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Abstract

PIT and separation between low-variate Read Once ABP classes

authored by by Sagar Arora

supervised by Dr. Nitin Saxena, Dr. Arnab Hazra

The algebraic model of computation, due to its simplicity, elegance and abstract connections to
many open problems has attracted a large amount of research in the last few decades. Algebraic
circuits and Algebraic Branching Programs are the fundamental models for computing polyno-
mials.The framework of algebraic computations has a beautiful interplay between well known
problems in mathematics like identity testing polynomial equivalence, primality testing, graph
isomorphisms and polynomial factoring.
Identity Testing is the problem of checking efficiently whether a given arithmetic circuit ≡ 0. We
already have a polynomial time randomised algorithm for PIT. However, designing an efficient
deterministic identity test has been a long-standing open question. Identity Testing is also a good
candidate to study the derandomization questions and their connections.
The motivation of this thesis is to study closely the relationship between certain subclasses of the
computational model of Read once Oblivious Branching Programs - commutative ROABPs and diag-
onal ROABPs. And in this attempt, devise an efficient Polynomial Identity Testing algorithms for
ROABPs where the number of variables is low (logarithmic with respect to the circuit size). We
show that if the dimension of partial derivatives and Waring rank of polynomials is similar upto
polynomial factors, then the model of diagonal ROABPs efficiently captures the more descriptive
model of commutative ROABPs.
We also study Blackbox PIT of log-variate ROABP by devising efficient polynomial shifting maps.
The techniques build upon by investigating the structure of Newton polytopes of the polynomials
and constructing weight assignments in a fashion that the coefficient space is efficiently captured
by a low number of monomials.

https://www.cse.iitk.ac.in/users/nitin/
https://sites.google.com/view/arnabhazra09/
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Chapter 1

Introduction

1.0.1 Identity Testing

It is a well known fact that a d - degree polynomial over a field, can have at most d roots. Thus,
there is a simple test for the non-zeroness of the polynomial - evaluate at d + 1 distinct points.

Schwartz Zippel Lemma

Theorem 1.1. Zippel, 1979 Let f (x) ∈ F[x] be a degree d, n - variate polynomial over a field
F. Let S ⊆ F be a set of size > d. Then

Pr[ f (a1, a2, . . . , an) ̸= 0] ≥ 1 − d
|S|

, where ai is chosen uniformly randomly from S for each i, independently.

In case, we have the knowledge of upper bound on the individual degree of the polynomial
f , the bound can be improved

Pr[ f (a1, a2, . . . , an) ̸= 0] ≥ (1 − d
|S| )

n

This test needs the field size to be large enough. In case of finite fields, one can also work
with appropriate field extensions.

Hitting set : A set of points H in the underlying domain Fn for a class C of n variate polynomials
is a hitting set if for any non-zero polynomial f in C, there exists a point in H where f evaluates to
non-zero.

The main question thus, is how to generate small hitting sets and that too efficiently ?

Let C(n, d, s) be the set of algebraic circuits of size ≤ s computing polynomials in F[x1, . . . , xn] of
degree ≤ d. Let C be a particular such circuit (which belongs to some class C ⊂ C), computing a
polynomial fC.

The problem of PIT asks whether fC ≡ 0

The term "identity-testing" is an acknowledgment of the fact the we are trying to verify whether
the model is a computational framework of some (non-trivial) algebraic identity like (a + b)2 −
a2 − b2 |a, b,∈ F2 or (a + b)(a − b)− a2 + b2 over C.
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Randomized PIT : [Schwartz Zippel Lemma ] introduces us to a probabilistic yet fast algorithm
- it works in polynomial time even for polynomials with exponential degrees. In that case, the set
S will be of exponential size, but a random element from S would need just O(n) bits.

Deterministic PIT : Is there an efficient (poly (n, d, w))- time deterministic algorithm, which when
given as input any n-variate, d-degree, size s circuit mathcalC determines if mathcalC ≡ 0

Blackbox PIT : Another interesting way to look at the [Zippel, 1979] randomized algorithm is
that it only need evaluation points as input to the circuit being tested; and does not need knowledge
about the structure of the circuit. These tests, hence are referred to as "Blackbox PIT algorithms"

For blackbox PIT, we generally have to allow the evaluation points to be from the field extensions.
For instance, consider a univariate f ∈ F2 where f (x)x2 − x. Here, over all the elements of the
field f (x) = 0. So to obtain an evaluation point such that f evaluates to a non-zero value we must
go to the extensions of F2

The randomised PIT algorithm due to [Zippel, 1979] is a black-box PIT algorith as it does not re-
quire the knowledge of the structure of the computational model to carry out the tests. If, however,
we try to derandomize the algorithm trivially, we get an exponential size hitting set computable
in the same time complexxity. In particular, [Heintz and Schnorr, 1980] annd later Agrawal, 2005
that constructing hitting sets for arithmetic circuits in polynomial time imply exponential size
lower bounds for arithmetic circuits.
PIT has applications in designing various algorithms as well as proving various circuit lower
bounds. With this natural measure for the complexity of polynomials at hand, To get a flavor
about the prowess of the computational model that we would be dealing with in this study, we
state the following chain of reductions between the arithmetic computational models.

constant-depth arithmetic circuits ≤p constant width ABP
=p Formulas ≤p ABP ≤p Arithmetic circuits (1.1)

Σ
∧

Σ ⊊ diagROABp ⊆ commROABP ⊆ ROABP[∀] ⊆ ROABP[∃] (1.2)

FIGURE 1.1: Arithmetic circuit computing x2 − 2xy
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Chapter 2

Preliminaries

2.1 Notations

2.1.1 Polynomials

• Throughout the report, [n] denotes the set {1, 2, . . . , n}.

• By x we denote the set of variables {x1, x2, . . . , xn}. For a set of n variables x and for an

exponent e = (e1, e2, . . . , en) ∈ Wn and xe will denote the monomial
n
∏
i=1

xei
i .

