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Kurzfassung

Im Folgenden fasse ich in verkürzter Form die wichtigsten Ideen und Resultate

meiner Diplomarbeit mit dem Titel “Theory of m-Schemes and Applications to

Polynomial Factoring” (zu Deutsch: “m-Schemes und ihre Anwendungen in der

Polynomfaktorisierung”) in deutscher Sprache zusammen. Das Thema dieser Arbeit

ist ein neuer Ansatz für die Polynomfaktorisierung über endlichen Körpern, kürzlich

vorgeschlagen von Ivanyos, Karpinski und Saxena (siehe [16]). Die Polynomfak-

torisierung über endlichen Körpern ist ein Problem mit wesentlichen Anwendungen

in der Kodierungstheorie und in der Faktorisierung natürlicher Zahlen, allerdings

konnte für dieses Problem bisher kein deterministischer Polynomialzeitalgorithmus

gefunden werden.

Die Diplomarbeit ist unterteilt in insgesamt fünf Kapitel. In den ersten zwei Kapiteln

dieser Diplomarbeit beschäftigen wir uns mit “association schemes”, kombinatorische

Objekte für welche im deutschen Sprachraum noch kein einheitlicher Terminus ge-

funden wurde. Eine exakte Definition von “association schemes” ist wie folgt:

Definition 0.1 (Association Scheme). Sei X eine endliche Menge und G eine Menge

bestehend aus Teilmengen von X ×X. Wir nennen (X,G) ein association scheme,

wenn

(i) X ×X eine disjunkte Vereinigung der g ∈ G ist

(ii) G die triviale Relation 1 := {(x, x) |x ∈ X} enthält

(iii) Für alle g ∈ G gilt: g∗ := {(y, x) | (x, y) ∈ g} ∈ G

(iv) Für alle f, g, h ∈ G existiert eine natürliche Zahl afgh sodass für alle (α, β) ∈ h
gilt:

afgh = |{γ ∈ X | (α, γ) ∈ f and (γ, β) ∈ g}| .

Ein Element g ∈ G wird als Relation (oder Farbe) von (X,G) bezeichnet. Wir nen-

nen |X| die Ordnung von (X,G) und ng = agg∗1 die Valenz von g ∈ G. Wenn

afgh = agfh für alle f, g, h ∈ G, dann nennen wir (X,G) ein kommutatives associa-

tion scheme.

Das Hauptergebnis aus den ersten zwei Kapiteln lautet wie folgt: Ist die Ordnung

eines association scheme (X,G) eine Primzahl, d.h. |X| = p, dann haben alle



1 6= g ∈ G die selbe Valenz (siehe [13]). Dieses relativ einfach anmutende Resultat

basiert auf schwerwiegenden Theoremen aus Algebra und Darstellungstheorie - wir

werden diese in aller Ausführlichkeit in den ersten beiden Kapiteln erklären.

In Kapitel 3 verallgemeinern wir den Begriff des association scheme, und führen das

m-scheme ein (siehe [16]). Leider lässt sich die Definition eines m-scheme nicht in

der selben Kürze angeben wie die des association scheme, daher verweisen wir an

dieser Stelle auf Sektion 3.1 der Diplomarbeit. Es macht dennoch Sinn, in dieser

Kurzfassung einige der Eigenheiten von m-schemes zu besprechen; hier geht es uns

vor allem um die sog. “Matchings”, kombinatorische Substrukturen innerhalb des

m-scheme. Wir zeigen in der Diplomarbeit, unter welchen Umständen ein m-scheme

ein Matching enthalten muss, und besprechen in diesem Zusammenhang auch die

bisher unbewiesene Schemes Conjecture, welche die Existenz von Matchings in einen

sehr generellen Zusammenhang setzt. Als Beispiel für unsere Überlegungen über m-

schemes dienen uns die sog. orbit m-schemes, welche in einer speziellen, einfachen

Weise entstehen (durch Gruppenaktion), und für welche die Schemes Conjecture

sogar schon bewiesen ist.

Wir erweitern unsere Kenntnis über m-schemes in Kapitel 4, wenn wir mit Hilfe

der algebraischen Topologie versuchen, zu einem geometrisches Verständnis von m-

schemes zu gelangen. Unser Ansatz basiert auf der Feststellung, dass m-schemes als

∆-Mengen (auch simpliziale Mengen genannt) klassifiziert werden können, welche

sehr häufig in der algebraischen Topologie auftauchen (siehe [27]). Damit lassen sie

sich auf die übliche Weise geometrisch realisieren und mit Mitteln der Homologie

untersuchen. Wir glauben, dass die geometrische Anschauung den kombinatorischen

Definitionen noch mehr Deutlichkeit verleiht, und dass der vorgestellte Ansatz in der

kommenden Zeit interessante Möglichkeiten für weitere Forschung bietet.

Im finalen Kapitel 5 wenden wir uns dann der Anwendung der Theorie derm-schemes

in der Polynomfaktorisierung über endlichen Körpern zu. Wir stellen einen neuen

Ansatz für dieses Problem vor, welcher von Ivanyos, Karpinski und Saxena entdeckt

wurde (siehe [16]). Die o.g. Forscher haben einen Algorithmus entwickelt (im folgen-

den IKS-Algorithmus genannt), welcher auf Eingabe eines Polynomes entweder einen

nichttrivialen Faktor desselben ausgibt oder ein Matching-freies m-scheme konstru-

iert und ausgibt. Nun kommt der Clue: Da der IKS-Algorithmus nur m-schemes

von sehr spezieller Beschaffenheit ausgeben kann, können wir in einigen Fällen mit

Sicherheit davon ausgeben, dass diese ein Matching enthalten müssen. Der enste-

hende Widerspruch sorgt dafür, dass in einigen wichtigen Fällen der Algorithmus



einen nichttrivialen Faktor ausgeben muss! Genau dieser Sachverhalt wird uns in

Kapitel 5 zugute kommen, und sorgt dafür, dass sich die Laufzeitabschätzungen des

IKS-Algorithmus bisweilen auf komplett kombinatorische Probleme reduzieren.

Bevor wir diese Kurzfassung abschließen, möchte ich noch kurz auf die benötigten

Vorkenntnisse für das Studium dieser Diplomarbeit eingehen. Mit Hilfe des ersten

Kapitels, “Algebraic Prerequisites”, hoffen wir, die Zeit des Einlesens auf ein Min-

imum reduzieren zu können. Für eine Vertiefung der relevanten Gebiete Algebra

und Darstellungstheorie empfehlen wir überdeß das Buch von Nagao und Tsushima

(siehe [23]), welches fast alle relevanten Definitionen und Sätze enthält, die wir in

dieser Arbeit brauchen. Eine zusätzliche wichtige Vorraussetzung für das Lesen

dieses Textes ist ein solides Verständnis von linearer Algebra.





Introduction

The present text, titled “Theory of m-Schemes and Applications to Polynomial

Factoring”, constitutes my Diplom thesis, written under the supervision of Prof.

Dr. Nitin Saxena at the Hausdorff Center for Mathematics in Bonn. It describes

a new approach to the computational problem of polynomial factoring over finite

fields, suggested recently by Ivanyos, Karpinski and Saxena (see [16]). Polynomial

factoring over finite fields is a problem with major applications to coding theory and

integer factoring, but no determinstic polynomial-time algorithm has been found for

it so far.

The emphasis of this work is on the explanation of the combinatorial results leading

to Ivanyos, Karpinski and Saxena’s discovery of a new GRH-based deterministic

algorithm for the factoring problem (called IKS-algorithm in the following). The core

idea of the IKS-algorithm is the use of combinatorial schemes (association schemes,

m-schemes) in the manipulation of algebraic data generated by the input polynomial.

While the reader may have come across association schemes before - there are plenty

of introductory texts on this subject, for example [4] or [31] - it is unlikely that he

or she had much exposure to the more general m-schemes, since they have sprung in

direct conjunction with the IKS-algorithm and only been studied in [16] so far. In

this work, I explain all the necessary definitions and results for the use of association

schemes and m-schemes in the context of the IKS-algorithm in a concise and self-

contained manner. Furthermore, I suggest a new way to study m-schemes and their

structure using methods from algebraic topology.

The material is organized in five chapters. In Chapter 1, a thorough overview of the

algebraic prerequisites for the study of this work is given. It is entirely possible to

use Chapter 1 for referencial purposes only, since much of the material is common

knowledge at graduate level. A lot of these prerequisites are needed in Chapter 2,

when we introduce the theory of association schemes.

In Chapter 2, we give a detailed and self-contained introduction to the theory of

association schemes. Our goal is to understand Hanaki and Uno’s classification

results for association schemes of prime order, which span several journal papers

(see [10], [13]). These classification results will be very important to us in later

chapters, as they have great implications for the running time of certain special

instances of the IKS-algorithm.



In Chapter 3, we discuss m-schemes, and we learn about an important, purely

combinatorial conjecture whose correctness would imply that the IKS-algorithm

runs in deterministic polynomial time on all instances under GRH (the Schemes

Conjecture - see Section 3.5). Also, we will show that m-schemes provide a natural

generalization of the notion of association schemes.

In Chapter 4, we introduce some new ideas for studying m-schemes, which are

based on methods from combinatorial algebraic topology. These ideas are intended

to enhance our understanding of m-schemes on a geometric level. The emphasis in

this chapter is on the explanation of algebraic-topological methods; we believe that

they could help us gain new insights into m-scheme properties that interest us in

the context of polynomial factoring.

In Chapter 5, we discuss the application of m-schemes in polynomial factoring over

finite fields; this includes a detailed description of the IKS-algorithm. Based on

Hanaki and Uno’s classification results, we show that the IKS-algorithm has deter-

minstic polynomial running time in the factorization of certain prime-degree polyno-

mials. Moreover, we discuss how the deterministic running time of the IKS-algorithm

is connected to the previously-mentioned Schemes Conjecture.
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1 Algebraic Prerequisites

The purpose of this chapter is to provide the background in algebra which is needed

to understand the rest of this text. I kept the sections short so as to make it

possible to quickly reference them. Note that most of the results below (alongside a

proof) can be found in [23] and [32]. Instead of reproving them, I will give citations

whenever needed.

Also note that the term algebra will be used as a synonym for finitely generated

algebra throughout this chapter.

1.1 Completely Reducible Modules

In the following, let K be a field and A an algebra over K such that dimK(A) ∈ N.

Let V be a right A-module. If there is ambiguity about the ring V belongs to, we

write VA (resp. AV ) for a right (resp. left) A-module. We say that V is irreducible

(or simple) if it contains no proper submodule. If V is a direct sum of irreducible

submodules of V , we say V is completely reducible (or semisimple).

The next Lemma characterizes this property (taken from [32], Prop. 3.3.2).

Lemma 1.1. The following statements are equivalent:

(i) V is the sum of irreducible submodules

(ii) For each submodule U ≤ V there exists a submodule T ≤ V such that

U ⊕ T = V

(iii) 0 is the intersection of the maximal submodules of V

(iv) V is completely reducible

For completely reducible modules, we have the following important result about

their irreducible decompositions (taken from [23], Th. I.7.3).

Theorem 1.2 (Homogenous Decomposition). Let V be a completely reducible A-

module and let

V =
⊕
i∈I

⊕
λ∈Λi

Viλ

14



be an irreducible decomposition of V such that Viλ and Vkµ are isomorphic if and

only if i = k. Put Ui =
⊕

λ∈Λi
Viλ and chose a representative Vi of {Viλ |λ ∈ Λi} for

each i ∈ I. Then

(i) Any irreducible submodule W of V is isomorphic to some Viλ, in which case

W ⊂ Ui.

(ii) EndA(V )Ui = Ui.

(iii) If I = {1, 2, ...,m} is a finite set and |Λi| <∞ for all i, then

EndA(V ) ∼= EndA(U1)⊕ · · · ⊕ EndA(Um) (ring isomorphism)

and each EndA(Ui) is isomorphic to the full matrix ring of degree |Λi| over the

division ring EndA(Vi).

In the above situation, V =
⊕

i∈I Ui is called homogenous decomposition of V . The

direct summands {Ui | i ∈ I} are called homogenous modules of V .

1.2 Semisimple Algebras

Throughout this Section, let A be a finitely generated algebra over some field K.

As usually, we write AA for A as a right module over itself. Further, put J(A) the

intersection of the maximal submodules of AA; J(A) is the Jacobson Radical of A.

We can characterize J(A) as follows (taken from [23], Th. I.3.3 and Th. I.3.5).

Lemma 1.3. Let A be finitely generated K-algebra. Then J(A) is a nilpotent ideal

of A. Moreover,

(i) J(A) is the intersection of all maximal right ideals of A.

(ii) J(A) is the intersection of all maximal left ideals of A.

(iii) J(A) consists exactly of those elements of A which annihilate all irreducible

right A-modules.

By Lemma 1.1, we have:

Theorem 1.4. AA is completely reducible if and only if J(A) = 0.
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In the following, if A is an algebra and AA is completely reducible (or equivalently:

J(A) = 0), we call A a semisimple algebra.

There are many useful structural results for semisimple algebras. The next Theorem

is one example (taken from [32], Th. 3.4.2).

Theorem 1.5. Let A be finitely generated and semisimple. Then

(i) Each irreducible A-module is isomorphic to a submodule of AA.

(ii) Let V be an A-module such that dimK(V ) ∈ N. Then V is completely reducible.

As a consequence: If V is some A-module such that dimK(V ) ∈ N, then there exist

irreducible submodules S1, ..., Sk of AA such that

V ∼= λ1S1 ⊕ · · · ⊕ λkSk ,

where λ1, ..., λk are some multiplicities. Moreover, S1, ..., Sk can be chosen indepen-

dently from V ; this follows from the next Lemma (taken from [23], Th. I.8.10).

Lemma 1.6. Let A be finitely generated and semisimple. Then the number of iso-

morphism classes of irreducible A-modules is finite.

We will come back to semisimple algebras in Section (1.4)

1.3 Idempotents

In the following, let A be a finitely generated algebra over some ring R. An idempo-

tent of A is an element e ∈ A such that e2 = e. As usual, two idempotents e1, e2 ∈ A
are called orthogonal if e1e2 = 0.

If e ∈ A is an idempotent and e1, e2, ..., en ∈ A are pairwise orthogonal idempotents

such that

e = e1 + e2 + ...+ en ,

we call e1+e2+...+en an idempotent decomposition of e. If there exists no non-trivial

idempotent decomposition of e, we call e a primitive idempotent. Furthermore, an

idempotent decomposition e =
∑n

i=1 ei is called primitive if each summand ei is

primitive.

