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1 Introduction

Polynomial factorization is a central question in computer algebra having applications in areas such as
cryptography [CR88], list decoding [VG99, Sud97] and derandomization [KI04]. The study of factoriza-
tion of sparse polynomials was initiated by [VZGK85], where von zur Gathen and Kaltofen gave the first
randomized algorithm of factorization of sparse multivariate polynomials. The runtime of this algorithm
has a polynomial dependence on the sparsity of its factors.

Kopparty et al. [KSS14] showed the equivalence of the problem of derandomizing polynomial identi-
tiy testing for general arithmetic circuits and the problem of derandomizing multivariate polynomial
factoring. Then, Bhargav et al. [BSV20] derandomized multivariate polynomial factoring for the class
of sparse polynomials. The runtime of their algorithm has a polynomial dependence on sparsity of the
sparsity of its factors.

The central problem we want to tackle is

Problem 1.1. Let f, g, h ∈ F[x1, ..., xn] such that f = g · h, then how are ||g|| and ||f || related to each
other.

Note that ||g|| is simply the sparsity of g. Volkovich [Vol17] conjectured that

Conjecture 1.2 ([Vol17]). There exists a function ν : N → N such that if f ∈ F[x1, .., xn] is a polynomial
with individual degree atmost d, then g|f =⇒ ||g|| ≤ ||f ||ν(d).

We handle an easier variant of the central problem in this report which is:

Problem 1.3. Let f ∈ R[x1, ..., xn], then how is ||f2|| and ||f || related?

To study the problem we developed a new set theoretic framework through the approach of ‘positive
polynomials’.

2 Definitions and Notations

2.1 Polynomials

Let f ∈ F[x1, ..., xn] such that

f(x1, .., xn) =
∑

i1,..in

ai1,..,inx
i1
1 ...xin

n

then define the support of f as

supp(f) = {(i1, .., in)|ai1,..,in ̸= 0}

and let
||f || = |supp(f)|.

The individual degree of variable xi in f denoted by degxi
(f) is the maximum degree of variable xi in

f . The individual degree of f is defined as the maximum among all individual degrees of all variables of f .

We fix the field F to R unless stated otherwise. We define f ∈ R[x] to be a positive polynomial if

f(x) =
∑
i

aix
i

where ai ≥ 0. We call f ∈ F[x1, ..., xn] a square polynomial iff there exists g ∈ F[x1, ..., xn] such that
f = g2.
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2.2 Sets

Let A,B be two sets then we define their Minkowski Sum as as

A+B = {α+ β|α ∈ A, β ∈ B}.

Denote A+A+ ...+A (n times) by nA. For two sets A,B we define their symmetric difference as

A△B = (A ∪B) \ (A ∩B) .

For two set A,B ⊂ N define

spread(A,B) = max(A ∪B)−min(A ∪B).

For d ∈ N define [d] as
[d] = {0, 1, ...., d}.

3 Kronecker Map

A useful tool to reduce multivariate polynomials to univariate polynomials is the Kronecker map [VZGG13].
Let f ∈ F[x1, ..., xn] such that individual degree of f < d. We define the Kronecker map of degree d to
be the map:

Ψd : F[x0, x1, , ..., xn] → F[x]

f(x0, x1, ..., xn) → f(x, xd, ..., xdn

)

and for ease of notation denote Ψd(f) by f̂d. Some important properties of the Kronecker map are :

Lemma 3.1 (Sparsity Preservation). Let f ∈ F[x0, x1, ..., xn] such that individual degree of f < d,then

||f || = ||f̂d||.

Proof. To prove the equality we show a bijection between supp(f) and supp(f̂d). Consider the map :

ϕ : supp(f) → supp(f̂d)

(k0, ..., kn) →
n∑

i=0

kid
i.

The map is onto by the definition of Ψd. Suppose for (a0, ...an) and (b0, .., bn) ∈ supp(f)

ϕ(a0, ..., an) = ϕ(b0, .., bn)

( =⇒ )

n∑
i=0

aid
i =

n∑
i=0

bid
i.