• The support of a monomial xe, denoted by Supp(e), is the set of variables appearing in that
monomial, i.e. supp(e) = {xi | ei > 0, i ∈ [n]}.

• The support size of a monomial is the cardinality of its support, also denoted by supp(e).
This definition of support can be naturally extended to polynomials as collection of all the
monomials of the polynomial whose support size is greater than zero.

• For a polynomial f (x), the coefficient of a monomial xe is denoted by coe f f f (xe). Also, as
each monomial is uniquely identified by its exponent vector, there is an abuse of notations
to define the support, coefficient and partial derivative of the monomials.

• For each monomial e, ei is said to be its degree in the i-th variable xi and ∑i ei is defined to
be its ( overall ) degree.

• Naturally, extending this definition for a polynomial, we have

– degxi( f ) = max{ei | coe f f f (xe) ̸= 0, e ∈ Wn}

– deg( f ) = max{
n
∑

i=1
}ei | coe f f f (xe) ̸= 0, e ∈ Wn

– the individual degree of f denoted by indv − deg( f ) = max{degxi( f ) | i ∈ [n]}

2.1.2 Matrix Algebra

Throughout the report, as a bridge between the computational structure and the corresponding
polynomial, we are going to deal with HadamardAlgebra and MatrixAlgebra.
Fm×n represents the set of all m × n matrices over the field F.
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We view a matrix with polynomial entries, as a polynomial with matrix coefficients. For instance,

f (x, y) =
[

1 + x + x2 x + y
y − xy 1 + xy

]
=

[
1 0
0 1

]
· 1 +

[
1 1
−1 1

]
· x+[
1 0
0 0

]
· x2 +

[
0 0
−1 1

]
· xy +

[
0 1
1 0

]
· y

2.1.3 Monomial Ordering

We fix a total ordering on the monomials that respects division/multiplication and fix a consis-
tent way of comparing multivariate monomials by lexicographic ordering. This type of ordering is
crucial for representing polynomial residues after quotienting in the multivariate setting. te ≺ te′

if the smallest i ∈ N with ei ̸= e′i is such that ei < e′i

2.1.4 Hasse derivative space

For monomials a, e, we define the partial derivative of xa corresponding to xe as ∂exa =
|∂e|

∂xe1
1 . . . ∂xen

n
xa

This definition can naturally be extended to partial derivatives of polynomials

∂e f =
|∂e|

∂xe1
1 . . . ∂xen

n f

Derivative operators :A derivative operator D on F[x1, . . . , xr] is an F - linear operator of finitely
many partial derivative of the form ∂e : F[x] → F[x], wheree ∈ Wr

D = ∑
e

ξe∂e

There is a one to one correspondence between a polynomials and the derivative operator space.

Any polynomial g(x) naturally defines a derivative operator Dg : ∑
e∈supp(g)

coe f fg(e) · ∂e

For any polynomial g(x) ∈ F[x] and the corresponding derivative operator Dg, we define the
closure Dg of Dg as

Dg := {D∂e(g) | e ∈ Wn, ∂e(g) ̸= 0} (2.1)

Note that the closure of the derivative operator of polynomial g consists of all the down-shifted
monomials of g, i.e. {e′ |e′ ≺ e ∂e′(g) ̸== 0}

Let V(J) denote the variety of the ideal J. Define D(J) the closure of the derivative operator space
for J as

D(J) = {D ∈ F[x] | De(g)
∣∣
θ⃗0

, θ⃗ ∈ V(J)} (2.2)

For each such point in the variety of an ideal, we can thus, construct a closed vector space of
derivative operators such that every polynomial in the ideal evaluates to 0.

For an ideal J with finite variety (say τ) , there exist closed spaces of derivative operators D1, . . . ,Du
of dimensions r1, . . . , ru. For any polynomial g ∈ F[x], we have d ∈ J such that ⇔ ∀u ∈
[τ],Dv(g)(θ) = 0
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2.2 Models Of computation

2.2.1 Arithmetic Circuits

An arithmetic circuit is a natural computation model for polynomials. They are directed acyclic
graph a unique sink (the output gate). The leaves are source vertices which take as input either
a constant from the underlying or a variable from the support set x = {x1, x2, . . . , xn}. Every
internal node is labelled either by + (addition gate) or × (multiplication gate). Every edge of this
DAG carries weights that are elements from the underlying field F.

Computation of the polynomial : Every edge collects the polynomial computed at its tail node,
scales it up the weight on the edge and sends it to the head node. An addition gate computes
the sum of inbound polynomials and every multiplication gate computes the product of all in-
bound polynomials. The formal polynomial computed at the sink is referred to as the polynomial
computed by the circuit.

FIGURE 2.1: Arithmetic circuits and formulas

Characteristics :

• depth -The length of the longest path in the circuit from a leaf gate to an output gate

• size - The number of edges

• degree - The syntactic degree ( note this this formal degree might not be the same as the
actual degree of the polynomial)

Algebraic Formula It is an algebraic circuit whose underlying DAG is a tree

2.2.2 Depth-3 Diagonal circuits

Depth 3 Diagonal circuits (denoted by Σ ∩ Σ compute polynomials of the form

f (x) =
s

∑
i=1

ldi
i

where each li is a linear polynomial over the underlying field F. The rank of a depth 3 diagonal
circuit (denoted by rk(C)), is the dimension of the subspace (over F) generated by fi. This rank
can be shown to be equal or one less than the dimension of the subspace generated by li’s.