16



The following lemma is of fundamental importance (taken from [23], Th. I.4.1).

Lemma 1.7. Let e be an idempotent of A. If e = e1 + e2 + ...+ en is an idempotent

decomposition, then

eA = e1A⊕ e2A⊕ ...⊕ enA .

Conversely, if eA is a direct sum of right ideals

eA = I1 ⊕ I2 ⊕ ...⊕ In ,

then there exists an idempotent decomposition e = e1 + e2 + ...+ en such that

Ii = eiA , 1 ≤ i ≤ n .

Corollary 1.8. Let e be an idempotent of A. Then e is primitive if and only if

(eA)A is indecomposable.

An idempotent e in the center Z(A) of A is called a central idempotent. An idem-

potent decomposition in Z(A) is called a central idempotent decomposition. If e is

primitive in Z(A), we call it a central primitive idempotent. Similar to Lemma 1.7,

we have:

Lemma 1.9. Let e be a central idempotent of A. If e = e1 + e2 + ...+ en is a central

idempotent decomposition, then

eA = e1A⊕ e2A⊕ ...⊕ enA

holds, as (A,A)-bimodules. Conversely, if eA is a direct sum of two-sided ideals

eA = I1 ⊕ I2 ⊕ ...⊕ In ,

then there exists a central idempotent decomposition e = e1 + e2 + ...+ en such that

Ii = eiA , 1 ≤ i ≤ n .

A proof can be found in [23] (Th. I.4.7). As a Corollary, we have:

Corollary 1.10. An idempotent e of A is central primitive if and only if (eA)A is

indecomposable as a two-sided module.
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1.4 Wedderburn’s Theorem

I will now outline the consequences of Section (1.3) for semisimple algebras. This

will ultimately culminate in Wedderburn’s Theorem (see Theorem 1.12).

Let A be a finitely generated semisimple algebra over some field K and let

AA =
k⊕
i=1

ni⊕
λ=1

eiλA

be an irreducible decomposition, where 1 =
∑

i,λ eiλ is a primitive idempotent de-

composition of the identity, and we assume that eiλA ∼= ejµA if and only if i = j (see

Lemma 1.7 and Corollary 1.8). By putting Ai =
⊕

λ eiλA, we obtain a homogenous

decomposition of AA:

AA = A1 ⊕A2 ⊕ ...⊕Ak .

Since every element of EndA(AA) may be interpreted as the left multiplication by

some element of A, we have AAi = Ai by Theorem 1.2 (ii). Thus, each Ai is actually

a two-sided ideal in A, yielding

A ∼= A1 ⊕A2 ⊕ ...⊕Ak (ring isomorphism) .

Now Di = EndA(ei1A) is a division algebra over K and Ai ∼= EndA(Ai) ∼= Mni(Di)

(see Theorem 1.2 (iii)). Moreover, one can show that each Mni(Di) is a simple

algebra (see [23] Ch. 1.8)). Hence,

A ∼=
k⊕
i=1

Ai ∼=
k⊕
i=1

Mni(Di)

is a decomposition of A into simple algebras. We call {Ai | 1 ≤ i ≤ k} the simple

components of A.

By Theorem 1.2 the following holds:

Lemma 1.11. We use the above notation.

(i) Each irreducible submodule W of AA is isomorphic to some eiλA, in which

case W ⊂ Ai.

(ii) There are exactly ni modules in the irreducible decomposition of AA that are

isomorphic with eiλA. Moreover, dimK(eiλA) = nidimK(Di).

18



This leads us to the main result of this Section (taken from [23], Th. I.8.5).

Theorem 1.12 (Wedderburn). Let A be a finitely generated K-Algebra. Then the

following conditions are equivalent:

(i) A is semisimple.

(ii) A ∼= Mn1(D1)⊕ · · · ⊕Mnk(Dk), where each Di is a division algebra over K.

Proof. (i) ⇒ (ii). This has already been shown. (ii) ⇒ (i). I will just outline

the proof. As already mentioned above, each Mnk(Dk) is a simple algebra. Since

simple algebras are also semisimple, we have J (Mni(Di)) = 0 for each i. Therefore,

J(A) =
⊕k

i=1 J (Mni(Di)) = 0, which means that A is semisimple. Working out the

details will be left to the reader.

Let us consider the case where K = K is algebraically closed. In [23] (Lemma II.3.2),

the following fact is shown:

Lemma 1.13. Let D be a division algebra over some algebraically closed field K.

Then D = K.

Hence, if A is a semisimple algebra over some algebraically closed field K, then the

division algebras in (ii) of Theorem 1.12 are all equal to K, i.e. D1, D2, ..., Dk = K.

This gives us the following Corollary:

Corollary 1.14 (Addendum to Wedderburn’s Theorem). If A is a finitely generated

semisimple algebra over some algebraically closed field K, then A splits into a direct

sum of full matrix algebras over K:

A ∼= Mn1(K)⊕ · · · ⊕Mnk(K) .

The following result should now be easy to verify.

Corollary 1.15. Let A be a finitely generated semisimple algebra over some alge-

braically closed field K. Then A is commutative if and only if dimK(V ) = 1 for all

irreducible A-modules V .
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1.5 Idempotent Equivalence

We will now further our study of idempotents and involve the results of the previous

sections in our discussion.

In the following, let A be a finitely generated semisimple algebra over some field K.

Let e and f be idempotents of A. As it is shown in [23] (Th. I.4.4), the following

statements are equivalent:

(i) eA ∼= fA (A-isomorphic),

(ii) Ae ∼= Af (A-isomorphic),

(iii) There exists a ∈ fAe, b ∈ eAf such that ab = f , ba = e.

If e and f satisfy (i)-(iii), we call them equivalent ; we denote this by e ' f . In this

Section, we try to characterize all idempotents e of A that are equivalent with 1A.

We start with a special case.

Lemma 1.16. Let A = Mn(K) be a full matrix algebra over K. Let e be an

idempotent of A. Then

e ' 1A ⇐⇒ e = 1A .

Proof. This follows immediately from statement (iii) above.

We will now consider the general case. For an algebra A over K, let

AA =
k⊕
i=1

ni⊕
λ=1

Aiλ

be an irreducible decomposition of AA, where we assume that Aiλ ∼= Ajµ if and only

if i = j. Let e be an idempotent of A. Multipliying the above equation with e gives

us an irreducible decomposition of (eA)A:

(eA)A =
k⊕
i=1

ni⊕
λ=1

eAiλ .

For each summand eAiλ in the above decomposition, observe that either eAiλ = 0

or eAiλ = Aiλ by irreducibility. As a consequence:

Lemma 1.17. In the above situation, eAiλ ∼= Aiλ for all (i, λ) if and only if e ' 1A.
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1.6 Splitting Fields

Throughout this section, let K be a field and K ⊂ L a field extension. For an

algebra A over K, we define

AL := L⊗K A .

Note that AL can be regarded as an L-algebra in a natural way. Moreover, note

thatAL/J
(
AL
)

is semisimple as an L-algebra; this follows from J
(
AL/J

(
AL
))

= 0.

We settle for the following convention: If AL/J
(
AL
)

splits into a direct sum of full

matrix algebras over L,

AL/J
(
AL
) ∼= Mn1(L)⊕ · · · ⊕Mnk(L) ,

then L is called a splitting field for A. If K is itself a splitting field for A, we call A
a split K-algebra.

Note that split K-algebras are always semisimple, but the converse does not hold

(see Theorem 1.12). Also note that the algebraic closure K̄ of K is a splitting field

for every finitely generated K-algebra (see Corollary 1.14)

The following theorem will be of fundamental importance to us:

Theorem 1.18. Let A be a finitely generated K-algebra. Then there exists a finite

extension field L of K that is a splitting field for A.

For a complete discussion and proof of this result, see [23] (Th. II.3).

1.7 Matrix Representations

We will now look at some basic concepts of Representation Theory. Note that most

of the material we present here was taken from [23] (in particular: Ch. II.1). Readers

familiar with Representation Theory may skip through the following section.

Let A be an algebra over some commutative ring R. By a matrix representation of

A, we mean an R-algebra homomorphism from A into a full matrix ring over R:

X : A −→Mn(R) , a −→ X(a) .

The integer n is called the degree of X.
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Two matrix representations X and Y of A are called equivalent if there exists T ∈
GLn(R) such that for all a ∈ A,

Y (a) = T−1X(a)T .

If S ⊃ R are rings having the identity in common and X is matrix representation

of AS := S ⊗R A, then X is called realizable over R if there exists an X-equivalent

matrix representation Y of AS such that

Y (1S ⊗ a) ∈Mn(R) , ∀ a ∈ A .

In the following, let V be an A-module with R-basis (v1, v2, ..., vn). For a ∈ A, write

via =
n∑
j=1

αij(a)vj , i = 1, ..., n .

Put X(a) = (αij(a))i,j ∈Mn(R). Then the map

X : A −→Mn(R) , a −→ X(a)

is a matrix representation of A. We call X the matrix representation of A afforded

by V relative to the basis (v1, v2, ..., vn). In the above situation, V is called a repre-

sentation module for X.

As the following Lemma shows, every matrix representation of A has a representation

module (taken from [23], Ch. II.1).

Lemma 1.19. Let A be an algebra over some commutative ring R. Let X : A −→
Mn(R) , a −→ X(a) be a matrix representation of A. Then there exists an R-module

V such that V is a representation module for X.

Proof. Assume X(a) = (αij(a))i,j ∈Mn(R). Consider the free R-module

V = Rv1 ⊕ · · · ⊕Rvn .

We define the action of each a on vi by

via =
n∑
j=1

αij(a)vj
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and extend it to all of V linearly. Then V is a right A-module, and the matrix

representation of A afforded by V relative to the basis (v1, v2, ..., vn) coincides with

X.

As the next Lemma shows, representation modules can also be used to describe the

equivalency of matrix representations. For a proof, see [6] (Ch. II.8).

Lemma 1.20. Two matrix representations X and Y of A are equivalent if and only

if they have isomorphic representation modules.

1.8 Characters

We will now look at some basic concepts of Character Theory. Note that most of

the material we present here was taken from [32] (in particular: Ch. 3.5). Readers

familiar with Character Theory may skip through the following section.

Definition 1.21 (Character). Let A be an algebra over some field K. Let V be an

A-module such that dimK(V ) ∈ N. For each a ∈ A, we have a linear map

ϕa : V −→ V , v −→ va .

The map defined by

χV : A −→ K , a −→ tr(ϕa) .

is also linear; we call χV the character of A afforded by V . If V is an irreducible

module, we call χV an irreducible character.

The set of all irreducible characters of A will be denoted by Irr(A). We will show

that the irreducible characters of A are the building blocks of a much larger class of

characters. For this purpose, we need the following Lemma:

Lemma 1.22. Let V,W be A-modules such that V 6= 0 6= W . Then we have:

(i) If V ∼= W , then (using the above notation) χV = χW .

(ii) If U = V
⊕

W , then χU = χV + χW .

Proof. To certify the above statements, just spell them out in “basis language”. The

results follow immediately; we leave the details to the reader.
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Now the results from Section (1.2) (esp. Theorem 1.5), give us the following:

Theorem 1.23. Let A be a finitely generated semisimple K-algebra and let V be an

A-module such that dimK(V ) ∈ N. Then the character χV of A afforded by V can

be written as a linear combination of irreducible characters of A:

χV =
∑

χ∈Irr(A)

λχ χ ,

where λχ denotes the multiplicity of χ in χV .

Note that Irr(A) is finite; this follows from Lemma 1.6.

1.9 Complete Discrete Valuation Rings

In the following, we assume that the reader is familiar with discrete valuation rings

and that she understands the notion of completeness in this context. The present

discussion only includes some specific results for DVRs which we need in Chapter 2.

The following theorem on idempotent lifting will be very important to us (taken

from [23], Th. I.14.1 and I.14.2).

Theorem 1.24. Let A be a finitely generated algebra over some complete discrete

valuation ring R of characteristic 0. Let π be the maximal ideal of R and put

Ā = A/πA. Then the following holds:

(i) Let ē be an idempotent of Ā and let

ē = ē1 + ē2 + ...+ ēn

be an idempotent decomposition of ē in Ā. Then ē lifts to an idempotent e

of A, meaning there exists an idempotent e ∈ A such that e −→ ē under the

canonical epimorphism A −→ Ā. Moreover, there exist orthogonal idempotents

e1, e2, ..., en ∈ A such that each ei is a lift of ēi and

e = e1 + e2 + ...+ en .

(ii) An idempotent e of A is primitive if and only if its image under the canonical

epimorphism A −→ Ā is a primitive idempotent of Ā.
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For the next result, remember that a module M over some ring R is called free if it

has a basis over R. M is called torsion-free if there exists no element 0 6= m ∈ M
such that mr = 0 for some scalar 0 6= r ∈ R.

Also note that the following lemma holds for arbitrary valuation rings (which have

to be neither complete nor discrete). A proof can be found in [8] (Th. 5.2).

Lemma 1.25. Let R be a valuation ring. Then every finitely generated torsion-free

R-module is free.

We will come back to discrete valuation rings in the next Section.

1.10 p-modular Systems

We will now consider p-modular systems. A p-modular system is a triple (K,R, F )

of rings such that

(i) R is a complete discrete valuation ring with unique maximal ideal (π)

(ii) K is the field of fractions of R with char K = 0

(iii) F is the residue field R/(π) and char F = p

Let us first discuss the existence of such a system. For this purpose, we need to be

familiar with the notion of Witt vectors : Given a field F of characteristic p, the ring

W (F ) of Witt vectors of F consists of all infinite sequences (f0, f1, f2, ...) of elements

of F , and the sum and product of two elements x, y ∈ W (F ) are defined by

x+ y = (Sn(x, y))n∈N , x · y = (Pn(x, y))n∈N ,

where Sn and Pn for each n ∈ N are certain polynomials in x0, x1, ..., xn and

y0, y1, ..., yn. For the exact definition of Sn and Pn, see [3] (Ch. 4.10).