Since individual degree of f < d, thus ai, bi < d for 0 ≤ i ≤ n. By uniqueness of d-ary expansion of a
number, ai = bi for 0 ≤ i ≤ n implying (a0, ..., an) = (b0, ..., bn) and thus proving ϕ is one-one which
implies ϕ is a bijection.

Lemma 3.2 (Factor Sparsity Preservation). Let f, g, h ∈ F[x0, .., xn] such that f = g · h and individual
degree of f < d, then

f̂d = ĝd · ĥd.

Also ||ĝd|| = ||g|| and ||ĥd|| = ||h||.
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Proof. Note that

f̂d(x) = f(x, xd, ...., xdn

)

= g(x, xd, ...., xdn

) · h(x, xd, ...., xdn

)

= ĝd(x) · ĥd(x).

We used the fact that evaluation map is a homomorphism. By Lemma 3.1 we have ||ĝd|| = ||g|| and
||ĥd|| = ||h||.

We can use the Kronecker map to reduce problems related to sparsity in the multivariate setting to
problems related to sparsity in the univariate setting.

4 Earlier Results

4.1 Bounded Degree Setting

In the bounded individual degree setting [BSV20] showed that

Theorem 4.1 ([BSV20]). There exists an non-decreasing function ξ(n, s, d) ≤ sO(d2 logn) such that if
f ∈ F[x1, ..., xn] is a polynomial of sparsity s and individual degrees at most d and if f = g · h, for
g, h ∈ F[x1, ..., xn], then the sparsity of g is upper bounded by ξ(n, s, d).

A corollary of the above theorem would be:

Corollary 4.2. Let f ∈ F[x] such that deg(f) < d, then

||f2|| ≥ ||f ||Ω(1/d
2).

The tightness of this bound has not been proven yet.

4.2 Unbounded Degree Setting

The problem of sparsity shrinkage when squaring a real univariate polynomial in the unbounded degree
setting has been studied a little in the past ([Erd49, Rén47, Abb02, Ver49]). Erdös defined the term :

Q(k) = min
f∈R[x]
||f ||=k

||f2||

which is basically the minimum possible shrinkage possible and showed that

Theorem 4.3 ([Erd49]). There exists real constants c2 > 0 and 0 < c1 < 1 such that

Q(k) < c2k
1−c1 .

Verdenius found the value of constant c1 for real complete polynomials. He defined the term

Q̂(k) = min
f∈R[x]
||f ||=k

deg(f)=k−1

||f2||

and showed that

Theorem 4.4 ([Ver49]). There exists real constant c1 > 0 such that

Q̂(k) < c1k
0.81071....

Schinzel studied the relationship between ||fk|| and ||f || and showed that

Theorem 4.5 ([Sch87]). Let f ∈ F[x] and k ∈ N. If char(F) = 0 or char(F) > k · deg(f) then

||fk|| ≥ k + 1 + (log 2)−1 log

(
1 +

log(||f || − 1)

k log 4k − log k

)
.
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4.3 When is ||f 2|| < ||f ||?
Since the existence of large shrinkage has been shown it naturally raises it question whether we can give
explicit examples of when it occurs.

[Rén47] gave the following example :

Example 4.6. For the following polynomial

P (x) = (4x4 + 4x3 − 2x2 + 2x+ 1) · (−84x24 + 28x20 − 10x16 + 4x12 − 2x8 + 2x4 + 1)

||P || = 29 and ||P 2|| = 28 which essentially proves Q(29) ≤ 28.

Moreover, [Abb02] showed that for f(x) ∈ R[x] such that deg(f) ≤ 11, then ||f2|| ≥ ||f ||. This result
is tight as for the polynomials:

Pα(x) = (1 + 2x− 2x2 + 4x3 − 10x4 + 50x5 + 125x6) · (1 + αx6)

where α ∈ {−110,−253,−55/2, 15625}, ||P 2
α|| < ||Pα||.

5 Main Conjecture

Considering the best known sparsity shrinkage results known we conjectured :

Conjecture 5.1. Let f ∈ R[x] then ||f2|| ≥ Ω
(
||f ||1/2

)
.