subsectionAlgebraic Branching Programs [Nisan, 1991] An ABP over is a directed acyclic graph ,
with a unique source vertex u and a sink vertex t, and the edges have polynomials as their weights.
The polynomials on the edges are ’simple’, in a sense that they are linear over the support set of
variables.
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Computation : For an edge e denote its weight by wt(e). Now consider a path p from any vertex
a to b, The weight of this path denoted b wt(p) is defined as the product of the edge weights of all
the edges along this path, i.e. wt(p) = ∏

einp
wt(e). The formal polynomial computed by the ABP,

then is ∑
p∈paths(u,t)

wt(p)

Layered ABP Characteristics :
We can redefine an ABP as a directed graph layered with vertex set V and edge-set E such that
E = E1 ⊔ E2 . . . ⊔ Ed where Ei ⊆ Vi−1 × Vi with the source node u and the sink node t. Define a
set of labellings L⟩, . . . ,L⌈ such that each Li : Ei → F[x]. The labelling to every edge is thus, a
polynomial in F[x] of degree ≤ 1

• The vertices are partitioned into d + 1 layers, i.e. V = V0 = s ⊔ V1 ⊔ . . . ⊔ Vd = t such that s
adn t are the set of source and sink resp.

• Each edge e foes from Vi−1 to Vi for some i ∈ [d], so E ⊆ ⊔i∈[d]Vi−1 × Vi

• An edge e from Vi−1 to Vi is labelled with an element Li = L
∣∣

Ei

• The width of the ABP, denoted by w is maxi|Vi|

• The size of the ABP is the number of vertices w2 · d

• The polynomial computed by the ABP is f = ∑
p∈path(u,t

∏e∈p L(e)

FIGURE 2.2: ABP computing (x1 + 2x4)x2x2 − (x1 + 2x4)x2 + 5x2(x1 + x2)

Computation :
The sum over all paths in a layered graph can be represented by an iterated matrix multiplication.
Let w be the width of the ABP, V = ⊔Vi be the vertex set where VI = {vi,j|j ∈ [w]}

f = bT(
q

∏
i=1

Ai)c

b(l) = wt(u, v0,l) f or 1 ≤ l ≤ w
Ai(k, l) = wt(vi−1,k, vi,l) f or 1 ≤ l ≤ w and 1 ≤ i ≤ w

T(k) = wt(vd,k, t) f or1 ≤ k
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2.2.3 Read once Oblivious ABP

An ABP is called a read-once oblivious ABP (ROABP) if the edge weights in the different layers are
univariate polynomials in distinct variables. Formally, the entries in Di come from F[xπ(i)] for all
i ∈ [d] where π is a permutation in the set [d].

2.2.4 Set multi-linear circuit

A set multi-linear circuit is of the form

C(x) =
k

∑
i=1

q

∏
j=1

li,j(xj)

where each x1, . . . , xq are disjoint set of variables and li,j(xj) is a linear polynomial in the variables
xj for each i, j. If we define vectors vj,n ∈ Fk as aj,n = (a1,j,n, a(w, j, n), . . . , ak,j,n) then one can view
the polynomial f (x) as a dot product (1, . . . , 1) · M(x) where

M(x) =
q

∏
j=1

(aj,0 + aj,1xj,1 + . . . + aj,nxj,n)

2.3 History of PIT Results

1. The first non-trivial deterministic test was found by [Ben-Or and Tiwari, 1988] which was a
blackbox PIT for polynomials computed by depth-2 (Σ ∏) circuits

2. In the context of ROABPs, [Raz and Shpilka, 2005] produced a poly(n, d, w) white-box algo-
rithm for n variate, d- degree polynomials computed by a width-w ROABP with individual
degree bounded by d.

3. [Saxena, 2008] showed that the log-variate ROABP model captures the depth 3 powering
circuits by reducing the diagonal circuits to a sum of product of univariates.

4. [Agrawal et al., 2015] produced a quasi polynomial time (ndw)O(loglogw) time time sitting set
for commutative ROABPs

5. [Agrawal et al., 2015] also gave a O(ndw)logn time hitting set for general ROABPs

6. The best blackbox test for diagonal circuits has time complexity nO(loglogk), which was shown
by Forbes, Saptharishi, and Shpilka, 2014
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FIGURE 2.3: Time complexities of different ROABP(n, d, w) models
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Chapter 3

Structural Results

3.1 Background on ROABP

Recall, that a (layered) ROABP(n, d, w) is a computational model that uses exactly n matrices, one
for each variable and the entries in the matrices are univariate polynomials in F[xi] ROABPs can
compute any monomial, and are closed under the summation operator.

Thus, every n variate,d-degree polynomial trivially has an ROABP of size dO(n) that can compute
that ppolynoimial.

In general,there is a natural mapping between the order in which the ROABP reads the variables
and the order of the matrices

Nisan’s characterization [NIS91] furnished a critical observation realted to the order of variables
In particular,

f = (x1 + y1)(x2 + y2) . . . (xn + yn)

• is coputatble by an ROABP whose width is polynomial in input size when the variable order
is (x1, y1, . . . , xn, yn)

• the same polynomial requires an ROABP of width exponential in input size (2Ω(n)) when
the variable order is changed to (x1, x2, . . . , xn, y1, y2, . . . , yn)

There, hence is a classification of the class of polynomials that are coputed by an ROABP

An ROABP with order permutation π(n) = (x1, . . . , xn) can be expressed as C = bT · ( ∏
i∈[n]

Mi(xi)) ·

c The polynomial f , computed by this RO can thus be expressed as

f (x) = bT · (∏
i∈[n]

(Ai,0 + Ai,1xi + Ai,2x2
i + . . . + Ai,dxd

i )) · c (3.1)

3.1.1 Classifications

Defintion : ROABP[∀] (n, d, w)
An n variate, d degree polynomial f (x) such that indv− deg( f ) = d is said to have an RO of width
w in every order, if there exists a width w ROABP that computes f for all permutations π ∈ S(n)
The class ROABP[∀](n, d, w) = ∪ ROABP[π](n, d, w) thus consists of all the n variate, d degree
polynomials that are computable by a width w ROABP that reads input variables in any order

Defintion : ROABP[∃] (n, d, w)
An n variate, d degree polynomial f (x) such that indv− deg( f ) = d is said to have an RO of width
w in the order π(n), if there exists a width w ROABP that computes f in the order π. The class
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ROABP[∃](n, d, w) consists of all the n variate, d degree polynomials that are computable by a
width w ROABP that reads input variables in some specific π order

Defintion : commRO(n, d, w)
consists of all the n variate, d degree polynomials that are computable by a widthb w ROABP
whose coefficient matrices Ai,j commute with each other

Definition : diagRO(n, d, w)
consists of all the n variate, d degree polynomials that are computable by a widthb w ROABP
whose all the n(d + 1) coefficient matrices Ai,j are diagonal matrices.