The classical example for Witt vectors: If F = Fp is the Galois field of size p, then

W (F ) = Zp is the ring of p-adic integers (see [22]). It is common knowledge that Zp
is a complete discrete valuation ring of characteristic 0, and that

Zp/(π) ∼= F ,

where (π) denotes the maximal ideal of Zp. Hence, if Qp denotes the ring of p-adic

numbers (the quotient field of Zp), then (Qp,Zp,Fp) is a p-modular system.
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This example can be generalized as follows (see [22], Th. 3.1.14):

Lemma 1.26 (Witt). Let F be an algebraically closed field of characteristic p. Then

the ring W (F ) of Witt vectors of F is a complete discrete valuation ring of charac-

teristic 0. Moreover, if (π) is the maximal ideal of W (F ), then

W (F )/(π) ∼= F .

As a consequence: If F is an algebraically closed field of characteristic p and QW (F )

denotes the field of fractions of the ringW (F ), then (QW (F ),W (F ), F ) is a p-modular

system.

By the same argument as in [22] (Th. 3.1.22), this generalizes as follows:

Lemma 1.27. Let F be an algebraically closed field of characteristic p and let

(QW (F ),W (F ), F ) be the above p-modular system. Assume K is a finite extension

field of QW (F ). Then there exists a complete discrete valuation ring R such that

(K,R, F ) is also a p-modular system.

This completes our discussion. For more on p-modular systems, see [23] (Ch. III.6).
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2 Association Schemes

Association Schemes are standard combinatorial objects that arise in various guises

in many areas of mathematics. The present chapter provides an algebraic approach

to this subject, utilizing ring theory, representation theory and linear algebra.

Note that the material has been organized in such a way that it requires no previous

knowledge of association schemes. All the necessary definitions and elementary

theory are discussed in Sections (2.1)-(2.3). In Sections (2.4)-(2.6), we explain some

of the more recent results; this includes a systematic treatise of [13].

2.1 Basic Notions

In this section, we discuss the basic definition of an association scheme and look at

some notable examples.

Definition 2.1 (Association Scheme). Let X be a finite set and G a collection of

nonempty subsets of X × X. An element g ∈ G is called a relation (or color) of

(X,G). We say that (X,G) is an association scheme if

(i) X ×X is a disjoint union of g ∈ G

(ii) G contains the trivial relation 1 := {(x, x) |x ∈ X}

(iii) If g ∈ G, then g∗ := {(y, x) | (x, y) ∈ g} ∈ G

(iv) For all f, g, h ∈ G, there exists an integer afgh such that for all (α, β) ∈ h,

afgh = |{γ ∈ X | (α, γ) ∈ f and (γ, β) ∈ g}| .

We call |X| the order of (X,G) and ng = agg∗1 the valency of g ∈ G. If afgh = agfh

for all f, g, h ∈ G, then we say that (X,G) is commutative.

Let us look at some examples.

Example 2.2 (Cyclotomic Scheme). Let p be prime power and let d | p − 1. Fix

a generator α of the multiplicative group F∗p of Fp and consider the subgroup
〈
αd
〉

generated by αd.
〈
αd
〉

is a subgroup of index d in F∗p , and its cosets are

αi
〈
αd
〉
, i = 0, ..., d− 1 .
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Let P := {Pi | 0 ≤ i ≤ d} be the partition of Fp × Fp defined by

P0 := {(x, x) |x ∈ Fp} ,

Pi := {(x, y) ∈ Fp × Fp |x− y ∈ αi
〈
αd
〉
} , i = 1, ..., d .

It is easy to see that (Fp,P) is an association scheme. Also, observe that all relations

are equal in size:

|Pi| :=
p · (p− 1)

d
, i = 1, ..., d− 1 .

More interestingly, the definition of this scheme does not depend on the choice of

the generator α: If β is another generator of F∗p , say β = αs for some s ∈ N, then

βj
〈
βd
〉
⊂ αjs

〈
αd
〉
, j = 1, ..., d− 1 ,

and since βj
〈
βd
〉

and αjs
〈
αd
〉

are equal in size,

βj
〈
βd
〉

= αjs
〈
αd
〉
, j = 1, ..., d− 1 .

This means that the substitution of β in place of α in the definition of (Fp,P) merely

permutes the numbering of the relations; it does not alter the scheme. Hence, the

construction of (Fp,P) depends only on the choice of p and d. We call (Fp,P) the

cyclotomic scheme in (p, d) and denote it by Cyc(p, d).

As a special class of the cyclotomic scheme, we consider Paley graphs (see below).

Paley graphs are strongly regular hamiltonian graphs which appear in the number

theory of quadratic residues. From a graph-theoretic perspective, Paley graphs are

often recognized for being self-complementary (see [9], [25]).

Example 2.3 (Paley Graph). Let p be a prime power such that p ≡ 1 (mod 4). By

the law of quadratic reciprocity, −1 is a quadratic residue in Fp. Given x, y ∈ Fp, it

follows that x− y is a quadratic residue if and only if y − x is a quadratic residue.

We define the Paley graph of order p by

V = Fp , E = {(x, y) ∈ Fp × Fp |x− y is a quadratic residue} ,

and this is indeed a graph because of the above.
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We obtain an association scheme (X,G) by putting

X = Fp , G = {1, E, Ē} ,

where 1 denotes the trivial relation and Ē denotes the complement of E as a graph.

One can easily see that (X,G) is isomorphic to the cyclotomic scheme Cyc(p, 2).

We will now consider Schurian association schemes. These schemes arise from the

diagonal orbits of transitive permutation groups (see below). In Chapter 3, when

we look at m-schemes, the Schurian scheme will appear as a special case of the more

general “orbit scheme”.

Example 2.4 (Schurian Scheme). Let (G, X) be a transitive permutation group,

i.e. X is a finite set and for any x, y ∈ X there exists a permutation σ ∈ G such

that xσ = y. Consider the induced action of G on X ×X: Let G = {Λ0,Λ1, ...,Λd}
denote the set of orbits by this action, where Λ0 = {(x, x) |x ∈ X} is the trivial

orbit. Then (X,G) is an association scheme; this can be verified easily. We call

schemes that arises in the above-described manner Schurian schemes.

For more examples of association schemes, see [1] or [4].

2.2 The Adjacency Algebra

In this Section, (X,G) is an association scheme and n = |X| is the order of (X,G).

For a relation g ∈ G, we denote its adjacency matrix by σg. Namely, σg is a matrix

whose rows and columns are indexed by X and its (x, y)-entry is 1 if (x, y) ∈ g and

0 otherwise.

Let Γ := {σg | g ∈ G} be the set of all adjacency matrices of G. It follows from

Definition 2.1 that

(i)
∑

g∈G σg is the n× n matrix with entries all 1.

(ii) σ1 ∈ Γ is the n× n identity matrix.

(iii) If σg ∈ Γ, then σg∗ = σTg ∈ Γ.

(iv) For all f, g, h ∈ G, there exists an integer afgh such that

σfσg =
∑
h∈G

afghσh .
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To obtain (iv), note that for (α, β) ∈ h, the equation

afgh = |{γ ∈ X | (α, γ) ∈ f and (γ, β) ∈ g}|

can also be written as

afgh =
∑
γ∈X

(σf )αγ (σg)γβ ,

and the right hand side is (σfσg)αβ by the definition of matrix multiplication.

It should be clear that we can completely describe an association scheme by its

adjacency matrices. Moreover, a system of matrices with the above properties and

an association scheme are the same thing. As a result of this duality, we have a new

characterization for the commutativity of association schemes:

Lemma 2.5. An association scheme (X,G) is commutative if and only if its adja-

cency matrices commute, i.e. if σfσg = σgσf for all f, g ∈ G.

For the following discussion, note that the above statements (i)-(iv) still hold if we

consider the adjacency matrices {σg | g ∈ G} as matrices over some commutive ring

R with 1. This gives rise to the following definition:

Definition 2.6 (Adjacency algebra). Let X = (X,G) be an association scheme. Let

R be some commutative ring with 1. In accordance with statements (i)-(iv), we can

define an R-algebra

RX =
⊕
g∈G

R σg ,

where σg is considered as a matrix over the coefficient ring R. We call RX the

adjacency algebra of X over R.

Let us first consider the case that R = K is a field and char K = 0.

Theorem 2.7. Let X = (X,G) be an association scheme. Let K be some field of

characteristic 0. Then the adjacency algebra KX is semisimple.

Proof. It suffices to show J(KX) = 0. For the sake of contradiction, assume there

exists 0 6= σ ∈ J(KX). Choose {rg ∈ K | g ∈ G} such that

σ =
∑
g∈G

rgσg .
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Since σ is nontrivial, we can choose f ∈ G such that rf∗ 6= 0. We have

tr(σfσ) =
∑
g∈G

rg tr(σfσg) = rf∗ |f | ,

where tr denotes the trace function. Note that the second equality follows from

tr(σfσg) =
∑
h∈G

afgh tr(σh) =
∑
h∈G

afgh δ1h |X|

= afg1 |X| = δf∗g nf |X| = δf∗g |f | .

Now observe that σfσ lies in J(KX), so it is nilpotent by Lemma 1.3. Hence,

tr(σfσ) = 0 .

Altogether, we have rf∗ |f | = 0. But this contradicts rf∗ 6= 0.

We keep the above notation. The following corollaries will be of much importance:

Corollary 2.8. Let K be a field of characteristic 0. Then there exists a finite

extension field L of K such that the adjacency algebra LX is a split L-algebra.

Proof. By Lemma 1.18, there exists a finite extension field L of K such that L is

a splitting field for KX. This means that the semisimple L-algebra KXL/J(KXL)

splits into the direct sum of full matrix rings over L. But KXL ∼= LX (L-isomorphic)

and J(LX) = 0 by Theorem 2.7 ; therefore, LX is a split L-algebra.

Corollary 2.9. Let X = (X,G) be an association scheme and let CX be the complex

adjacency algebra. Let 1 be the unity in CX. Then∑
χ∈Irr(CX)

χ(1) ≤
∑

χ∈Irr(CX)

χ(1)2 = |G| ,

and equality holds if and only if (X,G) is commutative.

Proof. Note that

χV (1) = tr(idV ) = dimC(V )

for any character χV afforded by a module V over CX. The assertion then follows

from the results of Section (1.4) (see Corollaries 1.14 and 1.15).
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2.3 Characters of Association Schemes

Character Theory is one of the most useful tools when it comes to studying associ-

ation schemes. In the following, let X = (X,G) be an association scheme and let K

be a field of characteristic 0. We will study the characters of the adjacency algebra

KX.

Let us fix some terminology. If X be a matrix representation of KX,

X : KX −→Mn(K) , σ −→ X(σ) ,

then we define the character afforded by X as

χ : KX −→ K , σ −→ tr(X(σ)) .

It follows from this definition that χ is afforded by any representation module V of X.

Let us look at some examples.

Example 2.10 (Trivial Character). Consider the KX-representation

X : KX −→ K , σg −→ ng ,

where we identify ng = ng · 1K. This is indeed a representation, because

X(σeσf ) =
∑
g∈G

aefgX(σg) =
∑
g∈G

aefgng = nenf = X(σe)X(σf ) ,

where e, f ∈ G (see [32], Lemma 1.1.4). Let 1G denote the character afforded by X.

We call 1G the trivial character of KX. Explicitly, we have

1G(σg) = ng , g ∈ G .

Moreover, since dimK(T ) = 1 for any representation module T of X, the trivial

character 1G is irreducible.

Example 2.11 (Standard Representation, Standard Character). Put n = |X| the

order of (X,G). We define the standard representation Y of KX by

Y : KX −→Mn(K) , σg −→ σg .
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Let γ denote the character afforded by Y. We call γ the standard character of KX.

Explicitly, we have

γ(σ1) = n ,

γ(σg) = 0 , 1 6= g ∈ G .

Remember that by Theorem 1.23, any character χV of KX afforded by a KX-module

V such that dimK(V ) ∈ N can be written as a linear combination of irreducible

characters of G:

χV =
∑

χ∈Irr(KX)

λχ χ ,

where λχ denotes the multiplicity of χ in χV . As a trivial consequence, the standard

character γ can also be written as a linear combination of irreducible characters.

Because this is such an important special case, we settle for the following convention:

Definition 2.12 (Multiplicity in γ). The multiplicity of an irreducible character

χ ∈ Irr(KX) in the standard character γ is denoted by mχ and is simply called the

multiplicity of χ.

It is possible to calculate the multiplicities mχ explicitly; the next theorem provides

formulas that accomplish this. We will often refer to these formulas as “orthogonality

relations”:

Theorem 2.13 (Orthogonality relations). Let φ, ψ ∈ Irr(G) be given and let δ

denote the Kronecker symbol. Then we have the following:

(i) For each g ∈ G,

∑
e∈G

∑
f∈G

ag∗ef
|e∗|

φ(σe∗)ψ(σf ) = δφψ
φ(σg∗)

mφ

.

(ii) We have ∑
g∈G

1

|g∗|
φ(σg∗)ψ(σg) = δφψ

φ(σ1)

mφ

.

Above version of the orthogonality relations, alongside a proof, can be found in [32]

(Th. 4.1.5). Baily’s book (see [1], Th. 2.12 and Cor. 2.14, 2.15) gives a similar
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treatment of the subject, while Bannai and Ito (see [4], Th. II.3.5) only consider the

relations in the case of commutative association schemes.

As a consequence of Theorem 2.13, we have the following Corollary:

Corollary 2.14. The multiplicity m1G of the trivial character 1G in the standard

character γ is 1.

Proof. Using the second orthogonality relation, we infer

∑
g∈G

1

|g∗|
1G(σg∗)1G(σg) =

1G(σ1)

m1G

.

By definition of the trivial character (see Example 2.10), this yields

∑
g∈G

1

|g|
n2
g =

1

m1G

,

and the left side is 1 by the identity ng |X| = |g| .

2.4 The Frame number

The Frame number F(X) of an association scheme X = (X,G) is defined as

F(X) := |X||G|
∏

g∈G ng∏
χ∈Irr(CX) m

χ(1)2
χ

.

This number first appeared in a paper by J.S. Frame (see [7], Th. B). In the present

section, we show that F(X) is a rational integer; this cements the link between the

multiplicities and the valencies of X. Our proof will follow [28] (Th. L 9) and the

modified version in [17] (Lemma 3.1.2).

We need the following preliminary lemma (taken from [21], Th. 10.4).

Lemma 2.15. Let R be a valuation ring, let K be the field of fractions of R. Then

every matrix representation of KX is realizable over R.

Proof. Let Y be a matrix representation of KX with representation module U . By

[23] (Ch. II.1.2), there exists a finitely generated torsion-free RX-module V such

that

V K := K ⊗R V ∼= U .

