial
factoring. Then, Bhargav et al. [BSV20] derandomized multivariate polynomial factoring for the class
of sparse polynomials. The runtime of their algorithm has a polynomial dependence on sparsity of the
sparsity of its factors.

We can see how closely sparse polynomial factorization is related to the sparsity bounds of factors.
In this paper we will study sparsity bounds of multivariate polynomial in the bounded individual degree
setting as Example 4.1 shows that in the unbounded setting, the factors can be exponentially large.

The central problem we study in this paper is

Problem 1.1. Let f, g, h ∈ F[x1, ..., xn] such that f = g · h, then how are ||g|| and ||f || related to each
other.

Note that ||g|| is simply the sparsity of g. Volkovich [Vol17] conjectured that

Conjecture 1.2 ([Vol17]). There exists a function ν : N → N such that if f ∈ F[x1, .., xn] is a polynomial
with individual degree atmost d, then g|f =⇒ ||g|| ≤ ||f ||ν(d).

2 Definitions and Notations
2.1 Polynomials
Let f ∈ F[x1, ..., xn] such that

f(x1, .., xn) =
∑

i1,..in

ai1,..,inx
i1
1 ...xin

n

then define the support of f as

supp(f) = {(i1, .., in)|ai1,..,in ̸= 0}

and let
||f || = |supp(f)|.

The individual degree of variable xi in f denoted by degxi
(f) is the maximum degree of variable xi in f .

The individual degree of f is defined as the maximum among all individual degrees of all variables of f .

2.2 Polytopes
Let S = {u1, .., um} such that ui ∈ Rt, then define the convex span or convex hull of S as

CS(S) =

{∑
i

αiui | αi ∈ R, αi ≥ 0,
∑
i

αi = 1

}
.

We call a set P ⊂ Rn a convex set if for any two points u, v ∈ P and any 0 ≤ α ≤ 1

αu+ (1− α)v ∈ P.
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We call a convex set P ⊂ Rn a polytope if there exists a finite set S ⊂ Rn such that P = CS(S). We call
v ∈ P a vertex if there is no u,w ∈ P \ {v} such that for any 0 ≤ α ≤ 1

v = αu+ (1− α)w.

Let VP denote the vertex set of polytope P = CS(S), then it is easy to see that VP ⊂ S.

Denote Rn \ {0} by Rn
∗ . We define an equivalence relation in Rn

∗ as (a1, ...an) ∼ (b1, ...bn) iff there
exists t > 0

(a1, .., an) = (tb1, .., tbn).

Then the set of equivalence classes
(
Rn

∗⧸∼
)

partitions Rn
∗ and we call each equivalence class a direction.

For a direction λ, we can pick a representative element from the equivalence class namely (λ1, ...λn).
Define the function :

Lλ : Rn −→ R

(x1, ..., xn) −→
∑
i

xiλi

Since a polytope is closed and bounded and the function Lλ is continous thus for a polytope P there
exists a unique constant cλ ∈ R such that

max
x∈P

Lλ(x) = cλ.

The hyperplane
Eλ = {x ∈ Rn | Lλ(x) = cλ}

is called the supporting hyperplane of P in the direction λ and

Pλ = P ∩ Eλ

is called the face of P in the direction λ. Note that for all x ∈ P , Lλ(x) ≤ cλ, hence Eλ is called the
supporting hyperplane. Then it can be seen easily that

∂P =
∪
λ

Pλ

For two sets A,B we define the Minkowski sum as

A+B = {α+ β | α ∈ A, β ∈ B}

For a polynomial f ∈ F[x1, ..., xn] we define the Newton polytope Pf = CS(supp(f)). We denote the set
of vertices of Pf by Vf .

3 Important Results
3.1 Polytopes
Lemma 3.1. Let P,R be polytopes, then P+R is a polytope and

P +R = CS(VP + VR).