3.1.2 Rank related results

Tensor rank :
Given a tensor T : [d] → F of order n, it can be naturally expressed as a polynomial fT =

∑
i∈[d]n

T(i, . . . , in)xi1
q , . . . , xin

n

For an n-variate, d-degree polynomial f (x) ∈ F[x], the Tensor rank of f , denoted by TR( f ) is the
smallest width of a diagonal ROABP that computes it.

Waring Rank :
For an n-variate, d-degree polynomial f (x) ∈ F[x], the Waring rank of f , denoted by WR( f ) is
defined as the size of the smallest depth 3 powering circuit that computes it.

Dimension of Partial Derivative space :
For an n-variate, d-degree polynomial f (x) ∈ F[x], its dimension of partial derivatives, denoted
by DPD( f ), is the dimension of span of the Hasse derivatives ∂e f | e ∈ Wn.

3.2 Separation between ROABP subclasses

3.2.1 Nissan’s characterization for ROABP by variable ordering

Nisan, 1991 Lemma : Let f ∈ F[x, y] such that

f (x, y) = ∏
i
(xi + yi)

Then, dim(span{coe f f f (xa)}) = dim(span{coe f f e
y}) = 2n

Proof :
clearly a, e ∈ {0, 1}n

coe f f f (ye) = ∂ye
∣∣
y=⃗0

x1⃗−⃗e

Thus, every coefficient of ye produces a distinct monomial in F[x] and hence, span(∂ye( f ) =
span(x1−e|e ∈ {0, 1}n)) ≥ 2n.

A symmetric argument holds for dim(span(coe f f f xa))
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But, as f is a multi-linear polynomial, the coefficient space must have size at most 2n.
Hence, dim(span{coe f f f (xa)}) = dim(span{coe f f e

y}) = 2n

FIGURE 3.1: Variable ordering in ABP [Gurjar et al., 2017]

Furthermore, we can make the following inferences for f (x, y) = ∏
i
(xi + yi):

• For all permutations π ∈ S(2n) of the variables x, y, f can be computed by an Roabp of
width ≤ 2n

• There exists a permutation π of x, y (characterized by the ordering of the variables in the
product terms), such that any ROABP computing f in the variable order π has width 2.
Figure

• There exists permutations π such that π(xi) < π(yj)∀i, j ∈ [n], then any ROABP computing
f must have width ≥ 2n

3.2.2 Duality Trick

Saxena, 2008 Let f be a polynomial expressed in the form f (x) = (c0 +
n
∑

bj=1
bjxj)

d, then it can be

written as a sum of product of univariates

t

∑
i=1

fi,1(x1) · fi,2(x2) . . . fi,n(xn)

where t = O(nd2) and Fi,j is a univariate polynomial in xi for each i, j.

Proof :

Consider the polynomial g(t; a, x) =
(
(t+ a0)(t+ a1x1) . . . (t+ anxn)− tn+1

)d

. Then degt(g) = nd

and coe f fg(tnd) = a0 +
n
∑

j=1
ajxj To extract the this coefficient we use the technique of polynomial

interpolation.
Univariate interpolation : For a univariate n-variate, d-degree polynomial, any of its coefficient
can be written as a linear combination of its poly(n, d) number of evaluations. For the polynomial
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g defined above, there exists constants {αi}nd+1
i=1 and evaluation points {βi}nd+1

i=1 such that

coe f fg(ti) =
nd+1

∑
i=1

αig(βi)

=
d

∑
r=0

(
d
r

)
(−1)d−rβ

(n+1)(d−r)
i · (βi + a0)

r · (βi + a0x1)
r · · · (βi + anxn)

r

3.3 Investigation of ROABP subclasses

By scrutinizing the matrix structure [Equation 3.1] of the ROABP subclasses , we present some
standard heirarchical results :

1. As the coefficient matrices of diagonal ROs are diagonal matrices, then they can capture any
polynomial which is computed as sum of product of univariates

2. Saxena, 2008 showed that diagonal ROABPs can efficiently simulate Σ
∧

Σ

3. Nisan and Wigderson, 1996 showed an exponential separation between these classes for the
polynomial witness f (x) = x1 · x2 · · · xn; which can be efficiently computed by a diagRO but
requires exponential size Σ

∧
Σ.=, further implying that Σ

∧
Σ ⊊ diagRO

4. From Nissan’s characterisation by variable ordering Sec 3.2.1 its is straightforward thaat
ROABP[∀] ⊊ ROABP[∃]

5. As all diagonall matrices commute wiith ech other, we have
diagRO(n, d, w) ⊆ commRO(n, d, w)

6. Since the coefficient matrices in the commRO are commutative, one can multiply the matrices
in any order to compute the polynomial. Hence, commRO can efficiently be subsumed by
ROABP[∀](n, d, w)
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3.4 Heirarchy in ROABP models

FIGURE 3.2: commRO, diagRO and Σ
∧

Σ heirarchy [Ramya and Tengse, 2022]
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Chapter 4

Separation between commRO & diagRO

4.1 Results

Structural relationship between commRO & diagRO

Theorem 4.1. Let f be an n-variate polynomial with the dimension of partial derivative
space ≤ m. Further, let S(n, m) denote the smallest Σ ∧ Σ - size required such an f . Then
for all n, d, z ∈ N, commRO (n, d, z) ⊆ diagRO(n, d, S(z2, z2)nz4)

Consequences 1:
If the smallest Σ∧Σ size required to compute any n- variate, d-degree polynomial f with DPD( f ) ≤
m has size at most (nds)c, for some constant c > 0 then the above theorem implies commRO ⊆
diagRO

Consequence 2:
If there exists an explicit polynomial that witnesses a super-polynomial seperation between the
classes of commRO and diagRO; then that same polynomial will be a witness to super-polynomial
separation between the dimension of partial derivative space and Waring Rank.