35



By Lemma 1.25, V is R-free, so we can choose an R-basis (v1, v2, ..., vn) for V . Then

(1 ⊗ v1, 1 ⊗ v2, ..., 1 ⊗ vn) is a K-basis of V K , and the matrix representation X of

KX afforded by V K relative to the basis (1⊗ v1, 1⊗ v2, ..., 1⊗ vn) satisfies

X(σg) ∈Mn(R) , ∀ g ∈ G .

Since X and Y have isomorphic representation modules, the assertion follows by

Lemma 1.20.

We can now prove the main result of this section.

Lemma 2.16. The Frame number F(X) of an association scheme X = (X,G) is a

rational integer.

Proof. We put K = Q̄ (the algebraic closure of Q) and prove that every valuation

ring R ⊃ Z with field of fractions K contains F(X). It then follows from [21] (Th.

10.4) that F(X) ∈ Z.

Let R be a valuation ring of the above type. Let S1, ..., Sk be a complete set of

representatives of isomorphism classes of irreducible KX-modules. Put fi := dim Si

(1 ≤ i ≤ k). For each i = 1, ..., k, let Xi be a matrix representation of KX afforded

by Si. By Lemma 2.15, we may assume Xi(σg) ∈ Mfi(R) for all i = 1, ..., k and

g ∈ G. In the following, we consider the matrix representation

Y =


diag((X1, ...,X1)︸ ︷︷ ︸

mχ1 times

) 0

. . .

0 diag((Xk, ...,Xk)︸ ︷︷ ︸
mχk times

)

 .

Evidently, Y has representation module S =
⊕k

i=1 mχiSi. Accordingly, Y is equiv-

alent to the standard representation (see Lemma 1.20).

Put |G| = d+ 1. Let N be the (d+ 1)× (d+ 1) matrix whose rows and columns are

indexed by G and whose entries are (N)gh = tr (Y(σg∗)Y(σh)). Then

(N)gh = tr (σg∗σh) = δghng |X| , (1)

where the first equality follows from the equivalence of Y to standard representation.
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On the other hand,

(N)gh = tr (Y(σg∗)Y(σh)) =
k∑
i=1

mχitr (Xi(σg∗)Xi(σh)) . (2)

For 1 ≤ ε, ξ ≤ fi, let ei,gε,ξ denote the (ε, ξ)-component of Xi(σg). Then (2) yields

(N)gh =
k∑
i=1

mχi

fi∑
ε=1

fi∑
ξ=1

ei,g
∗

ε,ξ e
i,h
ξ,ε . (3)

According to Lemma 2.9, we choose a bijection

G
ϕ←→ {(i, ε, ξ) | 0 ≤ i ≤ k, 1 ≤ ε, ξ ≤ fi} .

Let Z ′, L, Z denote (d+ 1)× (d+ 1) matrices whose rows and columns are indexed

by G and whose entries are

(Z ′)gh = ei,g
∗

ε,ξ if ϕ(h) = (i, ε, ξ)

(L)gh = δghmχi if ϕ(h) = (i, ε, ξ)

(Z)gh = ei,gξ,ε if ϕ(h) = (i, ε, ξ)

Then the above equation (3) reduces to

N = Z ′LZ . (4)

Combining (1) and (4), if we abbreviate z = det Z and z′ = det Z ′, we have

|X|d+1
∏
g∈G

ng = det N = zz′det L = zz′
k∏
i=1

m
f2i
χi = zz′

k∏
i=1

m χi(1)2

χi
.

Hence,

|X|d+1

∏
g∈G ng∏k

i=1m
χi(1)2
χi

= F(X) = zz′ .

Since z, z′ ∈ R, it follows that F(X) ∈ R. This completes the proof.
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2.5 Locality in Characteristic p

In this section, we show that if F is a field of characteristic p, and X = (X,G) is a

scheme of p-power order, then the adjacency algebra FX is local. The proof of this

result, alongside the proofs of the introductory lemmas, come from the paper [10].

In the following, K is a field of characteristic 0 and X = (X,G) is an association

scheme of order n = |X|. Also, we assume χ1, χ2, ..., χr is a complete set of irre-

ducible characters of KX.

We need the following preliminary lemma (see [10], Lemma 3.2):

Lemma 2.17. Let KX 3 u =
∑

g∈G αgσg, αg ∈ K. Then

αf =
1

nfn

r∑
i=1

miχi (uσf∗) , f ∈ G .

Proof. We have uσf∗ =
∑

g∈G αgσgσf∗ . Using the explicit formulas for the standard

character γ (see Section (2.3)), we get

γ (uσf∗) = αfnfn .

Hence,

αf =
γ (uσf∗)

nfn
=

1

nfn

r∑
i=1

miχi (uσf∗) .

In the following, let us assume that the adjacency algebra KX is a split K-algebra.

This means

KX ∼= Mn1(K)⊕ · · · ⊕Mnr(K) ,

where each matrix algebra Mni(K) corresponds to an irreducible character χi. Put

ei := 0⊕ · · · ⊕ Ini ⊕ · · · ⊕ 0 , 1 ≤ i ≤ r ,

where Ini is the ni × ni identity matrix. Evidently, each ei is a central idempotent

of KX. This gives us a central idempotent decomposition of the identity 1KX:

1KX = e1 + e2 + ...+ er .
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We use the above notation in the following Lemma (see [10], Lemma 3.2).

Lemma 2.18. Let f be a primitive idempotent of KX. Then:

(i) There is exactly one ei such that eif = f . Moreover, ejf = 0 for all j 6= i.

(ii) If eif = f , then χi(f) = 1. Moreover, χj(f) = 0 for all j 6= i. Especially,

f =
mi

n
σ1 +

∑
g 6=1

αgσg , αg ∈ K .

Proof. (i) Since 1 = e1 + e2 + ... + er, it follows that f = e1f + e2f + ... + erf .

Evidently, this would be an idempotent decomposition of f if ejf 6= 0 for more than

one j = 1, 2, ..., r. Hence, there is exactly one ei such that eif = f .

(ii) We consider f as an element of Mn1(K) ⊕ · · · ⊕Mnr(K). Because of (i), the

only nontrivial entries of f lie in the Mni(K)-component of Mn1(K)⊕· · ·⊕Mnr(K).

This means that multiplication by f is trivial in any other component than Mni(K);

therefore, χj(f) = 0 for j 6= i.

We will now show χi(f) = 1. For this purpose, consider f as a primitive idempo-

tent matrix in Mni(K). Idempotent matrices in Mni(K) have eigenvalues 1 and 0

exclusively, and they are primitive if and only if their rank is 1 (see [29], Ch. 3.5).

Hence,

χi(f) = tr(f) = 1 .

The formula for f now follows easily by Lemma 2.17.

We keep the above notation for KX in the following proof (taken from [10], Th.

3.4).

Theorem 2.19. Let F be a field of characteristic p and let X = (X,G) be an

association scheme of p-power order. Then the adjacency algebra FX is local.

Proof. It suffices to show that FX has a unique idempotent (see [23], Lemma 14.4).

For this purpose, we may assume that F is algebraically closed. Then there exists a

p-modular system (K,R, F ) such that KX is a split K-algebra (see Section 1.10).

Let ē be a primitive idempotent of FX. Let (π) denote the maximal ideal of R. By

Theorem 1.24, ē is liftable to a primitive idempotent e of RX; this follows from

RX/(π)RX ∼= (R/πR)X = FX .
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We will custom-build a primitive idempotent decomposition of e in KX. Let

KXKX =
r⊕
i=1

ni⊕
λ=1

Viλ

be an irreducible decomposition of KXKX, where
⊕ni

λ=1 Viλ is an irreducible decom-

position of the simple component Mni(K). Multipliying the above equation with e

gives us

(eKX)KX =
r⊕
i=1

ni⊕
λ=1

eViλ .

For each eViλ in the above decomposition, observe that either eViλ = 0 or eViλ = Viλ

by irreducibility. Thus, we have a corresponding primitive idempotent decomposi-

tion

e =
r∑
i=1

si∑
j=1

f
(i)
j ,

where eif
(i)
j = f

(i)
j and si ≤ ni. Moreover, si = ni if and only if

∑si
j=1 f

(i)
j = ei (see

Section 1.5).

Applying Lemma 2.18 (ii) to each f
(i)
j , we obtain

e =
r∑
i=1

misi
n

σ1 +
∑
g 6=1

αgσg , αg ∈ K .

But n = γ(1KX) =
∑r

i=1 mini and n is a p-power, so the coefficient of σ1 is in R if

and only if si = ni for all i. Hence,

e =
r∑
i=1

ni∑
j=1

f
(i)
j =

r∑
i=1

ei = 1KX ,

and this implies ē = 1FX. Since ē was arbitrary, the proof is complete.

Corollary 2.20. Let F be a field of characteristic p and let X = (X,G) be an

association scheme of p-power order. Assume that FX/J(FX) is an F -split algebra.

Then we have:

(i) The trivial character 1G : σg −→ ng is the unique irreducible character of FX,

(ii) J(FX) =
⊕

g∈G (σg − ngσ1),

(iii) σg has the unique eigenvalue ng in F .
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Proof. (i) It suffices to show that FX has a unique irreducible module. This is

certainly the case if the split F -algebra FX/J(FX) has a unique irreducible module

(see [23], Th. I.8.10). We prove the latter statement.

Assume

FX/J(FX) ∼=
k⊕
i=1

Mni(F ) .

Since FX is local, FX/J(FX) is a division ring (see [23], Th. 5.7). It follows

that FX/J(FX) has a unique idempotent. But then FX can have only one simple

component (see Section (1.4)), so we may assume k = 1 in the above sum:

FX/J(FX) ∼= Mn1(F ) .

Since FX/J(FX) is a division ring, it must be n1 = 1. It follows that

FX/J(FX) ∼= F ,

and the unique irreducible module of this algebra is F itself.

(ii) By Theorem 1.3, J(FX) consists exactly of those elements of FX which annihilate

all irreducible right FX-modules. Evidently, these are exactly the elements which

lie in the kernel of 1G (see statement (i)). Therefore,

J(FX) = ker 1G =
⊕
g∈G

(σg − ngσ1) .

(iii) This is proven easily. Since σg − ngσ1 is in the Jacobson Radical of FX, it is

nilpotent (see [23], Th. I.3.5). It follows that all eigenvalues of σg − ngσ1 are equal

to 0. Therefore, all eigenvalues of σg must equal ng.

2.6 Schemes of Prime Order

In this section, X = (X,G) is an association scheme and CX is the complex adja-

cency algebra with element of unity 1. We will show that if |X| is a prime number,

then (X,G) is a commutative association scheme and all valencies of (X,G) coincide

(see Theorem 2.28). This result was first proven in [13], and the discussion below

closely follows after this reference.
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We need the following preliminary result:

Lemma 2.21. Let Y be matrix representation of CX,

Y : CX −→Mk(C) , σ −→ Y (σ) .

Then, for all σ ∈ CX, every eigenvalue of Y (σ) is also an eigenvalue of σ.

Proof. Put n := |X|. Let f(x) be the characteristic polynomial of σ,

f(x) = det (σ − x · In) =
n∑
i=1

aix
i .

Let λ be some eigenvalue of Y (σ). Then it suffices to show f(λ) = 0. For this

purpose, note that
n∑
i=1

aiσ
i = 0

by Cayley-Hamilton’s Theorem. Applying Y to both sides of this equation yields

n∑
i=1

aiY (σ)i = 0 .

Thus, if 0 6= v ∈ Ck is some eigenvector of Y (σ) associated with λ, we have

n∑
i=1

aiY (σ)iv = 0 =⇒
n∑
i=1

aiλ
iv = 0 =⇒ f(λ)v = 0 =⇒ f(λ) = 0 ,

from which the assertion follows.

We can now prove the following important result:

Lemma 2.22. For any character χ of CX, the character values {χ(σg) | g ∈ G} are

algebraic integers.

Proof. Let Y be a matrix representation of CX that affords χ. For g ∈ G, every

eigenvalue of Y (σg) is also an eigenvalue of σg (see Lemma 2.21). But σg is an integral

matrix; therefore, its eigenvalues are algebraic integers. Hence, χ(σg) = tr(Y (σg))

is a sum of algebraic integers and therefore an algebraic integer itself.
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For the next result, let χ be a non-trivial irreducible character of CX. Let K be a

finite normal extension of the rational number field Q such that the character values

{χ(σg) | g ∈ G} are contained in K and KX is a split K-algebra (for the existence of

K, see [3] (Ch. 3.5) and [23] (Ch. II.3)). We denote by Gal(K/Q) the Galois group

of this extension. The following holds:

Lemma 2.23. In the above situation, for each τ ∈ Gal(K/Q), there exists a char-

acter χτ of CX such that

χτ (σg) = χ(σg)
τ

for all g ∈ G. Moreover, χτ is also irreducible.

Proof. Let U be an irreducible CX-module that affords χ. By [6] (Th. 29.21), there

exists an irreducible KX-module V such that

C⊗K V ∼= U .

For τ ∈ Gal(K/Q), let στ denote the (entrywise) image of σ ∈ KX under τ . We

exchange the original scalar product on V with the slightly modified

V ×KX −→ V , (v, σ) −→ vστ ;

the resulting KX-module we denote by V τ . Clearly, V τ is an irreducible KX-module;

this follows from the irreducibility of V . Consequently,

C⊗K V τ =: U τ

is an irreducible CX-module (see [6], Th. 29.21). Moreover, it is evident from the

above construction that the character χτ of CX afforded by U τ satisfies

χτ (σg) = χ(σg)
τ , ∀ g ∈ G

This completes the proof.

Using the notation of Lemma 2.23, we can define a group action of Gal(K/Q) on

the set Irr(CX) of irreducible characters of CX:

Gal(K/Q)× Irr(CX) −→ Irr(CX) , (τ, χ) −→ χτ .
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In the following, we call two characters χ, ϕ ∈ Irr(CX) algebraically conjugate if

they lie in the same orbit by this action. Interestingly, this definition does not

depend on the choice of K, which the reader may prove himself by using the fact

that the restriction homomorphism

Gal(Q/Q) −→ Gal(K/Q) , τ −→ τ |K

is surjective (see [3], Ch. 4.1).

We can now prove the following important lemma:

Lemma 2.24. Let χ be an irreducible character of CX. Let Φ be the sum of all

algebraic conjugates of χ. Then the Φ-values {Φ(σg) | g ∈ G} are rational integers.