Proof. It is trivial to see CS(VP + VR) ⊂ P + R. To show P + R ⊂ CS(VP + VR) take any γ ∈ P + R,
then by γ = α+ β, where α ∈ P and β ∈ R. Let VP = {u1, ..um} and VR = w1, ...wn then

α =
∑
i

aiui

β =
∑
j

bjwj
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where ai, bj ≥ 0 and
∑
i

ai =
∑
j

bj = 1. Define ci,j = aibj for 1 ≤ i ≤ m and 1 ≤ j ≤ n then

γ = α+ β =
∑
i,j

ci,j (ui + vj)

implying γ ∈ CS(VP + VR) which implies P +R ⊂ CS(VP + VR) and proving the lemma.

Lemma 3.2. Let λ be any direction and P,R be two polytopes, then if

EP
λ = {x ∈ Rn | Lλ(x) = cPλ }

ER
λ = {x ∈ Rn | Lλ(x) = cRλ }

are the supporting hyperplanes of P,R in the direction λ respectively then

EP+R
λ = {x ∈ Rn | Lλ(x) = cPλ + cRλ }

is the supporting hyperplane of P +R in the direction λ. Moreover

(P +R)λ = Pλ +Rλ

Proof. To show EP+R
λ is the supporting hyperplane of P +R it is enough to show

max
γ∈P+R

Lλ(γ) = cPλ + cRλ

Note that for any γ ∈ P +R, there exists α ∈ P, β ∈ R such that γ = α+ β which implies

max
γ∈P+R

Lλ(γ) = max
α∈P
β∈R

Lλ(α+ β)

= max
α∈P
β∈R

Lλ(α) + Lλ(β)

= max
α∈P

Lλ(α) + max
β∈R

Lλ(β)

= cPλ + cRλ .

To show
(P +R)

λ
= Pλ +Rλ

note that Pλ+Rλ ⊂ (P +R)
λ follows trivially. We only need to show (P +R)

λ ⊂ Pλ+Rλ. Suppose
(P +R)

λ ̸⊂ Pλ +Rλ, then without loss of generality we can assume that there exists α ∈ P \Pλ, β ∈ R

such that α+ β ∈ (P +R)
λ. But then

Lλ(α+ β) = Lλ(α) + Lλ(β)

< cPλ + Lλ(β)

≤ cPλ + cRλ

which is not possible by the definition of (P +R)λ, and hence by contradiction (P +R)λ ⊂ Pλ +Rλ.

Lemma 3.3 ([Zie12]). A point u ∈ P is a vertex iff there exists a direction λ such that Pλ = {u}.

The following corollary follows from the above lemmas :

Corollary 3.4. Let P,Q,R be polytopes such that P = Q+R and if there exists a direction λ such that
Pλ = {u} then there exists v ∈ Q and w ∈ R such that Qλ = {v} and Rλ = {w}. Moreover there doesnot
exist any other pair of points v′ ∈ Q and w′ ∈ R such u = v′ + w′.
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Proof. Pλ = Qλ + Rλ implies that Pλ contains a translated copy of Qλ and Rλ. Since Qλ and Rλ ̸= ϕ
by definition, and |Pλ| = 1 this implies |Qλ| = |Rλ| = 1 which implies there exists v ∈ Q and w ∈ R such
that Qλ = {v} and Rλ = {w}.

Suppose there exists v′ ∈ Q and w′ ∈ R such that u = v′ + w′, then

u =

(
v + w

2

)
+

(
v′ + w′

2

)
=

(
v + w′

2

)
+

(
v′ + w

2

)
.

Since v + w′, v′ + w ∈ Q+R = P and u is a vertex by Lemma 3.3, thus

v + w′ = v′ + w = u = v + w = v′ + w′

implying v = v′ and w = w′.

Corollary 3.4 effectively says that if P = Q+R, then every vertex of P can be written as the unique
sum of a vertex of Q and of a vertex of R.

Lemma 3.5 ([Sch00]). Let P,Q,R be polytopes such that P = Q+R, then

|VP | ≥ max{|VQ|, |VR|}

Proof. We first show that |VP | ≥ |VQ| by showing that for any v ∈ VQ, there exists w ∈ VR such that
u = v + w ∈ VP . Polytopes have finite number of distinct faces, thus for a vertex v ∈ VQ there are
infinite choices of directions λ such that Qλ = {v}. Thus we choose a λ such that |Rλ| = 1 implying there
exists w ∈ VR such that Rλ = {w}. Since Pλ = Qλ+Rλ, thus u = v+w ∈ VP . Thus implying |VP | ≥ |VQ|.