We are working in the unbounded degree setting now and thus it is difficult to use the Newton Poly-
tope approach introduced in [BSV20] to find a good bound. Due to [Abb02], it is difficult to construct
simple counterexamples to the above problem as for polynomial f of degree less than 11, ||f2|| > ||f ||.
To study the Conjecture 5.1 we introduced the approach of positive polynomials.

The following conjecture seems to be a much more generalized version of the earlier conjecture :

Conjecture 5.2. If f ∈ R[x1, ..., xn] then ||f2|| ≥ Ω
(
||f ||1/2

)
.

But we can show that :

Lemma 5.3. Conjecture 5.1 is true iff Conjecture 5.2 is true.

Proof. If Conjecture 5.2 is true then Conjecture 5.1 is true as Conjecture 5.1 is a special case of Conjec-
ture 5.2.

Suppose Conjecture 5.1 is true and let f ∈ R[x1, .., xn] with individual degree of f ≤ d, then by Conjec-
ture 5.1 we have

||f̂2
d || ≥ Ω

(
||f̂d||1/2

)
.

By Lemma 3.1 and Lemma 3.2 we have

||f̂2
d || = ||f2|| ||f̂d|| = ||f ||

which implies

||f2|| ≥ Ω
(
||f ||1/2

)

We thus will focus our attention on the Conjecture 5.1 throughout this report. We are working in
the unbounded degree setting and thus it is difficult to use the Newton Polytope approach introduced in
[BSV20] to find a good bound. Due to [Abb02], it is difficult to construct simple counterexamples to the
above problem as for polynomial f of degree less than 11, ||f2|| > ||f ||. To study the Conjecture 5.1 we
introduced the approach of positive polynomials.

5



6 Positive Polynomials

The key property of positive polynomials which we will exploit is :

Lemma 6.1. Let f, g be positive polynomials then fg is a positive polynomial and

supp(fg) = supp(f) + supp(g)

Proof. If f, g are positive polynomials then fg is a positive polynomial by definition of polynomial mul-
tiplication. If

f =
∑
i

fix
i g =

∑
j

gjx
j

then their product is

fg =
∑
i

∑
j

figjx
i+j .

If k ∈ supp(fg) then there exists i ∈ supp(f) and j ∈ supp(g) such that i + j = k which implies
supp(fg) ⊂ supp(f) + supp(g).

Let i ∈ supp(f) and j ∈ supp(g) then i + j ∈ supp(fg) as no cancellation takes place in the mul-
tiplication of two positive polynomials thus supp(f) + supp(g) ⊂ supp(fg) which implies supp(fg) =
supp(f) + supp(g).

For any f ∈ R[x] such that

f =
∑
i

fix
i

define polynomials f+, f− ∈ R[x] as

f+ =
∑

i:fi>0

fix
i

f− = −
∑

j:fj<0

fjx
j

then supp(f+) ∩ supp(f−) = ϕ and
f = f+ − f−.

Thus
f2 = f2

+ + f2
− − 2f+f−.

Then by Lemma 6.1 we have :

supp(f2
+) = 2supp(f+)

supp(f2
−) = 2supp(f−)

supp(f+f−) = supp(f+) + supp(f−).

We can establish the following lemma :

Lemma 6.2. Let f ∈ R[x] then(
supp(f2

+ + f2
−)

)
△(supp(f+f−)) ⊂ supp

(
f2

)

6



Proof. Suppose i ∈
(
supp(f2

+ + f2
−)

)
△(supp(f+f−)) then i belongs in exactly one of the sets supp(f2

+ +
f2
−) or supp(f+f−). Note that f2

+ + f2
− and f+f− are both positive polynomials and a term of f2

+ + f2
−

can be cancelled by a term of f+f−. Thus cancellation of a term can happen only when

i ∈ (2supp(f+) ∪ 2supp(f−)) ∩ (supp(f+) + supp(f−))

which is not the case thus i ∈ supp(f2).

The corollary of Lemma 6.2 is the following :

Corollary 6.3. Let f ∈ R[x], then

||f2|| ≥ |(2supp(f+) ∪ 2supp(f−))△(supp(f+) + supp(f−))|

Proof. Since f2
+ and f2

− are positive polynomials thus supp(f2
+ + f2

−) = (2supp(f+) ∪ 2supp(f−)). Now
applying Lemma 6.2 we get the desired result.