Proof. We use the same notation as in Lemma 2.23. We define by

I := {τ ∈ Gal(K/Q) |χτ = χ}

the stabilizer group of χ in Gal(K/Q). Clearly, |Gal(K/Q) : I| <∞. Put

Gal(K/Q) = Iτ1 ∪ Iτ2 ∪ · · · ∪ Iτr

a coset decomposition of Gal(K/Q). Then

{χτ | τ ∈ Gal(K/Q)} = {χτ1 , χτ2 , ..., χτr} .

Consequently,

Φ =
r∑
i=1

χτi .

For g ∈ G, it follows that Φ(σg)
τ = Φ(σg) for all τ ∈ Gal(K/Q). Hence, Φ(σg) ∈ Q.

But Φ(σg) is an algebraic integer (see Lemma 2.22), so we even have Φ(σg) ∈ Z.

This completes the proof.

I want to mention that proof of the above lemma, as well as the proof of the fol-

lowing corollary, have been pointed out to me by A. Hanaki during our E-mail

correspondence (see [12]).
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Corollary 2.25. Let X = (X,G) be an association scheme of prime order p = |X|.
Let χ be an irreducible character of CX, and Φ the sum of all algebraic conjugates

of χ. Then there exist rational integers {ug | g ∈ G} such that

Φ(σg) = ngΦ(1)− ugp .

Proof. Let K be a finite extension of the rational number field Q such that for each

g ∈ G, the eigenvalues of σg are contained in K. Then, by [23] (Ch. I.13.2), there

exists a valuation ring R of K with maximal ideal π such that F := R/π is a field

of characteristic p and

π ∩ Z = (p) .

As a valuation ring, R is integrally closed (see [21], Th. 10.3). Especially, for each

g ∈ G, the eigenvalues of σg are contained in R. Moreover, we know that

(i) Φ(σg) is a sum of Φ(1) eigenvalues of σg (see Lemma 2.21)

(ii) All eigenvalues of σg are congruent to ng modulo π (see Corollary 2.20 (iii))

Together, this yields

Φ(σg) ≡ ngΦ(1) (mod π) .

Since Φ(σg)− ngΦ(1) ∈ Z by Lemma 2.24, we conclude

Φ(σg)− ngΦ(1) ∈ π ∩ Z = (p) .

The assertion follows instantly.

We will now take the first step in the proof of the main result of this section. The

following theorem was first shown in [13] (see Lemma 3.1).

Theorem 2.26. Let X = (X,G) be an association scheme. If |X| is a prime

number, then all nontrivial irreducible characters of CX are algebraically conjugate.

Especially, their multiplicities are constant.

Proof. Put p := |X|. Let 1G be the trivial character of CX and χ a nontrivial

irreducible character of CX. Put Φ the sum of all algebraic conjugates of χ, and Ψ

the sum of all nontrivial irreducible characters which are not algebraically conjugate

to χ. If Ψ is zero, then the assertion holds, so we assume that Ψ 6= 0.

45



By Corollary 2.25, there exist rational integers {ug | g ∈ G} such that

Φ(σg) = ngΦ(1)− ugp .

Similarly, there exist rational integers {vg | g ∈ G} such that

Ψ(σg) = ngΨ(1)− vgp .

By the orthogonality relation (Theorem 2.13 (ii)),

0 =
∑
g∈G

1

ng
1G(σg∗)Φ(σg) =

∑
g∈G

Φ(σg)

=
∑
g∈G

(ngΦ(1)− ugp) = p

(
Φ(1)−

∑
g∈G

ug

)
.

Hence,
∑

g∈G ug = Φ(1). Similarly, one can show
∑

g∈G vg = Ψ(1).

Again by the orthogonality relation,

0 =
∑
g∈G

1

ng
Φ(σg∗)Ψ(σg) =

∑
g∈G

1

ng
(Φ(1)ng∗ − ug∗p) (Ψ(1)ng − vgp)

=
∑
g∈G

Φ(1)Ψ(1)ng −
∑
g∈G

Φ(1)vgp−
∑
g∈G

Ψ(1)ug∗p+
∑
g∈G

1

ng
ug∗vgp

2

= pΦ(1)Ψ(1)− pΦ(1)Ψ(1)− pΦ(1)Ψ(1) +
∑
g∈G

1

ng
ug∗vgp

2

= −pΦ(1)Ψ(1) +
∑
g∈G

1

ng
ug∗vgp

2 .

We conclude

Φ(1)Ψ(1) =
∑
g∈G

1

ng
ug∗vgp .

But Φ(1)Ψ(1) is relatively prime to p (because Φ(1),Ψ(1) < p), whereas the right

hand side is divisible by p (because ng and p are relatively prime for all g ∈ G).

This is a contradiction.
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We will now prove the remaining part of the main result of this section. The following

theorem was shown in [13] (see Lemma 3.2).

Theorem 2.27. If all nontrivial irreducible characters of G have the same mul-

tiplicities, then (X,G) is commutative and all nontrivial relations have the same

valencies.

Proof. Suppose mχ = m for every nontrivial irreducible character χ of G. By

Corollary 2.14, we have

|X| = γ(1) =
∑

χ∈Irr(G)

mχχ(1) = 1 +m
∑
χ 6=1G

χ(1) .

Hence, m is relatively prime to |X| .

Consider the Frame number

F(X) = |X||G|
∏

g∈G ng∏
χ∈Irr(G)m

χ(1)2
χ

= |X||G|
∏

g 6=1 ng

m|G|−1
∈ Z .

Since m is relatively prime to |X| , we have∏
g 6=1 ng

m|G|−1
∈ Z ,

and especially
∏

g 6=1 ng ≥ m|G|−1 .

Note that
∑

χ 6=1G
χ(1) ≤ |G| − 1 , and equality holds if and only if (X,G) is

commutative (see Corollary 2.9). By the inequality of arithmetic and geometric

means, we have

(∏
g 6=1

ng

) 1
|G|−1

≤
∑

g 6=1 ng

|G| − 1
≤

∑
g 6=1 ng∑

χ 6=1 χ(1)
=
|X| − 1∑
χ 6=1 χ(1)

= m .

Since
∏

g 6=1 ng ≥ m|G|−1 , equality must hold in the above inequality. Especially,

|G| − 1 =
∑
χ 6=1G

χ(1) ,

so (X,G) is commutative.
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Moreover, (∏
g 6=1

ng

) 1
|G|−1

=

∑
g 6=1 ng

|G| − 1
,

and this implies that all valencies of nontrivial relations must coincide, yielding

ng = m for all 1 6= g ∈ G.

Altogether, we have proven the following (see [13], Th. 3.3).

Main Result 2.28. Let X = (X,G) be an association scheme. If |X| is a prime

number, then (X,G) is commutative. Moreover, all nontrivial irreducible charac-

ters of CX are algebraically conjugate, and all valencies of nontrivial relations and

multiplicities of nontrivial irreducible characters coincide.

This completes our discussion. For more on association schemes of prime order, see

[13].
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3 m-Schemes

In this chapter, we introduce m-schemes, combinatorial objects that were first de-

fined in [16]. m-Schemes are closely related to association schemes, and as we will

see in Chapter 5, they occur naturally as part of a factoring algorithm for polyno-

mials over finite fields. In the following, we give an overview of the basic theory of

m-schemes and look at notable examples.

Note that the material has been organized in such a way that it requires no previous

knowledge of m-schemes. Also note that in Chapter 4, we will extend the present

discussion by a new topological interpretation of m-schemes.

3.1 Basic Notions

In this section, we introduce the necessary vocabulary for our study of m-schemes.

For reference purposes, the terminology used here is the same as in the paper [16].

Examples of m-schemes will follow separately in Sections (3.2) and (3.3).

s-tuples: Throughout this section, V = {v1, v2, ..., vn} is an arbitrary set of n

distinct elements. For 1 ≤ s ≤ n, we define the set of s-tuples by

V (s) := {(vi1 , vi2 , ..., vis) | vi1 , vi2 , ..., vis are s distinct elements of V } .

Projections: For s > 1, we define s projections πs1, π
s
2..., π

s
s : V (s) −→ V (s−1) by

πsi : (v1, ..., vi−1, vi, vi+1, ..., vs) −→ (v1, ..., vi−1, vi+1, ..., vs) .

Permutations: The symmetric group on s elements Symms acts on V (s) in a

natural way by permuting the coordinates of the s-tuples. More accurately, the

action of τ ∈ Symms on (v1, ..., vi, ..., vs) ∈ V (s) is defined as

(v1, ..., vi, ..., vs)
τ := (v1τ , ..., viτ , ..., vsτ ) .

m-Collection: For 1 ≤ m ≤ n, an m-collection on V is a set Π of partitions

P1,P2, ...,Pm of V (1), V (2), ..., V (m) respectively.

Colors: For 1 ≤ s ≤ m, the equivalence relation on V (s) corresponding to the

partition Ps will be denoted by ≡Ps .
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Below, we discuss some natural properties of m-collections that will be relevant to

us in the future. In the following, let Π = {P1,P2, ...,Pm} be an m-collection on V .

P1 (Compatibility): We say that Π is compatible at level 1 < s ≤ m, if ū ≡Ps v̄
implies πsi (ū) ≡Ps−1 πsi (v̄) for all 1 ≤ i ≤ s and ū, v̄ ∈ V (s). In other words:

If ū, v̄ ∈ P ∈ Ps, then compatibility means that for all 1 ≤ i ≤ s, there exists

Q ∈ Ps−1 such that πsi (ū), πsi (v̄) ∈ Q.

P2 (Regularity): We say that Π is regular at level 1 < s ≤ m, if ū, v̄ ∈ Q ∈ Ps−1

implies

|{ū′ ∈ P |πsi (ū′) = ū}| = |{v̄′ ∈ P |πsi (v̄′) = v̄}|

for all 1 ≤ i ≤ s and P ∈ Ps. In other words: If ū, v̄ ∈ Q ∈ Ps−1, then regularity

means that P ∩ (πsi )
−1 (ū) and P ∩ (πsi )

−1 (v̄) have the same cardinality for all 1 ≤
i ≤ s and P ∈ Ps.

Fibers: We call the tuples in P ∩ (πsi )
−1 (ū) the πsi -fibers of ū in P .

Subdegree: The above two properties motivate the definition of the subdegree of

a color P over a color Q as |P ||Q| , assuming that πsi (P ) = Q for some i and that Π is

regular at level s.

P3 (Invariance): We say that Π is invariant at level 1 < s ≤ m, if for every

P ∈ Ps and τ ∈ Symms, we have

P τ := {v̄τ | v̄ ∈ P} ∈ Ps .

In other words: If P ∈ Ps, then invariance means that {P τ | τ ∈ Symms} are also

colors in Ps.

P4 (Antisymmetry): We say that Π is antisymmetric at level 1 < s ≤ m, if

for every P ∈ Ps and id 6= τ ∈ Symms, we have P τ 6= P .

P5 (Symmetry): We say that Π is symmetric at level 1 < s ≤ m, if for every

P ∈ Ps and τ ∈ Symms, we have P τ = P .

P6 (Homogeneity): We say that Π is homogeneous if |P1| = 1.
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Note that an m-collection is called homogeneous, compatible, regular, invariant,

symmetric, or antisymmetric if it is at every level 1 < s ≤ m, homogeneous, com-

patible, regular, invariant, symmetric, or antisymmetric. Moreover, we settle for the

following definition:

m-Scheme: We call Π an m-scheme if it is compatible, regular and invariant.

In the following Sections, we discuss the basic theory of m-schemes and look at

notable examples. In Chapter 5, we utilize this theory to show how m-schemes can

be used in polynomial factoring over finite fields.

3.2 Association Schemes at Level 3

In this section, we explain how our current study of m-schemes relates to the preced-

ing study of association schemes. Through our results, we will gain useful insights

into the structure of an m-scheme up to level 3.

The following lemma is of much importance (taken from [16], Ex. 2.2).

Lemma 3.1. Let Π = {P1,P2,P3} be a homogeneous 3-scheme on V = {v1, v2, ..., vn}.
Then (P1,P2 ∪ {1}) is an association scheme, where 1 := {(v, v) | v ∈ V } denotes

the trivial relation.

Proof. We will show that (P1,P2 ∪ {1}) satisfies condition (iv) of Definition 2.1. We

need to prove: For all Pi, Pj, Pk ∈ P2 ∪{1}, there exists an integer aijk such that for

all (α, β) ∈ Pk,

aijk = |{γ ∈ V | (α, γ) ∈ Pi , (γ, β) ∈ Pj}| .

We only consider the case Pi, Pj, Pk 6= 1 and leave the rest to the reader. By the

compatibility and regularity of Π at level 3, there exists a subset S ⊆ P3 such that

for all (α, β) ∈ Pk, the set {γ ∈ V | (α, γ) ∈ Pi , (γ, β) ∈ Pj} can be partitioned as

∪̇P∈S{γ ∈ V | (α, γ) ∈ Pi , (γ, β) ∈ Pj , (α, γ, β) ∈ P} .
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By the compatibility of Π at level 3, this partition can simply be written as

∪̇P∈S{γ ∈ V | (α, γ, β) ∈ P} .

By the regularity of Π at level 3, the size of each set in the above partition is |P |
|Pk|

,

which means that

|{γ ∈ V | (α, γ) ∈ Pi , (γ, β) ∈ Pj}| =
∑
P∈S

|P |
|Pk|

.

Since this equation holds for all (α, β) ∈ Pk, condition (iv) of Definition 2.1 is satis-

fied by (P1,P2 ∪ {1}). It follows that (P1,P2 ∪ {1}) is an association scheme.

We will now consider the converse of the preceding result: The next lemma asserts

that, in turn, every association scheme also affords a 3-scheme (see [16], Ex. 2.2).

Lemma 3.2. Let (P1,P2) be an association scheme on V = {v1, v2, ..., vn}. We

denote by ≡P2 the equivalence relation on V × V corresponding to the partition P2.

Let P3 be the partition of V (3) such that for two triples (u1, u2, u3) and (v1, v2, v3),

we have (u1, u2, u3) ≡P3 (v1, v2, v3) if and only if

(u1, u2) ≡P2 (v1, v2), (u1, u3) ≡P2 (v1, v3), (u2, u3) ≡P2 (v2, v3) .

Then {P1,P2 − {1},P3} is a 3-scheme.

Proof. It is quickly shown that {P1,P2 − {1},P3} satisfies compatibility, regularity

and invariance. The proof is left as an exercise to the reader.