Using a similar argument for VR we can show |VP | ≥ |VR|, thus implying

|VP | ≥ max{|VQ|, |VR|}.

3.2 Polynomials and Polytopes
The following theorem tells about a key structural property of newton polytope of a multivariate poly-
nomials :

Theorem 3.6 ([Ost21],[Ost75],[Gao01]). Let f, g, h ∈ F[x1, ..., xn] such that f = g · h, then

Pf = Pg + Ph

where Pf , Pg, Ph are the Newton polytopes of f, g, h respectively.

Proof. Since supp(f) ⊂ supp(g) + supp(h), thus Pf ⊂ Pg + Ph. By Corollary 3.4, for every vertex u of
Pg+Ph, there exists pair of vertices v ∈ Vg and w ∈ Vh such that u = v+w. Hence in the multiplication of
g, h due to the uniqueness of the pair, the monomial corresponding to u survives and hence u ∈ supp(f).
This implies that Pg + Ph ⊂ Pf which implies Pf = Pg + Ph.

3.3 Convex Geometry
The famous Caratheodory’s theorem in Convex geometry is:

Lemma 3.7 ([Zie12]). If µ ∈ Rn lies in the convex hull of a set U then µ can be written as the convex
combination of at most n+ 1 points of U .
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We will be needing a slight modification of this fundamental result which is

Theorem 3.8 ([Bar15]). Given a set of vectors U = {u1, .., um} ⊂ Rn with ||ui||∞ ≤ 1 and ϵ > 0. For
every µ ∈ CS(U) there exists an O

(
log n
ϵ2

)
uniform vector µ′ ∈ CS(U) such that ||µ− µ′|| ≤ ϵ

Proof. Since µ ∈ CS(U) thus

µ =

m∑
i=1

aiui

where
m∑
i=1

ai = 1. Define the following probability distribution on the set U where Pr[ui] = ai for

1 ≤ i ≤ m. If we take t =
(

log n
ϵ2

)
iid samples from this distribution call it {v1, ..., vt} and let

µ′ =
1

t

t∑
i=1

vi

Let µ′
j , µj be the jth co-ordinate of µ′ and µ respectively, then the claim is that

Pr
[
|µj − µ′

j | ≥ ϵ
]
<

1

n
.

The claim follows from the Chernoff-Hoeffding inequality applied to t independent samples Y1, ...Yt of
the random variable Y , where Pr[Y = (ui)j ] = ai for 1 ≤ i ≤ m. Thus by union bound

Pr [||µ− µ′||∞ > ϵ] < 1

which implies that with positive probability there exists ||µ− µ′||∞ < ϵ, thus proving the existence of a
suitable uniform vector as demanded in the theorem.

4 General Sparsity Bounds
Let f, g, h ∈ F[x1, ., ..xn] such that f = gh, then in this section we find a bound of ||g|| in terms of ||f ||.
We first state the best known examples of largest blowups in sparsity of in the factor.

4.1 Examples of largest blowups
The biggest blowup in characteristic zero field known is the following

Example 4.1 ([VZGK85]). Let f ∈ F[x1, ...xn] where F is characteristic zero field of bounded individual
degree d, such that

f =

n∏
i=1

(xd
i − 1)

then the following polynomial g ∈ F[x1, ...xn] is a factor of f :

g =

n∏
i=1

(
1 + xi + ...+ xd−1

i

)
and note that ||f || = 2n and ||g|| = dn = ||f ||log d.

The biggest blowup in the characteristic p case known is
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Example 4.2 ([BSV20]). Let p be a prime and let 0 < d < p. Define f ∈ Fp[x1, ..xn] as

f = xp
1 + ...+ xp

n = (x1 + ...+ xn)
p

then the polynomial g ∈ Fp[x1, ..., xn] defined as

g = (x1 + ...+ xn)
d

is a factor of f . Note that ||f || = n and ||g|| =
(
n+d−1

d

)
≈ nd = ||f ||d.