6.1 A Much Stronger Conjecture

We make a much stronger conjecture than Conjecture 5.1 which if true would prove Conjecture 5.1. The
Conjecture is the following:

Conjecture 6.4. Let A,B ⊂ N such that A ∩B = ϕ, then

|(2A ∪ 2B)△(A+B)| ≥ Ω
(
(|A|+ |B|)1/2

)
We can prove the following reduction :

Theorem 6.5. If Conjecture 6.4 is true then Conjecture 5.1 is true.

Proof. For f ∈ R[x], set A = supp(f+) and B = supp(f−), then ||f || = |A|+ |B| and

||f2|| ≥ |(2A ∪ 2B)△(A+B)| ≥ Ω
(
(|A|+ |B|)1/2

)
= Ω

(
||f ||1/2

)
and we are done.

7 Simulation Study

We tried to gain insight into Conjecture 6.4 by simulating random disjoint subsets A,B and estimating
the quantity |(2A ∪ 2B)△(A+B)|. We first describe the simulation model and then infer some results.

7.1 Simulation Model

We first fix d, r1, r2 ∈ N such that r1+r2 < d. We simulate random subsets A,B ⊂ [d] such that A∩B = ϕ
and |A| = r1, |B| = r2. We then compute the quantities 2A, 2B, 2A ∪ 2B,A + B, (2A ∪ 2B) ∩ (A + B)
and (2A ∪ 2B)△(A + B) and estimate their size. To simplify notation we denote (2A ∪ 2B) by C and
(A+B) by D.

7.2 Simulation Results

When we set |A| = |B| = d/2 we simulated the following result.

d |2A| |2B| |C| |D| |C ∩D| |C△D|
100 191 183 197 194 192 7
1000 1985 1992 1996 1994 1991 8
10000 19986 19987 19999 19990 19990 9
20000 39995 39989 39998 39994 39993 6
30000 59991 59991 59996 59993 59990 9
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7.3 Interpretation of Results

Note that 2A, 2B,C,D ⊂ [2d] irrespective of |A|, |B| and when |A| = |B| = d/2, we notice that
2A, 2B,C,D approximately span the entire set 2d due to which C ∩ D is very large leading to a small
|C△D|. We also note that |C△D| does not depend on the size of |A| and |B| essentially disproving
Conjecture 6.4.

7.4 Making Conjecture 6.4 More Precise

Observe that |A| + |B| ≤ spread(A,B) and |2A| ≤ O
(
|A|2

)
. If we set |A|, |B| ≤ spread(A,B)1/k, for

some fixed large number then we can ensure that |C ∩D| is not too large which might make the current
set theoretic framework still usable.

Conjecture 7.1. Let A,B ⊂ N such that A ∩ B = ϕ, and |A|, |B| ≤ spread(A,B)1/k, for some fixed
large number then

|(2A ∪ 2B)△(A+B)| ≥ Ω
(
(|A|+ |B|)1/2

)
We can then make the following corollary :

Conjecture 7.2. If Conjecture 7.1 is true then Conjecture 5.1 is true.

Proof. For f ∈ R[x] and t ∈ N and define :

ft(x) = f(xt).

Then it is easy to see that ||f2
t || = ||f2|| and ||ft|| = ||f || for all t ∈ N. Let At = supp(ft+) and

Bt = supp(ft−). If we take an arbitrarily large t, we can spread(At, Bt) >> |At|, |Bt| since |At| = |A1|
and |Bt| = |B1|. Thus by conjecture 7.1 we have,

||f2|| ≥ Ω
(
||f ||1/2

)
.

8 Conclusion and Future Scope

We have thus developed a set-theoretic framework to study the relationship between ||f2|| and ||f ||. In
the future, we hope to make Conjecture 7.1 more precise and prove Conjecture 5.1. We also hope to
generalize our set theoretic framework to study factor sparsity of arbitrary polynomials rather than just
square-roots.
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