3.3 Orbit m-Schemes

In this section, we discuss m-schemes that arise from permutation groups, so called

orbit m-schemes. Orbit m-schemes can be regarded as a higher-level analog of the

Schurian association schemes introduced in Section (2.1) (see Ex. 2.4). We use the

term orbit m-scheme to amplify that the colors of these schemes are orbits of a

group action. Throughout this section, let V = {v1, v2, ..., vn} be a set of n distinct

elements and G ≤ SymmV a permutation group.

53



The following lemma is of fundamental importance (see [16], Ex. 2.3).

Lemma 3.3. Fix some integer 1 ≤ m ≤ n. For 1 ≤ s ≤ m, let Ps be the partition

on V (s) such that for any two s-tuples (u1, u2, ..., us) and (v1, v2, ..., vs), we have

(u1, u2, ..., us) ≡Ps (v1, v2, ..., vs) if and only if

∃ σ ∈ G : (σ(u1), σ(u2), ..., σ(us)) = (v1, v2, ..., vs) .

Then {P1,P2, ...,Pm} is an m-scheme on V . Moreover:

(i) {P1,P2, ...,Pm} is homogeneous if and only if G is transitive,

(ii) {P1,P2, ...,Pm} is antisymmetric if and only if gcd(m!, |G|) = 1.

Proof. We will only show statement (ii) and leave the rest as an exercise to the

reader. We prove “⇐” by contraposition: Suppose {P1,P2, ...,Pm} is not antisym-

metric at some level 1 < s ≤ m. Then there exists (u1, u2, ..., us) ∈ V (s) such

that

(u1, u2, ..., us) ≡Ps (u1τ , u2τ , ..., usτ )

for some id 6= τ ∈ Symms. By the definition of {P1,P2, ...,Pm}, this means there

exists σ ∈ G such that

(σ(u1), σ(u2), ..., σ(us)) = (u1τ , u2τ , ..., usτ ) .

Choose an index j ∈ {1, ..., s} such that σ(uj) 6= uj. Then there exists an integer k

such that 2 ≤ k ≤ s and

σk(uj) = uj .

Clearly, k divides the order of σ, which in turn divides the order of G. Hence,

gcd(m!, |G|) > 1. This completes the proof of “⇐”. For the converse statement,

note that gcd(m!, |G|) > 1 implies that there exists σ ∈ G such that σk = id for

some k ≤ m (by Sylow’s Theorem). The assertion now follows by reversing the proof

of “⇐”. We leave the details as an exercise to the reader.

We callm-schemes that arise in the above-described manner orbit m-schemes. At the

moment, orbit m-schemes are the only examples of homogeneous and antisymmetric

m-schemes (where m ≥ 4) that we know of. Also, they are the only examples of m-

schemes for which the important Schemes Conjecture (see Section 3.5) has already

been proven. We will study these issues in more detail at a later point.
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The following theorem is a variation of a result from the paper [26], which was

originally proven for superschemes, combinatorial objects that one might describe

as “m-schemes satisfying some additional conditions”. We just cite it here for com-

pleteness, it does not bear any relevance to our future study.

Theorem 3.4. Every (n− 1)-scheme on n points is an orbit scheme.

Proof. By a simple comparison of definitions, we show that every (n − 1)-scheme

on n points can be regarded as a superscheme (in the sense of [26], Def. 2.2). The

assertion then follows from [26], Th. 4.4.

3.4 Matchings

We will now discuss matchings, certain special colors of m-schemes that play an

important role in the polynomial factoring algorithm of Chapter 5. In the following,

let V = {v1, v2, ..., vn} be a set of n distinct elements and Π = {P1,P2, ...,Pm} be

an m-scheme on V .

Matching: A color P ∈ Ps at any level 1 < s ≤ m is called a matching if there

exists 1 ≤ i < j ≤ s such that πsi (P ) = πsj (P ) and |πsi (P )| = |P |.

As the next lemma shows, an antisymmetric m-scheme on n points always has a

matching if m ≥ log2 n (taken from [16], Lemma 8).

Lemma 3.5. Let Π = {P1,P2, ...,Pm} be an m-scheme on V = {v1, v2, ..., vn}.
Assume that Π is antisymmetric at level 2. Moreover, assume that |P1| < n and

m ≥ log2 n. Then there exists a matching in {P1,P2, ...,Pm}.

Proof. We will outline a convenient way of finding a matching in Π. For this purpose,

choose a color P1 ∈ P1 with d1 = |P1| > 1. Evidently, Q2 = P
(2)
1 is a disjoint union

of colors in P2. Choose a smallest color P2 ∈ P2 with P2 ⊂ Q2. Then by the

compatibility of Π, we have

π2
1(P2) = π2

2(P2) = Q2 .
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Moreover, by the antisymmetry of Π, we have

d2 :=
|P2|
|P1|
≤

d1(d1−1)
2

d1

<
d1

2
.

Evidently, if d2 = 1, then P2 is a matching. Otherwise, if d2 > 1, then we proceed

iteratively as follows: Suppose that, for some 2 < s < m, we have already chosen

P1 ∈ P1, ..., Ps−1 ∈ Ps−1 such that πii−1(Pi) = πii(Pi) = Pi−1 and 1 < di := |Pi|
|Pi−1|

< di−1

2
for every 2 ≤ i ≤ s− 1. Since ds−1 > 1, the set

Qs := {v̄ ∈ V (s) | πss−1(v̄), πss(v̄) ∈ Ps−1}

is nonempty. Let Ps be a smallest color of Ps such that Ps ⊂ Qs. Then again by

the antisymmetry of Π we have

ds :=
|Ps|
|Ps−1|

<
ds−1

2
.

Evidently, if ds = 1, then Ps is a matching. Otherwise, if ds > 1, we proceed to level

s + 1 and further halve the subdegree. This procedure finds a matching in at most

log2 d1 < log2 n rounds.

3.5 The Schemes Conjecture

As it was shown in Lemma 3.5, every antisymmetric m-scheme on n points (for

large enough m) contains a matching somewhere between level 1 and log2 n. In this

section, we ask if there exists a constant c ≥ 4 that could replace the above log2 n-

bound. This is the subject of the so-called Schemes Conjecture:

Schemes Conjecture. There exists a constant m ≥ 4 such that every homoge-

neous, antisymmetric m-scheme contains a matching.

It will be shown in Chapter 5 that, under GRH, the correctness of the Schemes

Conjecture would result in the first polynomial-time algorithm for the factorization

of polynomials over finite fields (see Theorem 5.4). We are therefore much interested

in making progress towards a proof. However, current efforts have led only to partial

results; we list them below.
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So far, the Schemes Conjecture has been proven for orbit schemes:

Theorem 3.6 (Schemes Conjecture for Orbit m-Schemes). For m ≥ 4, every ho-

mogeneous, antisymmetric orbit m-scheme contains a matching.

Proof. This is shown in [16], Sec. 4.

Concerning the general case of the schemes conjecture, the following constant-factor

improvement of Lemma 3.5 has been achieved:

Lemma 3.7. Let Π = {P1,P2, ...,Pm} be an m-scheme on V = {v1, v2, ..., vn}.
Assume that Π is antisymmetric at the first three levels. Moreover, assume that

|P1| < n and m ≥ 2
3

log2 n. Then there exists a matching in {P1,P2, ...,Pm}.

Proof. This is shown in [16], Sec. 6.

The bound m ≥ 2
3

log2 n of Lemma 3.7 is currently the nearest we can come to the

Schemes Conjecture.
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4 A Topological Interpretation of m-Schemes

In this chapter, we discuss the theory of m-schemes from a topological viewpoint. We

show that m-schemes belong to a special class of combinatorial objects called ∆-sets

(also called simplicial sets, see [15], [27]), which are commonly studied in algebraic

topology. From this duality, we draw new insights into the algebraic properties and

the geometry of m-schemes. Our goal is to create a link between the theory of

m-schemes and the world of combinatorial algebraic topology.

Since we introduce all relevant definitions along the way, no previous knowledge

of algebraic topology is required. For a rigorous introduction to (combinatorial)

algebraic topology, the reader is referred to the standard texts [18], [20].

4.1 Preliminaries

In this section, we introduce the prerequisites for our topological discussion of m-

schemes. The following preliminary remarks concern the topological standard n-

simplex.

Let n ≥ 0 and let e0, ..., en be the standard basis of Rn+1. We define the standard

n-simplex ∇n as the convex hull of the set {e0, ..., en},

∇n := {(t0, ..., tn) ∈ Rn+1 | t0 ≥ 0,
∑
ti = 1} .

In the lower dimensions, the standard simplices can be interpreted geometrically:

∇3 ⊂ R4 is a tetrahedron

∇2 ⊂ R3 is a triangle

∇1 ⊂ R2 is a line segment

∇0 ⊂ R1 is a singleton

Topologically, we consider the standard simplex ∇n as a subspace of Rn+1 (i.e. it

is given the subspace topology). In each dimension n, we have (n + 1) embeddings

δn0 , ..., δ
n
n : ∇n −→ ∇n+1 (often abbreviated δ0, ..., δn),

δi : (t0, ..., tn) −→ (t0, ...,ti−1, 0, ti, ..., tn) ,

↑
i-th coordinate
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whose respective images δ0(∇n), ..., δn(∇n) are called the faces of the standard sim-

plex ∇n+1. As an example: The faces of the tetrahedron ∇3 ⊂ R4 are the four

triangles dividing its surface. The maps δ0, δ1, δ2, δ3 represent the corresponding

ways in which the triangle ∇2 ⊂ R3 can be embedded in ∇3. Similarly, the faces

of the triangle ∇2 ⊂ R3 are its three sides, and the maps δ0, δ1, δ2 represent the

corresponding ways in which the line segment ∇1 ⊂ R2 can be embedded in ∇2.

Note that the composites of the above embeddings

δiδj : ∇n δj−→ ∇n+1 δi−→ ∇n+2

satisfy the important relation

δiδj = δjδi−1 , if j < i . (1)

4.2 ∆-Sets

In this section, we discuss the notion of ∆-sets and look at notable examples. ∆-sets

are set sequences of a certain type which have an underlying combinatorial structure;

they appear frequently in contexts of algebraic topology. Our central insight is that

m-schemes can be characterized as ∆-sets in a natural way (see Example 4.4). The

latter observation gives rise to a topological discussion of m-schemes.

Definition 4.1 (∆-Set). A ∆-Set X consists of a sequence of sets

X0, X1, X2, ...

and (for each n) a system of maps dni (often abbreviated di)

dni : Xn −→ Xn−1 , i = 0, ..., n ,

such that the composite maps (when n ≥ 2)

djdi : Xn −→ Xn−1 −→ Xn−2

satisfy the relation

djdi = di−1dj , if j < i .
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Note that the sequence of sets X0, X1, X2, ... is allowed to be both finite or infinite.

For each n, we call the elements of Xn as the n-simplices of X. Moreover, we call

the maps (dni )n,i as the structure maps of X.

The first example of ∆-sets we consider is the singular complex of a topological space

(see below). In the following example, we use the notation introduced in Section (4.1)

for the standard simplex ∇n and the associated embeddings δ0, ..., δn : ∇n −→ ∇n+1.

Example 4.2 (Singular Complex of a Topological Space). Let Y be a topological

space. For each k ≥ 0, let S(Y )k denote the set of all continous functions ∇k −→ Y .

We define structure maps d0, ..., dk : S(Y )k −→ S(Y )k−1 as follows: Given a function

f ∈ S(Y )k , f : ∇k −→ Y ,

we put di(f) ∈ S(Y )k−1 as the composite map

fδi : ∇k−1 δi−→ ∇k f−→ Y .

Then the sequence of sets

S(Y )0, S(Y )1, S(Y )2, ...

together with the structure maps in each dimension k,

d0, ..., dk : S(Y )k −→ S(Y )k−1 ,

constitute a ∆-Set. To verify this, note that the composite maps (when k ≥ 2)

djdi : S(Y )k −→ S(Y )k−1 −→ S(Y )k−2

satisfy the required relation

djdi = di−1dj , if j < i .

More precisely: For f ∈ S(Y )k and j < i, the identity (1) from Section (4.1) yields

djdi(f) = dj(fδi) = fδiδj = fδjδi−1 = di−1(fδj) = di−1dj(f) .
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We denote the above ∆-set by

S(Y ) :=
(
(S(Y )k)k≥0, (dki )k≥0, 0≤i≤k

)
.

We call S(Y ) the singular complex of Y .

The singular complex is an important topic which we come back to at a later point in

this chapter. Now, before we proceed to the characterization of m-schemes as ∆-sets,

we show that the sets of tuples from the preceding chapter can also be characterized

as ∆-sets. This is subject of the next example.

Example 4.3 (Sets of Tuples). We use the same terminology as in Chapter 3. Let

V = {v1, v2, ..., vn} be an arbitrary set of n distinct elements. Then the sets of tuples

V (1), V (2), V (3), ...

together with the projections at each level s,

πs1, π
s
2, ..., π

s
s : V (s) −→ V (s−1)

πsi : (v1, ..., vi−1, vi, vi+1, ..., vs) −→ (v1, ..., vi−1, vi+1, ..., vs)

constitute a ∆-set. To verify this, note that the composite maps (when s ≥ 3)

πjπi : V (s) −→ V (s−1) −→ V (s−2)

satisfy the relation

πjπi = πi−1πj , if j < i ,

where the level indices have been omitted. Notice that an index shift naturally occurs

in the definition of this ∆-set, as the 0-simplices are actually the elements of V (1),

the 1-simplices are actually the elements of V (2), etc. We have to keep this in mind

for future applications.

In the next example, we show that m-schemes can be regarded as ∆-sets in a natural

way. The main idea is to regard the colors of an m-scheme at level (n + 1) as

n-simplices. The characterization of m-schemes as ∆-sets will help us draw new

insights into the algebraic properties and the geometry of m-schemes.
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Example 4.4 (m-Schemes). If Π = {P1,P2, ...,Pm} is an m-scheme on V , then

P1,P2, ...,Pm

together with the maps πs1, π
s
2..., π

s
s at each level s,

πs1, π
s
2, ..., π

s
s : Ps −→ Ps−1

πsi : P −→ πsi (P )

constitute a ∆-set; this follows from Example 4.3 and the m-scheme axioms. We

denote the above ∆-set also by Π,

Π =
(
(Ps)s, ( πsi )s,i

)
.

As in the preceding example, notice that an index shift naturally occurs in the defini-

tion of this ∆-set, as the 0-simplices are actually the elements of P1, the 1-simplices

are actually the elements of P2, etc. We have to keep this in mind for future appli-

cations.