Both the examples are in agreement with Conjecture 1.2.

4.2 Finding General Sparsity Bound
To find the general sparsity bound we first approximate the number of internal points of a polytope in
terms of the size of its vertex set with the following lemma

Lemma 4.3 ([BSV20]). Let E ⊂ {0, 1, ..., d}n and t = |V (CS(E))|. Then there exists an absolute
constant C such that tCd2 log n ≥ |E|.

Proof. Define the set Ed as
Ed =

{u

d
| u ∈ E

}
and, let Ud = V (CS(Ed)) and U = V (CS(E)) then clearly Ud ⊂ Ed and |Ud| = |U | = t. For any two
distinct vectors u, v ∈ Ed

||u− v||∞ ≥ 1

d

Set ϵ = 1
3d and applying Theorem 3.8 on the set Ud we can find O( log n

ϵ2 ) = O(d2 log n) uniform vectors
u′, v′ such that

||u− u′||∞ ≤ 1

3d
||v − v′||∞ ≤ 1

3d
.

By applying triangle inequality we get

||u′ − v′||∞ ≥ ||u− v||∞ − ||u− u′||∞ − ||v − v′||∞

≥ 1

d
− 1

3d
− 1

3d

≥ 1

3d

which implies that u′ ̸= v′. Hence we have shown the existence of |Ed| = |E| distinct O(d2 log n) vectors.
Note that the number of O(d2 log n) vectors of the set Ud are |Ud|O(d2 log n) ≤ tCd2 log n for some constant
C. Hence we have

tCd2 log n ≥ |E|.

We have the tools to prove the general sparsity bound which is stated int the following theorem:

Theorem 4.4 ([BSV20]). There exists an non-decreasing function ξ(n, s, d) ≤ sO(d2 log n) such that if
f ∈ F[x1, ..., xn] is a polynomial of sparsity s and individual degrees at most d and if f = g · h, for
g, h ∈ F[x1, ..., xn], then the sparsity of g is upper bounded by ξ(n, s, d).

Proof. Let Pf , Pg, Ph be the newton polytopes of f, g, hrespectively and let Vf , Vg, Vh be the vertices of
Pf , Pg, Ph. Then applying Lemma 4.3 on E = supp(g), we get:

||g|| ≤ |Vg|Cd2 log n
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for some constant C. By Theorem 3.6 and Lemma 3.5 we get |Vf | ≥ |Vg|, hence we have

||g|| ≤ |Vg|Cd2 logn ≤ |Vf |Cd2 log n ≤ ||f ||Cd2 log n

and the theorem follows.

However the sparsity bound achieved is not in agrrement with Conjecture 1.2.

5 Possible approaches to improve the sparsity bound
5.1 Improving the estimate of integer points?
We call a polytope P ⊂ Rn symmetric if for every u ∈ P and permutation σ ∈ Sn, σ ◦ u ∈ P . A better
estimate of integer points has been shown :

Lemma 5.1 ([BS22]). Let V ⊂ {0, 1, ..., d}n be the vertices of a symmetric polytope P . Then, |P ∩Zn| ≤
|V |O(d2 log d).

We define a polynomial f ∈ F[x1, ..., xn] to be symmetric if the newton polytope Pf is symmetric.
Then the following theorem gives a better sparsity bound when f is symmetric.

Theorem 5.2 ([BS22]). Let f ∈ F[x1, ...xn] be a symmetric polynomial with constant individual degree
d, over any field F. Then, every factor of f has its sparsity bounded by sO(d2 log d).

However, for a general polynomial we cant lose the log n factor in Lemma 4.3 factor due to the
following lemma:

Lemma 5.3 ([BSV20]). There is a set E ⊂ {−1, 0, 1} such that |V (CS(E))| = n and |E| = nΩ(log n).

Proof. Let n = 2m for some positive integer, define the n × n Hadamard matrix H as Hi,j = (−1)⟨i,j⟩,
where i, j are in their binary representation and ⟨i, j⟩ is the dot-product. We can assume i, j ∈ Fm

2 .