4.2 Proof Outline

1. Given a commRO(n, d, w) over the underlying field F and the variable set {x1, · · · , xn}.
Suppose this RO is of the structure F(e) = bT · ( ∏

i∈[n]
(Ai,0 + Ai,1xi + Ai,2x2

i + . . . + Ai,dxd
i )) · c

2. Let f be the polynomial that this ROABP computes. Then f (x) is a linear combination (given
by the entries in bcT) of the entries of F(x)

3. Identify the set of coefficient matrices A1, . . . , Ar that generarte the coefficient matrix ring.
Since the dimension of the matrix algebra is at most w2, we have r ≤ w2, n(d+ 1) |F[A1, . . . , Ar] =
F[A1,0, . . . , A1,d, . . . , An,d].

4. The ideal of dependencies of this generator set {A1, . . . , Ar}, its variety and the correspond-
ing normal set are then used to identify the matrices in this algebra. Note that this ideal will
have a finite variety, that is composed of the common zeros of the characteristic polynomials
of all the generating matrices.

5. Any matrix Ai,j can be expressed as a polynomial in {A1, . . . , Ar} such that Ãi,j = Ai,j mod J ,
where J is the prescribed ideal of dependecies of {A1, . . . , Ar}
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6. As F[A1, . . . , Ar] ∼= F[t]
J , for any matrix Ai,j we have Ãi,j as a polynomial with elements in

the normal set of J.

7. Let Hi,j be the corresponding polynomial such that Ai,j = Hi,j(A1, . . . , Ar), then F(x) can be
expressed a linear combination of t elements of H(t, x) = ∏

i∈[n]
∑

j∈[d
Hi,j(t, xi)

8. Using results from [Möller and Stetter, 1995, Marinari, Moeller, and Mora, 1993], Let Ω a
derivative operator space corresponding to a zero-dimensional ideal J (i.e. an ideal with a
finite variety). Then Ω =

⋃
Ωi where each Ωi is spanned by a finite number of Derivative

operators Di,j characterized by the Normal set Nj

9. Then, any polynomial H(t) its residue modulo this ideal, i.e. h̃(t) = H̃(t) mod J can be
written as an m-linear combination of evaluations of its derivatives at the elements of the
variety. H̃(t) = ∑

u∈|Var(j)|
λu,∗ · Du,∗(H)

∣∣
θ⃗u

10. Using the methods of interpolation - univariate interpolation extended to term-wise homo-
geneous interpolation for multivariate polynomials, we configure a way to express each of
these evaluations Du,∗(H)

∣∣
θ⃗u

as linear combination of evaluations of H̃(t, x) and hence as a

linear combination of H̃(t, x).

11. We employ the Waring decomposition of polynomial H̃(t, x) to express its derivative evalu-
ations at 0.

12. The number of these evaluation points of H̃ required to compute the derivative evaluations
turns out to be poly(WR(H), deg(DH̃)).

13. To evaluate the polynomial derivatives at the points of points in the variety θ⃗i, appropriate
shifts to the derivative evaluations at 0 can be done efficiently.

14. Using the hypothesis, that for an n variate polynomial the WR( f ) = poly(r, DPD( f )), we
have that Du,∗(H)

∣∣
θ⃗u

can be expressed as poly(r, DPD(Hu,∗), deg(DHu,∗)) evaluations

15. Since the space of Hasse derivatives is down closed under shifting, we have for each i, |Ωi| =
mi such that

⋃
Ωi

∼= F[t]
J . Thus ∑ mi = dim(F[t]

J ), hence each deg(DHu,∗) = mi ≤ dim(F[t]
J ).

16. Hence,for each Di,∗ ∈ Ωi, Di,∗
∣∣
θu

can be written as linear combination of poly(r, m) evalua-
tions of H(t, x)

17. Given the hypothesis that the Waring rank of a polynomial is captured by the dimension of
its partial derivatives upto polynomial factors, then f (x) be written as poly(n, d, w) evalua-
tions of H(t, x).
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Chapter 5

Proof

5.1 Algebraic structure of commRO

Algebraic Structure of commRO

Theorem 5.1. Suppose f (x) = bT(∏i∈[n](Ai,0 + Ai,1xi + Ai,2x2
i + . . . + Ai,dxd

i ))c, such that f
is computable by a commRO of width w. Then f (x) can be expressed as linear combinations
of the t- coefficients of an (r + n)-variate formal polynomial G ∈ C[t, x].

Proof
Let F(x) denote the wXw matrix with entries in C [⃗x], so that f (x⃗) = b⃗T F(x)⃗c. Define A as the
commutative ring generated by the coefficient matrices Ai,j. Clearly, this ring A is a vector space
over C with dimensions ≤ min(w2, n(d + 1)). Let {A1, A2, . . . , Ar} be the generators of the ring
A. Let J be the ideal of dependencies for the coefficient matrix space defined as

J = {h(⃗t) ∈ C[t̃ | h(A1, A2, . . . , Ar) = 0}

Denote by NJ , the normal set of J. As C[t̃]
J

∼= C[A1, A2, . . . , Ar], so NJ = {tei , . . . , tem} with m ≤ w2.

the elements of the normal set NJ will be used to represent polynomials in the ring C[A], which is
isomorphic to the quotient ring of J with respect to C[ . In particular, g mod J can be written as a
linear combination of monomials in NJ .