In the following sections, we discuss how the above characterization of m-schemes

as ∆-sets will benefit us in obtaining a geometric picture of m-schemes, and further,

how this enables us to study their combinatorial properties through methods of

algebraic topology.

4.3 Geometric Realization

In this section, we discuss the geometric realization of a ∆-set X = ((Xi)i, (d
n
i )n,i),

denoted Real(X). The geometric realization Real(X) is a topological space which

describes the set-theoretic structure of X in simple geometric terms. It provides us

with an intuitive picture of the combinatorial data of ∆-sets.

Formally, Real(X) is defined as a quotient space of the disjoint union

∪̇n Xn ×∇n ,

which one might think of as a disjoint union of standard simplices ∇n indexed by

the simplices of X. We impose an equivalence relation “ ∼ ” on this disjoint union
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as follows: For all n and for each point

(x, t) ∈ Xn ×∇n−1 ,

we identify the point

3 (di(x), t) ∈ Xn−1 ×∇n−1 with (x, δi(t)) ∈ Xn ×∇n .

Now the geometric realization Real(X) of the ∆-set X is defined as

Real(X) := ∪̇n Xn ×∇n / ∼ .

From this definition, we see that each n-simplex x ∈ Xn corresponds to exactly

one standard n-simplex ∇n in Real(X). Moreover, the i-th face of the standard

n-simplex corresponding to x is identified with the standard (n− 1)-simplex corre-

sponding to dni (x). This is the core idea of geometric realization: Each n-simplex

x ∈ Xn is interpreted as a standard n-simplex ∇n, and the (n − 1)-simplices

d0(x), ..., dn(x) ∈ Xn−1 are interpreted as the faces of x.

The construction of Real(X) constitutes the starting point for considerations of

algebraic-topological nature; it puts the combinatorial information of X in a topolog-

ical context. As a space, the geometric realization Real(X) has very pleasant prop-

erties: It can be classified as a CW-complex, which means it has a well-understood

and easy-to-work-with topological structure (see [15], [27]). In the following, we

discuss how the concept of geometric realization applies to the study of m-schemes.

For this purpose, let V = {v1, v2, ..., vn} be an arbitrary set of n distinct elements

and let Π = {P1,P2, ...,Pm} be an m-scheme on V . Let X =
(
(V (s))1≤s≤m, (π

s
i )s,i

)
be the ∆-set from Example 4.3 (the sets of tuples), “cut off” at level m. Taking

into account the index shift that naturally occurs in the definition of this ∆-set, the

geometric realization of X is

Real(X) = ∪̇s V (s+1) ×∇s / ∼ ,

where “ ∼ ” denotes the equivalence relation defined above. We want to color the

space Real(X) according to the information given by the m-scheme Π; we use the

fact that every point in Real(X) has a unique representative

(ū, t) ∈ V (s+1) ×∇s
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such that s is minimal (see [27]). The coloring is defined as follows: If the point

x ∈ Real(X) is minimally represented by (ū, t) ∈ V s+1 × ∇s, we say that x has

color P ∈ Ps+1 if ū ∈ P . That way, the partitions Ps of V (s) (1 ≤ s ≤ m) which

color the tuples naturally induce a coloring on the interlaced standard simplices in

Real(X). The space Real(X) together with the coloring induced by Π we call the

color complex associated with Π.

One might think of the color complex associated with Π as a higher-dimensional

analog of a graph, colored according to the combinatorial information of the m-

scheme Π. Importantly, the color complex contains all the combinatorial information

that Π contains, but in addition, it allows us to use topological tools to study the

underlying m-scheme invariants like regularity or matchings. Note that the above

idea of translating combinatorial data into topological cell complexes is not new;

in fact, it has been used extensively in recent years and has led to a number of

important advances for combinatorial problems (see [18], [20]). Most prominently,

this approach has led to a proof of the Kneser Conjecture by L. Lovász (see [19]). The

search for cell complexes that describe certain combinatorial problems constitutes a

central method in combinatorial algebraic topology.

Regarding the above definition, an interesting question is how the color complex

associated with Π relates to the geometric realization Real(Π) of the m-scheme

Π regarded as a ∆-set. In comparison, the space Real(Π) seems to “lack” the

information of the subdegrees of the colors of Π. An interesting observation is that

Real(Π) is indeed a quotient space of the color complex associated with Π: If we

canonically identify standard simplices of the same color in the color complex, we

obtain Real(Π). To shorten the discussion, we will not specify the exact procedure

at this point; instead we leave the details as an exercise to the reader.

To give an example of how topological methods can be used in the study of ∆-sets,

we introduce the notion of homology in the following section. Especially, we discuss

how the concept of homology applies to the ∆-sets introduced in Section (4.2). Our

hope is that through the use of topological methods like homology, we will gain

new insights into m-scheme properties that interest us in the context of polynomial

factoring (see Chapter 5).
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4.4 Homology Groups

For the following paragraph, let us fix some notation. If A is an abelian group and

M is some arbitrary set, then we denote by A [M ] the free abelian group with basis

M and coefficient group A. Namely, A [M ] is the abelian group whose elements

consist of the formal finite sums

a1x1 + ...+ akxk , ai ∈ A , xi ∈M ,

modulo the following equivalence relation:

(i) For each a, a′ ∈ A and x ∈M , we identify ax+ a′x with (a+ a′)x,

(ii) For all x ∈M , we identify the element 0 · x with 0.

In the case of a ∆-set X = ((Xi)i, (d
n
i )i,n), applying the free abelian group construc-

tion to each of the sets X0, X1, X2, ..., we obtain a sequence of abelian groups:

A [X0] , A [X1] , A [X2] , ...

In this situation, each of the maps di : Xn −→ Xn−1 induces a group homomorphism

A [Xn] −→ A [Xn−1]

a1x1 + ...+ akxk −→ a1di(x1) + ...+ akdi(xk)

which we also denote by di in the following. We define by

dn :=
n∑
i=0

(−1)i di : A [Xn] −→ A [Xn−1]

the n-th boundary operator dn of X over A (often abbreviated d).

The boundary operator has a very interesting and important property (see [27]):

Lemma 4.5. In the above situation, for all n, the composition map dndn+1 equals

the trivial homomorphism. In other words: For all n ≥ 1, we have

Im(dn+1) ⊂ Ker(dn) .
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Proof. We use the fact that djdi = di−1dj for j < i. Evidently,

dndn+1 =
n∑
j=0

(−1)jdnj

n+1∑
i=0

(−1)idni

=
∑
i,j

(−1)i+jdjdi

=
∑
j≥i

(−1)i+jdjdi +
∑
j<i

(−1)i+jdjdi

=
∑
j≥i

(−1)i+jdjdi +
∑
j<i

(−1)i+jdi−1dj ,

where the above sums cancel each other. The assertion follows.

Note that in the above lemma, Im(dn+1) and Ker(dn) are both normal subgroups

of A [Xn]. Therefore the above property of the boundary operator intuitively gives

rise to the notion of homology groups :

Definition 4.6 (Homology Groups). Let X = ((Xi)i, (d
n
i )i,n) be a ∆-set. Let dn

denote the n-th boundary operator. We call the quotient group

Hn(X,A) := Ker(dn)/Im(dn+1) .

the n-th homology group of X over the coefficient group A.

In algebraic topology, A = Z is an important special case for the coefficient group;

we will restrict ourselves to this case in the following. Another important special

case occurs if A is a field; in this case, the homology groups can be considered as vec-

tor spaces over A. The latter possibility will not play a role in the present discussion.

In the following, we discuss the importance of the notion of homology groups using

the classic example of the singular complex of a topological space.

Example 4.7 (Singular Homology). Let Y be a topological space and let

S(Y ) :=
(
(S(Y )k)k, (dki )k,i

)
be the singular complex of Y as defined in Example 4.2. Since S(Y ) can be char-

acterized as a ∆-set, we may define the homology groups Hn(S(Y ),Z) (n ≥ 1) of

S(Y ) following the procedure described above. In algebraic topology, the homology
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groups Hn(S(Y ),Z) are called the singular homology groups of Y , and often they

are denoted simply by Hn(Y,Z). Singular homology is one of the major tools for

classifying topological spaces, because two topological spaces Y, Y ′ having different

singular homology groups cannot be topologically equivalent, and indeed cannot even

have the same homotopy type (see [15], Cor. 2.11).

The original idea behind the definition of the singular homology groups Hn(Y,Z) is

the observation that a major invariant of a topological space are its holes. But be-

cause holes are not part of the topological space itself, the problem of defining holes

and distinguishing between different kinds of holes (especially in terms of dimension)

is nontrivial. The notion of singular homology offers a solution to this problem: It

gives us a formal method for detecting and categorizing holes, which helps us to dif-

ferentiate between topological spaces (see [15], Ch. 2, “The Idea of Homology”).

In the following, we consider how the concept of homology applies to the sets of

tuples (see Example 4.3), the ∆-set from which we constructed the color complex

in the previous section. The theorem below specifies our intuition that the color

complex of an m-scheme does not “contain any holes”.

Lemma 4.8. Let V = {v1, v2, ..., vn} be an arbitrary set of n distinct elements and

let X =
(
(V (s))s, (π

s
i )s,i

)
be the ∆-set from Example 4.3 (the sets of tuples). Then

for all k, we have

Hk(X,Z) = 0 ,

where 0 denotes the trivial group. Especially, the sequence

· · · −→ Z
[
V (k)

] d−→ Z
[
V (k−1)

] d−→ Z
[
V (k−2)

]
−→ · · · −→ Z

[
V (1)

]
is exact.

Proof. By [18], Th. 3.26, the homology groups Hk(X,Z) and the singular homology

groups Hk(Real(X),Z) are isomorphic for each k. Thus, it suffices to show that

Hk(Real(X),Z) = {∗}

for all k. But Real(X) is k-connected for every k ≥ 0 (see [20], Prop. 4.4.2), so the

assertion follows from [20], Th. 4.4.1.
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For an m-scheme Π = {P1,P2, ...,Pm} on a set V = {v1, v2, ..., vn} of n distinct

elements, we do not know an equally general homology result at the moment. It is

not clear which restrictions one can impose on the homology groups by the properties

of the m-scheme, although it seems that most of the examples of m-schemes one

might think of have geometric realizations which are k-connected for all 1 ≤ k < m

(in the sense of [20], Def. 4.3.1). Finding a theoretical foundation for the homology

of m-schemes will be an important topic for further research.

Many more concepts could be discussed in the realm of combinatorial algebraic

topology, but for now, we shall terminate our topological survey of m-schemes. If

the reader is interested in learning more about (combinatorial) algebraic topology,

she is referred to the standard texts [18], [20]. In the following (final) chapter, we

discuss the application of m-scheme theory in polynomial factoring over finite fields.
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5 Factoring Polynomials over Finite Fields

In this chapter, we discuss a new GRH-based algorithm for the factorization of

polynomials over finite fields, suggested recently by Ivanyos, Karpinski and Saxena

(see [16]). This new algorithm (called IKS-algorithm in the following) makes use

of the theory of m-schemes, and it is known to have deterministic polynomial run-

ning time in the factorization of polynomials of prime degree p, where (p − 1) is a

constant-smooth number. There is hope that the IKS-algorithm also factors arbi-

trary polynomials efficiently - and as we will see, this result would be implied by the

Schemes Conjecture (see Chapter 3).

Note that the discussion below does not include a full introduction to polynomial

factoring; for this purpose, the reader is referred to classical texts on the subject

such as [2] and [30]. In the following, we discuss only the theory that is relevant for

the understanding of the IKS-algorithm.

5.1 Algebraic Prerequisites

In this section, we introduce the necessary algebra for our study of the IKS-algorithm.

The paper [16] will serve as our main reference. We start by recapitulating some

fundamental concepts of polynomial factoring over finite fields:

Natural Associated Algebra A: In order to solve polynomial factoring over finite

fields (FPFF), it is enough to factor polynomials f(x) of degree n over Fp that have

n distinct roots α1, ..., αn in Fp (see [2], [30]). Given such a polynomial f(x), for any

field extension k ⊇ Fp, we have the natural associated algebra

A := k[x]/(f(x)) .

In the following, we interpret A as the algebra of all functions

V =: {α1, ..., αn} −→ k .

The factors of f(x) appear as zero divisors in A: Assume y(x)z(x) = 0 for

some nonzero polynomials y(x), z(x) ∈ A. Then f(x)|y(x) · z(x), which implies

gcd(f(x), z(x)) factors f(x) nontrivially. Since the gcd of polynomials can be com-

puted by the Euclidean Algorithm in deterministic polynomial time, factoring f(x)

is - up to polynomial time reductions - equivalent to finding a zero divisor in A.
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Connection with GRH: As we already mentioned, the IKS-algorithm is based on

the correctness of the generalized Riemann hypothesis. The formal statement of the

hypothesis follows. Recall that a Dirichlet character is a completely multiplicative

arithmetic function χ : Z −→ C such that there exists a positive integer k with

χ(n+ k) = χ(n) for all n and χ(n) = 0 whenever gcd(n, k) > 1. If such a character

is given, we define the corresponding Dirichlet L-function by

L(χ, s) =
∞∑
n=1

χ(n)

ns

for every complex number s with real part > 1. By analytic continuation, this

function can be extended to a meromorphic function defined on the whole complex

plane. The generalized Riemann hypothesis now asserts that, for every Dirichlet

character χ, the zeros of L(χ, s) in the critical strip 0 < Re s < 1 all lie on the

critical line Re s = 1/2.

Under the assumption of GRH, Rónyai showed in [24] that the knowledge of any

explicit nontrivial automorphism σ ∈ Aut(A) of the natural associated algebra A
would immediately give us a nontrivial factor of f(x). The latter result will play an

important role in the routine of the IKS-algorithm (see Section 5.2).

Ideals of A and roots of f(x): For an ideal I of A, we define the support of I as

Supp(I) := V \ {v ∈ V | a(v) = 0 for every a ∈ I} .

Via the support, ideal decompositions of A induce partitions on the set V . This is

formulated in the following lemma:

Lemma 5.1. If I1, ..., It are pairwise orthogonal ideals of A (i.e. IiIj = 0 for all

i 6= j) such that A = I1 + · · ·+ It, then

V = Supp(I1) t · · · t Supp(It) .