Let S ⊂ Fm
2 be any subspace of the vector space Fm

2 over the field F2. Define the characteristic vector
uS of size n× 1 as, ui = 1 if i ∈ S, else ui = 0. Then the claim is that

1

|S|
H · uS ⊂ {0, 1}n.

Define the set S⊥ = {b ∈ Fm
2 | ⟨b, a⟩ = 0, ∀a ∈ S}. For any b ∈ Fm

2

(H · uS)b =
∑
a∈S

(−1)⟨a,b⟩.

Thus for b ∈ S⊥, (H · uS)b = |S|. If b /∈ S⊥, then there exists c ∈ S such that ⟨b, c⟩ = 1 implying that for
all a ∈ S, (−1)⟨a,b⟩ = −(−1)⟨a+c,b⟩ which implies (H · uS)b = 0. Hence we have proved

1

|S|
H · uS ⊂ {0, 1}n.

Let V ⊂ {−1,+1}n be the set of column vectors of H. The number of subspaces of Fm
2 = nΩ(log n), and

since S⊥ is uniquely characterizes a subspace S, we have shown that the uniform convex combinations of
elements of V has atleast nΩ(log n) ∈ {0, 1}n. Hence completing the proof.

[Aga22] further studies the polytope in the proof of Lemma 5.3. Firstly note that we can simply
translate the entire polytope by an integer distance in each axis given in the proof of Lemma 5.3 so
that V ⊂ {0, 2}n as it wont change the combinatorial properties. [Aga22] defines the polynomial gH ∈
F[x1, ..., xn] such that VgH = V as given in the proof of Lemma 5.3 and calls it the Hadamard polynomial.
They prove the following lemma :
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Lemma 5.4. Let f = gH · h, where gH is the Hadamard polynomial, and h is some polynomial in
F[x1, ..., xn] such that ||h|| ≤ ||gH ||

2 , then
||f || ≥ ||gH ||.

Thus Conjecture 1.2 still holds strong in a sense.

5.2 When supp(f) = Vf ?
If f = g ·h, where f, g, h ∈ F[x1, ..., xn], we can study the case when supp(f) = Vf to find more structural
properties about supp(g). We conjectured

Conjecture 5.5. Let f, g, h ∈ F[x1, .., xn], such that f = g · h. If supp(f) = Vf , then supp(g) = Vg.

The conjecture is not true as if we take f = xd−1, then supp(f) = {0, n} and Vf = {0, n} = supp(f).
But g = 1+x+ ...+xd−1 is a factor of f such that supp(g) = {0, 1, .., d−1} and Vg = {0, d−1} ̸= supp(g).

In the one-dimensional case it was not clear if supp(g) ⊂ ∂Pg, so we conjetured

Conjecture 5.6. Let f, g, h ∈ F[x1, ..., xn] such that f = g · h. If supp(f) = Vf , then supp(g) ⊂ ∂Pg.

The conjecture is not true as if we take f = (xd−1)(yd−1), then supp(f) = {(0, 0), (0, d), (d, d), (d, 0)}
and Vf = {(0, 0), (0, d), (d, d), (d, 0)} = supp(f). But g = (1+ x+ ...+ xd−1)(1+ y+ ..+ yd−1) is a factor
of f such that supp(g) = {(i, j) ∈ Z2 | 0 ≤ i, j ≤ d−1} and ∂Pg = {(i, 0) ∈ R2 | 0 ≤ i ≤ d−1}∪{(0, j) ∈
R2 | 0 ≤ j ≤ d− 1}. Thus clearly supp(g) ̸⊂ ∂Pg, in fact supp(g) = Pg ∩ Z2.

6 Conclusion and Future Scope
We studied the problem of bounding the sparsity of the factor of a multivariate polynomial and its
connection to convex geometry. All of our current approaches didn’t give us a way to improve the known
results. We hope to study a simpler version of this problem, namely when f is a perfect square and find
new approaches to tackle this problem in the future. Indecomposability of polytopes [Gao01] is also an
interesting property that can provide key insights to this problem.
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