Define Hi,j(A) = Ai,j where Hi,j ∈ C[t]
J . Each layer of the commRO can then be represented as

Hi(t, xi) = ∑
j

Hi,j(t, xj
i)

for i ∈ [n] Note that, degt(Hi) = max{degt(Hi,j)}) ≤ w2 for all i

Finally define H(t, x) = ∏i Hi(t, xi) and H̃(t, x) := H mod J

H̃ = ∑
te∈NJ

he(x)te)

. These he are the t- coefficients of G.

F(x) = H(A, x) = H̃(A, x) = ∑
e∈NJ

h̃e(x)Ae (5.1)
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f (x) = ∑
k,l·∈[w]

bkcl · F(x)[k, l] (5.2)

= ∑
k,l∈[w]

bkcl · ∑
e∈NJ

(h̃e(x)Ae[k, l]) (5.3)

= ∑
e∈NJ

(
∑

k,l∈[w]

bkcl · Ae[k, l]
)

h̃e(x) = ∑
e∈NJ

µeh̃e(x) (5.4)

5.2 t- coefficients as linear combination of derivatives

5.2.1 Leading Monomial ideal

For a polynomial h(t), a monomial in the support of h is said to be the leading monomial of h
(denoted by LM(h)), if for all te′ we have te′ ≺ te Further, we define the leading monomial for an
ideal J, denoted by LM(J) := {LM(h)|h ∈ J}

5.2.2 Polynomial residues

Define h̃(t) := h(t) mod J
Observe that if LM(h̃) /∈ ⟨LM(J)⟩, then supp(h̃) ∩ ⟨LM(J)⟩ = ϕ
We, thereby decompose every polynomial modulo J. In other words, for any polynomial h(t) ∈
C[t] and an ideal J ∈ C[t], we have

h(t) = hJ(t) + h̃(t)

, such that LM(h̃) is not contained in the ideal ⟨LM(J)⟩.

Corresponding to an ideal J ⊊ C[t1, t2, . . . , tr], the Normal set of J is defined as NJ := {e | e ∈
Nr, te /∈ ⟨LM(J)⟩}. Residue of any polynomial h(t) mod J can be written as a linear combination
of monomials in NJ , further |NJ | = dim(F[t]

J )

5.2.3 Normal Set and Characterizing Derivative Operator Spaces NJ

[Marinari, Moeller, and Mora, 1993]

Given J ⊆ C[t] an ideal with variety V(J) = {θ⃗0, θ⃗1, . . . , θ⃗s} and corresponding Normal Set NJ =
{e1, . . . , em}. Let Ω1, . . . , Ωm be the characterising Hasse Derivative space with each Ωi spanned
by {Di,1, . . . ,Di,bi}, such that |NJ | = ∑i bi = m

Then, we have a small finite set of constants, such that for any polynomial h(t) ∈ C[t] with h̃ = h
mod J we have an explicit formulation of coe f fe(h̃) for all e ∈ NJ . In particular, we have

coe f fe(h̃) = ∑
i,v

λ(e)Di,v(h)

∣∣∣∣∣
θi

This explicit set of m2 constants λ(e) corresponding to the characterizing Hasse operator spaces is
a consequence of a result by Moller and Stetter.
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Multivariate roots & multiplicities

Theorem 5.2. Möller and Stetter, 1995 In particular, consider the ideal
J = {h(⃗t) ∈ C[t̃ | h(A1, A2, . . . , Ar) = 0} , var(J) = {θ0, . . . , θs} and the correspond-
ing Normal set NJ = {e1, . . . , ez |z ≤ dim( F[t]

J )}. Corresponding to each θi ∈ var(J), we
have the characterizing derivative operator space Ωi spanned by {Di,1, . . . ,Di,bi}, such that
|NJ | = ∑i bi = m = dim( F[t]

J )}. Then we have, a set of z2 constants λi,j|i, j ∈ [z].

Equivalently we have z polynomials ϕi with DPD(ϕi) ≤ z with each ϕi characterizing the
derivative operator ∑

j∈[z]
λi,jDi,j. Then H̃ = H mod J can then be expressed as a linear

combination of evaluations of these polynomials at the elements of var(J).

coe f fe(H̃) = ∑
i,v

λ(e)Dϕi,v(h)

∣∣∣∣∣
θi

5.3 Evaluations of Derivatives

5.3.1 Generic polynomials

First let us show the idea through generic polynomials f , g that satisfy certain conditions and then
we will use a similar technique on the polynomial H(t, x) under consideration. Let g, h ∈ C[t] be
polynomials of degree at most d ans further suppose WR(g) ≤ τ. Then we show that Dg(h)

∣∣
0 =

Dh(g)
∣∣
0 can be expressed as a linear combination of h(ξ1), . . . , h(ξq) where Q = {ξq}, |Q| =

O(w · d)

We express both h and g as a linear combination of their homogeneous components. As the Hasse
derivative space respects linearity, we use these homogeneous components to characterize Dh(g)
and Dg(h).

g = ∑
0≤i′≤d

gi′ , h = ∑
0≤i≤d

hi

Dg(h)
∣∣
0 = ∑

0≤i′≤d
∑

0≤i≤d
Dgi′ (hi)

∣∣
0

Dgi′ (hi) = 0 f or(i < i′)

Dgi′ (hi)
∣∣
0 = 0 f or(i > i′)

Dg(h)
∣∣
0 = ∑

0≤i≤d
Dgi(hi)

∣∣
0 = ∑

0≤i≤d
Dhi(gi)

∣∣
0 (5.5)