Tensor powers of A: For 1 ≤ m ≤ n, we denote by A⊗m the m-th tensor power

of A. We may regard A⊗m as the algebra of all functions from V m to k; in this

interpretation, the rank one tensor element h1 ⊗ · · · ⊗ hm corresponds to a function

that maps (v1, ..., vm) −→ h1(v1) · · ·hm(vm).
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Essential part of tensor powers: We define the essential part A(m) of A⊗m to

be the (unique) ideal of A⊗m consisting of the functions which vanish on all the

m-tuples (v1, ..., vm) ∈ V m with vi = vj for some i 6= j. Functionally interpreted,

A(m) is the algebra consisting of all functions V (m) −→ k.

Ideals of A(m) and roots of f(x): Like in the case m = 1, we define the support

of an ideal I of A(m) as

Supp(I) := V (m) \ {v̄ ∈ V (m) | a(v̄) = 0 for every a ∈ I} .

Using this convention, Lemma 5.1 can be generalized as follows:

Lemma 5.2. For s ≤ n, if Is,1, ..., Is,ts are pairwise orthogonal ideals of A(s) such

that A(s) = Is,1 + · · ·+ Is,ts, then

V (s) = Supp(Is,1) t · · · t Supp(Is,ts) .

This completes our discussion of the algebraic prerequisites. In the following sections,

we give a description of the routine of the IKS-algorithm and discuss bounds for its

running time.

Before we proceed, let me say one or two words about the current state of polyno-

mial factoring over finite fields. As it has already been mentioned, we know that

under GRH, the IKS-algorithm has deterministic polynomial running time in the

factorization of polynomials of prime degree p, where (p − 1) is a constant-smooth

number (see [16], Sec. 5). This result constitutes a novelty, because previous effort

have yielded only polynomial-time randomized algorithms or polynomial-time de-

terministic algorithms for a less general class of polynomials than considered by the

IKS-algorithm.

In practice, the most commonly used polynomial-time randomized algorithms for

polynomial factoring are Berlekamp’s algorithm and the Cantor-Zassenhaus algo-

rithm (see [2], [5]). Regarding deterministic algorithms for a special class of polyno-

mials, the work of Rónyai should be mentioned (see [24]), whose ideas have originated

the line of research from which the IKS-algorithm sprouted.
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5.2 Description of the IKS-Algorithm

In this section, we outline the routine of the IKS-Algorithm. We discuss how to

compute the essential parts A(s) (1 ≤ s ≤ n) efficiently and how an m-scheme can be

obtained from the ideal decompositions of these algebras. In the subsequent sections,

we will show how to use this knowledge in the context of polynomial factoring over

finite fields.

In the following, let f(x) be a polynomial of degree n over Fp having n distinct roots

V = {α1, ..., αn} in Fp. For some field extension k ⊇ Fp, let A := k[x]/(f(x)) be the

natural associated algebra. With regards to the algorithm, we assume A is given by

structure constants with respect to some basis b1, ..., bn.

The first thing we show is that the essential parts A(s) (1 ≤ s ≤ n) can be computed

efficiently. This is subject of the next lemma (see [16], Sec. 3).

Lemma 5.3. A basis for A(m) = (k[X]/(f(X)))(m) over k ⊇ Fp can be computed by

a deterministic algorithm in time poly(log |k| , nm).

Proof. To see this, we define embeddings µi (1 ≤ i ≤ m) of A into A⊗m as follows:

µi : A −→ A⊗m , a −→ 1 ⊗ · · · ⊗ 1 ⊗ a ⊗ 1 ⊗ · · · ⊗ 1 .

↑
i-th factor

In the functional interpretation, µi(A) corresponds to those functions on V (m) which

depend only on the i-th coordinate of the tuples. For 1 ≤ i < j ≤ m, we define

∆m
i,j := {b ∈ A⊗m | (µi(a)− µj(a))b = 0 for every a ∈ A} .

Observe that ∆m
i,j is the ideal of A⊗m consisting of the functions which are zero on

every tuple (v1, v2, ..., vm) ∈ V m with vi 6= vj. A basis for ∆m
i,j can be computed by

solving a system of linear equations in time polynomial in the dimension of A⊗m

over k (which is nm). Since A(m) is just the annihilating ideal of
∑

1≤i<j≤m ∆m
i,j,

A(m) = {c ∈ A⊗m | bc = 0 for every b ∈
∑

1≤i<j≤m ∆m
i,j} ,

we can compute A(m) in poly(nm) field operations. The assertion follows.
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We will now proceed to give an overview of the routine of the IKS-algorithm. For

referential purposes, let us quickly recapitulate the algorithmic data:

Input: A degree n polynomial f(x) having n distinct roots V = {α1, ..., αn} in Fp.

Given 1 < m ≤ n, we can wlog assume that we also have the smallest field ex-

tension k ⊇ Fp having s-th nonresidues for all 1 ≤ s ≤ m (computing k will take

poly(log p,mm) time under GRH).

Output: A nontrivial factor of f(x) or a homogeneous, antisymmetric m-scheme

on V = {α1, ..., αn}.

Description of the Algorithm: We define A(1) = A = k[x]/(f(x)) and com-

pute the essential parts A(s) (1 < s ≤ m) of the tensor powers of A; this takes

poly(log p, nm) time by Lemma 5.3.

Automorphisms and Ideal Decompositions of A(s) (1 < s ≤ m): Observe that

for each τ ∈ Symms, the map defined by

τ : A(s) −→ A(s) , (bi1 ⊗ · · · ⊗ bis)τ −→ bi1τ ⊗ · · · ⊗ bisτ

is an algebra automorphism of A(s). By [24], this knowledge of explicit automor-

phisms of A(s) can be used to efficiently decompose A(s) under GRH: Namely, one

can compute mutually orthogonal ideals Is,1, ..., Is,ts (ts ≥ 2) of A(s) such that

A(s) = Is,1 + · · ·+ Is,ts .

By Lemma 5.2, the above decomposition induces a partition Ps on the set V :

Ps : V (s) = Supp(Is,1) t · · · t Supp(Is,ts) .

Thus, together with P1 := {V }, we have an m-collection Π = {P1,P2, ...,Pm} on V .

Algebra Embeddings A(s−1) −→ A(s): For 1 < s ≤ m, consider the s embeddings

ιsj : A⊗(s−1) −→ A⊗s mapping bi1⊗· · ·⊗ bis−1 to bi1⊗· · ·⊗ bij−1
⊗1⊗ bij ⊗· · ·⊗ bis−1 .

By restricting ιsj to A(s−1) and multiplying its image by the identity element of A(s),

we obtain algebra embeddings A(s−1) −→ A(s) denoted also by ιs1, ..., ι
s
s. In the

following, we interpret ιsj(A(s−1)) as the set of functions V (s) −→ k which do not

depend on the j-th coordinate.
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The algorithm is now best described through the following refinement procedures:

R1 (Compatibility): If for any 1 < s ≤ m, for any pair of ideals Is−1,i and Is,i′

in the decomposition of A(s−1) and A(s) respectively, and for any j ∈ {1, ..., s}, the

ideal ιsj(Is−1,i)Is,i′ is neither zero nor Is,i′ , then we can efficiently compute a subideal

of Is,i′ and thus, refine Is,i′ and the m-collection Π.

Note that R1 fails to refine Π only when Π is a compatible collection.

R2 (Regularity): If for any 1 < s ≤ m, for any pair of ideals Is−1,i and

Is,i′ in the decomposition of A(s−1) and A(s) respectively, and for any j ∈ {1, ..., s},
ιsj(Is−1,i)Is,i′ is not a free module over ιsj(Is−1,i), then by trying to find a free basis,

we can efficiently compute a zero divisor in Is−1,i and thus, refine Is−1,i and the

m-collection Π.

Note that R2 fails to refine Π only when Π is a regular collection.

R3 (Invariance): If for some 1 < s ≤ m and some τ ∈ Symms the decomposition

of A(s) is not τ -invariant, then we can find two ideals Is,i and Is,i′ such that Iτs,iIs,i′

is neither zero nor Is,i′ ; hence, we can efficiently refine Is,i′ and the m-collection Π.

Note that R3 fails to refine Π only when Π is an invariant collection.

R4 (Antisymmetry): If for some 1 < s ≤ m, for some ideal Is,i and for some

τ ∈ Symms \ {id}, we have Iτs,i = Is,i, then τ is an algebra automorphism of Is,i.

By [24], this means we can find a subideal of Is,i efficiently under GRH and hence,

refine Is,i and the m-collection Π.

Note that R4 fails to refine Π only when Π is an antisymmetric collection.

R5 (Homogeneity): If the algebra A(1) = A is in a known decomposed form,

then we can trivially find a nontrivial factor of f(x) from that decomposition.

Note that R5 fails to refine Π only when Π is a homogeneous collection.

Summary: The algorithm executes the ideal operations R1-R5 described above on

A(s) (1 ≤ s ≤ m) until either we get a nontrivial factor of f(x) or the underlying

m-collection Π becomes a homogeneous, antisymmetric m-scheme on V . It is rou-

tine to verify that the time complexity of the IKS-algorithm is poly(log p, nm).
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5.3 From m-Schemes to Factoring

In the following, we explain how to deal with the “bad case” of the IKS-algorithm,

when we get a homogeneous, antisymmetric m-scheme instead of a nontrivial factor.

As it turns out, factorization can be forced even in this case by augmenting m to a

larger value in the algorithm - but this might come at the cost of efficiency.

The next theorem is of much importance (see [16], Th. 7).

Theorem 5.4. Let f(x) be a polynomial of degree n over Fp having n distinct roots

V = {α1, ..., αn} in Fp. Assuming GRH, we either find a nontrivial factor of f(x) or

we construct a homogeneous, antisymmetric m-scheme on V having no matchings,

deterministically in time poly(log p, nm).

Proof. We apply the algorithm from Section (5.2); suppose it yields a homogeneous,

antisymmetric m-scheme Π = {P1,P2, ...,Pm} on V . For the sake of contradiction,

assume that some color P ∈ Ps is a matching: Let 1 ≤ i < j ≤ s such that

πsi (P ) = πsj (P ) and |πsi (P )| = |P |. Then πsi (π
s
j )
−1 is a nontrivial permutation of

πsj (P ). For the corresponding orthogonal ideals decomposition of A(1), ...,A(m), this

means that the embeddings ιsi and ιsj both give isomorphisms Is−1,l′ −→ Is,l, where

the ideals Is−1,l′ and Is,l correspond to πsj (P ) and P , respectively. Hence, the map

(ιsi )
−1ιsj is a nontrivial automorphism of Is−1,l′ . By [24], this means we can find a

subideal of Is−1,l′ efficiently under GRH and thus, refine the m-scheme Π.

Combining the above result with Lemma 3.5, we conclude that one can completely

factor f(x) in time poly(log p, nlogn) under GRH. Furthermore, any progress towards

the Schemes Conjecture (see Chapter 3) will directly result in an improvement of

the time complexity of the IKS-algorithm. Should we be able to resolve the Schemes

Conjecture completely, the total time taken for the factorization of f(x) would im-

prove to poly(log p, nc), where c ≥ 4 is a constant. In the latter case, we have the

first deterministic polynomial time algorithm for the factorization of polynomials

over finite fields (assuming GRH).

As a special case, if f(x) is a polynomial of prime degree, we can circumvent the

involvement of the Schemes Conjecture and instead use the results about association

schemes from Chapter 2 to show that f(x) can be factored by the IKS-algorithm in

polynomial time (assuming GRH). This will be discussed in the following section.
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5.4 Factoring Polynomials of Prime Degree

In this section, we show that the IKS-algorithm has polynomial running time in the

factorization of polynomials of prime degree n, where (n− 1) is a constant-smooth

number. For the proof, we need Hanaki and Uno’s classification results for associa-

tion schemes of prime order (see Chapter 2).

The following nonexistence lemma is of much importance (taken from [16], Sec. 1).

Lemma 5.5. Let r > 1 be a divisor of n. Then for m ≥ r there does not exist a

homogeneous and antisymmetric m-scheme on n points.

Proof. For any m ≥ r, clearly every m-scheme contains an r-scheme. Therefore, it

suffices to prove the above statement form = r. Suppose for the sake of contradiction

that there exists a homogeneous and antisymmetric r-scheme Π = {P1,P2, ...,Pr}
on V = {v1, v2, ..., vn}. By definition, Pr partitions n(n− 1) · · · (n− r+ 1) tuples of

V (r) into, say tr colors. By antisymmetricity, every such color P has r! associated

colors, namely {P τ | τ ∈ Symmr}. Moreover, by homogeneity, the size of every

color at level r is divisible by n. Hence, r!n|n(n− 1) · · · (n− r+ 1). But this implies

r!|(n− 1) · · · (n− r + 1), which contradicts r|n. Therefore, Π cannot exist.

We can now prove the main theorem of this section (see [16], Sec. 5).

Theorem 5.6. If n > 2 is a prime, r is the largest prime factor of (n−1) and f(x)

is a polynomial of degree n over Fp, then we can find a nontrivial factor of f(x)

deterministically in time poly(log p, nr) under GRH.

Proof. It suffices to consider the case that f(x) has n distinct roots V = {α1, ..., αn}
in Fp. We apply the algorithm from Section (5.2); suppose it yields a homogeneous,

antisymmetric (r + 1)-scheme {P1,P2, ...,Pr+1} on V . As in Section (3.2), we will

regard {P1,P2∪{1}} as an association scheme, where 1 denotes the trivial relation.

Since {P1,P2 ∪ {1}} is an association scheme of prime order, there exists d|(n− 1)

such that |P | = dn for all P ∈ P2 (see Theorem 2.28). We distinguish between the

following two cases:

First Case : d = 1. Evidently, if d = 1, then every color in P2 has subdegree 1;

in particular, P2 contains a matching. By the proof of Theorem 5.4, this gives us a

nontrivial factor of f(x) in a total time of poly(log p, nr).
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Second Case : d > 1. If d > 1, then the colors in {P2, ...,Pr+1} can be used to

define a homogeneous, antisymmetric r-scheme on d points as follows: Pick P0 ∈ P2

and define V ′ := {α ∈ V | (α1, α) ∈ P0}. Furthermore, define an r-collection Π′ =

{P ′1, ...,P ′r} on V ′ such that for all 1 ≤ s ≤ r and for each color P ∈ Pi+1, we put a

color P ′ ∈ P ′i such that

P ′ := {v̄ ∈ V ′(i) | (α1, v̄) ∈ P} .

Then |V ′| = d, and Π′ = {P ′1, ...,P ′r} is a homogeneous, antisymmetric r-scheme on

d points. But d has a prime divisor which is at most r; therefore, such a Π′ cannot

exist by Lemma 5.5.

We conclude that the second case cannot occur. The assertion follows.
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