To show that O(WR(g) · max{deg(g), deg(h)}) evaluation points are sufficient to express h; we
look at the Waring decomposition of h .[Saxena, 2008].

h = ∑
j∈[WR(h)]

(cj + ⟨bj, t⟩)dj
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h = ∑
j∈[τ]

(
dj

k

)
c

dj−k
j · (⟨bj, t⟩k)

Dhi(gi)
∣∣
(0) = ∑

j∈[τ]

(
dj

k

)
c

dj−k
j · Dgi(⟨bj, t⟩k)

∣∣
0

= ∑
j∈[τ]

(
dj

k

)
c

dj−k
j · ∑

e∈supp(g)
coe f fe(hi) · ∂e(⟨bj, t⟩k)

∣∣
0

= ∑
j∈[τ]

(
dj

k

)
c

dj−k
j · ∑

e∈supp(g)
coe f fe(hi) · i! · be

j = ∑
j∈[τ]

ξi,j · hi(ej)

Dg(h)
∣∣
0 = Dh(g)

∣∣
0 = ∑

0≤i≤d
∑

j∈[τ]
ξi,j · hi(bj) (5.6)

To obtain Dg(h)
∣∣
0 as linear combination of evaluations of g, we use the method of interpolation of

homogeneous components of a polynomial.

hi(bj) = coe f fvi

(
h(v · bj,1 , . . . , v · bj,n)

)
hi(bj) = ∑

0≤k≤d
λi,kh(v · bj) [univariate interpolation]

Dhi(gi)
∣∣
(0) = ∑

j∈[w]

(
∑

0≤k≤d
λk · h(vk · bj,1 , . . . , vk · bj,n)

)
= ∑

j∈[w]

(
∑

0≤k≤d
λk · h(vk · bj)

)

Dg(h)
∣∣
0 = ∑

0≤i≤d
∑

j∈[w]

ξi,j ·
(

∑
0≤k≤d

λi,k · h(vk · bj)

)

Dg(h)
∣∣
0 = ∑

j∈[w]
∑

0≤k≤d

(
∑

0≤j≤d
ξi,j · λi,k

)
· h(vk · bj)

Dg(h)
∣∣
0 = ∑

j∈[w]
∑

0≤k≤d
γj,k · h(vk · bj)

Dg(h)
∣∣
0 = ∑

η∈[w·d]
γe · h(δη)

for [δ1, . . . , δw·d ∈ Fn] and w · d = WR(h) · max{deg(g), deg(h))}

5.3.2 For the polynomial H(A, x) = F(x) corresponding to the space of coefficient
matrices

Recall that H(t, x) = ∏
i∈[n]

∑
j∈[d

Hi,j(t, xi) for the underlying coefficient ring A and the zero -dimensional

ideal of dependencies J, Hi,j(A = Ai,j)
Consider the polynomials ϕi obtained after expressing H as a linear combination of evaluations of
the derivative operator spaces characterized by the var(J) [ given by Theorem 2.2 : Multivariate
roots & multiplicities]
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Sufficient number of Evaluation points

Theorem 5.3. Given that coe f fe(H̃) = ∑i,v λ(e)Dϕi,v(h)
∣∣∣
θi

. Let τ = WR(ϕ) =

max{WR(ϕi,v)} And let d = max{deg(H), deg(ϕi,v)}, then there exists at most r = τ · d
points δ ∈ Fn such that

Dϕi,v(H)
∣∣
θi
= ∑

η∈[w·d]
γe · H(δη)

This, we iterate on ϕi,v for all i ∈ |var(J)|
1. According to our hypothesis, for r-variate polynomials ϕi,v with DPD(ϕi,v) ≤ m, the

WR(ϕi,v) = S(r, z).

2. Also, as deg(Hi) ≤ w2, the deg(H) = deg(
n
∏
1

Hi) ≤ n · w2

Thus, in total we require O(τ · d) ≡ O(S(r, z) · n · w2) evaluations to obtain Dϕi,v(H)
∣∣
θi

5.3.3 Consolidating all the results

f (x) = ∑
e∈NJ

µeh̃e(x)

= ∑
e∈NJ

µe

(
∑

i∈var(J)
v∈[Ωi ]

λe
i,v · Di,v(H)

∣∣
θi

)

= ∑
i∈var(J)
v∈[Ωi ]

µ′
i,v ·

(
Di,v(H)

∣∣
θi

)
Roots + Multiplicity

= ∑
i∈var(J)
v∈[Ωi ]

µ′
i,v ·

(nw2·S(r,z)

∑
η=1

γν · H(δη)

)

=
nw2·S(r,z)

∑
η=1

(
H(δη , x)

)
· γη · ∑

i∈var(J)
v∈[Ωi ]

µ′
i,v

f (x) =
nw2·S(r,z)

∑
η′=1

κ′η ·
n

∏
i

(
Hi(δ

′
η , xi)

)
(5.7)

5.4 Conclusion

Note that in eqn. 2.7 , we have expressed f (x) as a sum of product of diagonal matrices Hi(t, x),
where the formal variable t takes input A = {A1, . . . , Ar}, the ideal of dependencies of the coef-
ficient matrix space spanAi,j. The number of evaluations sufficient for complete characterization
are polynomial in m, w, S(r, z).

As r, z ≤ w2, we have that S(r, z) ≤ S(w2, w2).

Given the hypothesis in Theorem 4.1 (Consequence 1) [DPD(f) ≤p WR(f) ], we thus construct a
diagonalROABP of size O(w2 · S(w2, w2) · nw2) that simulates a commutative ROABP with width
w, computing a polynomial an n- variate, d-degree polynomial f .
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Chapter 6

Polytopes and PIT

Main result in this section revolves around the construction of an explicit weight assignment
family that isolates log-variate polynomials that have a low dimension of partial derivatives.
Σ[s] ∩[d] Σ[n] will denote an n variate depth 3 powering circuit with degree ≤ d and
top fan in ≤ s

6.1 Polytopes and Cone closed basis

F-cone of a monomial

Definition 6.1. Let F be the underlying Field and m be a monomial over the variable set
{x1, . . . , xr}.

F − cone(m) = {∂em|e ∈ Nr, ∂em ̸= 0} (6.1)

6.1.1 Newton Polytopes

Let S = {u1, . . . , um} | ui ∈ Rd, then we define the convex span or convex hull of S as

CS(S) = ( Σiαiui | αi ∈ R, αi ≥ 0, Σiαi = 1)

A set P ⊂ Rd is called a convex set in Rd if for any two points u, v ∈ P and any 0 ≤ α ≤ 1

αu + (1 − α)v ∈ P

A convex set (say, P ⊂ Rd) is called a polytope is there exists a finite set S ⊂ Rd such that
P = CS(S)

For any polynomial f ∈ F[x1, . . . , xn], the Newton Polytope Pf is defined as

Pf = CS(supp( f ))

Pf = CS({e ∈ Nn | coe f f f (xe) ̸= 0})

6.1.2 Vertices of a polytope & Minima of Linear functions

Suppose P ⊆ Rn be a convex polytope. A point v ∈ P is a vertex of P if it cannot be expressed as
a non-trivial convex combination of other points in P.
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v ∈ P is a vertex if there is now u, w ∈ P\{v} suchhthat for any 0 ≤ α ≤ 1

v = αu + (1 − α)w

For any convex polytope P ⊆ Rn, the following hold

• For any u ∈ Rn and a point e ∈ P, there exists a vertex v of P, such that uTv ≤ uTe

• If v is a vertex of P, then there exists a vector a ∈ Rn such that the linear function La : x →
aTx is uniquely minimized on p at v

• If v is a vertex of P and if aTv < aTv′ for all vertices v′ ̸= v of P, then the linear function
La : x → aTx is uniquely minimized on P at v

6.2 Constructing IWA through Newton Polytopes

6.2.1 Basis Isolating Weight Assignment (BIWA)

A weight function wt : x → W is termed as a Basis isolating weight assignment for a polynomial
f (x) ∈ F[x], if there exists a set of monomials S ⊆ supp( f ) whose coefficients form a basis for the
coefficient sapce of f (x) such that the following hold

1. for any e, e′ ∈ S, wt(e) ̸= wt(e′)

2. for any monomial e ∈ supp( f )\S, coe f f f (e) ∈ span{coe f f f (e′) |e′ ∈ S, w(e) < w(e′)}

A weight asignment that gives distinct weights to the all the monomials of a polynomial is nec-
essarily a basis isolating weight assignment. However, in certain cases, it might inovlve expo-
nentially large weights. So we try to use the structural properties of the circuit to construct and
efficien BIWA

6.2.2 Hitting sets via Basis Isolation

6.2.3 Lemma

Let f (x) ∈ F[x] be an n-variate polynomial of degree d and let Pf be its Newton Polytope. Then
for any vertex e of Pf we have dim(∂∗( f ) ≥ dim(∂∗(xe)) = |F − cone(e)|) As e is a vertex of Pf ,
there must exist a vector w such that the linear function Lw is uniquely minimized at e.

Counting monomials with a low cone

Theorem 6.1. For a field F with characteristic 0 ( or large characteristic )let d, k ∈ N be
appropriately large enough. Then the number of n-variate, degree d monomials that have
F − CS(e) ≤ k is at most ( n

logk)k
2

Lemma : For 0 ≤ k ≤ n, k ∈ Z, we have
k
∑

i=0
(n

i ) ≤ (en
k )

k

Proof
The number of n-variate monomials with cone-size ≤ k is O(ηk2) where η = (

3n
logk

)logk

Let N(k, l) denote the number of cone-size monomials with support Xl of size l. The exponent of
each xi ∈ Xl is atleast ! and ≤ k − 1, which gives the following recurrence

N(k, l) ≤
k

∑
i=2

N(k/2, l − 1)
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It can be proved by induction that N(k, l) < k2 satisfies the above recurrence.

From the definition of cone, a cone-size ≤ k must have support size ≤ l = ⌊logk⌋. From here we

can getm the number of possible support sets with cone-size ≤ k to be ∑l
i=0 (

n
i ) =≤ (

3n
logk

)logk

Isolating Weight Assignments

Theorem 6.2. Suppose F be a field of characteristic zero (or large characteristic). Let
d, k ∈ N be appropriately large enough with (C)(n, k, d) denoting the class of n-variate, d-
degree polynomials over F, such that ∂ ∗ ( f ) ≤ k, ∀ f ∈ (C). Then there is an explicit family
W(k, d) which isolates C()k, d and consists of poly(k, logd) weight assignments

Proof
Pick an arbitrary polynomial f ∈ C(k, d) and let Pf be its Newton Polytope. F − CS(e) for the the
vertices e of Pf will have size at most k. From previous results, we also have an upper bound on
the number of such vertices. Using Theorem 6.2, we can conclude that Pf has at most (( n

logk) · k2).

Furthermore, for any polynomial f where n = O(logk) in C(n, d, k) the number of these vertices
are poly(k). As the choice of such an f ∈ C was arbitrary, we have a family of weight assignments
W(n, d, k), where n = O(log(k)) which isolates C.

6.3 Conclusion

6.3.1 Hitting sets for low partials

As a corollary to the above theorem, we have for all large enough k, d ∈ N and n = O(logk), the
class C(k, d) of n-variate, degree d polynomials over F with the dimension of partial derivative
space at most k, has a hitting set of size poly(k, d)

6.3.2 Log variate Depth 3 Powering circuits

For large enough s, d ∈ N and n = O(logk) , the class Σ[s] ∩[d] Σ circuits over F has a hitting set of
size poly(s, d).
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