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Abstract

Name of the student: Sanyam Agarwal Roll No: MCS202017

Thesis title: Factorization of sparse polynomials of bounded individual

degree

Thesis supervisor: Prof. Nitin Saxena

The motivation of this thesis is to obtain sparsity bounds on factors of n−variate

polynomials of constant bounded individual degree d, under a given field F. Given

a n−variate polynomial f , sparsity of f (denoted ||f ||) is defined as the number of

distinct monomials in f . Mathematically, given f = g ·h, we aim to bound ||g||, ||h||

in terms of ||f ||.

Presently, the best known upper bounds for the sparsity of factors of a polynomial

f are quasipolynomial in ∥f∥, as shown in [BSV20]. However, it is conjectured in

[Vol17] that the true bound for sparsity of factors is polynomial in ||f ||. [BSV20] get

their result by using an elegant convex polytope representation of a polynomial to

get a upper bound the size of the polytope in terms of its vertex set. Simultaneously,

they also describe a polytope for which the above stated bound is tight, which might

generate a polynomial that refutes the polynomial sparsity conjecture. But in our

first result, we are able to show that the limiting polytope example infact doesn’t kill

the polynomial sparsity conjecture completely. Further, we generalize those proof

techniques to come up with sparsity bounds for factors of a few class of polynomials

under certain special conditions, and show the limitations of these techniques.
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Chapter 1

Introduction

Polynomials have been long studied in mathematics and provide many intriguing

and natural questions that remain unsolved to this day. One such interesting class

of questions relates to factors and factorization of polynomials. Another notion that

has long fascinated mathematicians and computer scientists is the time and space

complexity of any solution that they develop for a given problem, with the general

aim of devising more and more efficient solutions. In this work, we look at the ques-

tions related to the “size” of the factors of a given polynomial with respect to it’s

own size, and how it has implications on the required time in which we can calculate

these factors. Formally, the “size” of a polynomial is measured by its sparsity,

which can be understood as the number of unique monomials in the polynomial f ,

and is denoted as ∥f∥.

Factoring of polynomials has been a long-studied problem in mathematics and has

many known applications like cryptography ([CR88]), derandomization ([KI04]),

and list decoding ([Sud97]). There has been a lot of work in this area with several

randomized algorithms known for factoring of multivariate polynomials, courtesy

[vzGK85], [Kal87], and [Kal89] among others. The Polynomial Identity Testing

(PIT) problem is one of the most fundamental problems in algebraic complexity. In

1



Chapter 1 Introduction 2

the PIT problem, given a polynomial f ∈ F[x1, ..., xn] represented by a small arith-

metic circuit, the aim is to find whether f is identically zero. In [KSS14], the authors

showed that the problem of derandomizing multivariate polynomial factorization is

equivalent to the problem of derandomizing PIT for general arithmetic circuits, in

both the white-box and the black-box settings. For other interesting open circuit

classes, the equivalence is still not known and left as an open question in [KSS14].

To show the equivalence for any particular class, one needs to tackle the problem

of Factor Closure, which asks for the upper bound on the size of the factors of a

polynomial f ∈ F[x1, ..., xn]. One such interesting class of polynomials to consider

are sparse polynomials, or polynomials with few monomials.

Factoring of sparse polynomials has attracted significant interest over the past three

decades. It was initiated by the work of [vzGK85] that gives the first randomized

algorithm for factorization of sparse multivariate polynomials. The time complex-

ity of this algorithm is polynomially dependent on the sparsity of the factors of

the underlying polynomial, thus naturally raising the question of finding efficient

bounds on the sparsity of factors of a sparse polynomial. However, sometimes we

also need to constrain the individual degree of the variables in the polynomial, to

ensure efficiency of algorithms. Consider the example,

Example 1.1. ([BSV20]) Let F = Fp where p is prime, and let 0 < d < p.

Let f = (x1 + x2 + ...+ xn)
p ⇒ f = xp

1 + ...+ xp
n ⇒ ∥f∥ = n.

Let g = (x1 + x2 + ...+ xn)
d be a factor of f .

But, ∥g∥ =
(
d+n−1

d

)
≈ nd ⇒ ∥g∥ = ∥f∥d

Thus, if d is unbounded, the size of the factors could blow-up, making it impossible

to get efficient factorization algorithms, as each factorization algorithm must output

the factors monomial by monomial, and hence has a time complexity atleast linear in

the sparsity of factors. Thus, we restrict ourselves to the bounded individual degree

domain.

For multilinear polynomials (d = 1), [SV10] were able to give a derandomized fac-

toring algorithm. Using factor sparsity bounds for multilinear polynomials, along
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with derandomization of a certain PIT problem that arises, they are able to give an

efficient factoring algorithm. In [Vol17], the author was able to extend it to the case

of multiquadratic polynomials (d ≤ 2), by first showing a non-trivial factor sparsity

bound (Theorem 2.3) and then derandomizing the polynomial factorization prob-

lem. These techniques fail to generalise for d > 2. However, [BSV20] were the first

to give a deterministic factoring algorithm that says that if, f ∈ F[x1, ..., xn] is

a polynomial with sparsity ∥f∥ = s and individual degrees of its variables bounded

by d, then f can be deterministically factored in time spoly(d) log n. They achieve this

by giving the first quasi-polynomial sparsity bound for factors of sparse polynomials

of bounded individual degree d > 2, by cleverly leveraging the Newton Polytope

representation of a polynomial, which was first introduced in a now redacted paper

[DdO14]. However, [Vol17] conjectures that the true bound for sparsity of factors of

f is poly(∥f∥). Formally,

Conjecture 1.1 ([Vol17]). (Polynomial sparsity conjecture) There exists a function

ν : N → N such that if f ∈ F[x1, x2, ..., xn] is a polynomial with individual degrees at

most d, then

g | f ⇒ ∥g∥ ≤ ∥f∥ν(d)

Remark 1.2. Notice, that ∥g∥ has no dependence on n, and hence the conjectured

sparsity is polynomial in terms of ∥f∥ since d is a constant.

As a first step towards this goal, in [BS22] the authors were able to show a spoly(d)

sparsity bound for factors of symmetric polynomials over any field. This thesis is an

attempt at characterizing certain other classes of polynomials for which we can get

polynomial sparsity bounds for their factors.

1.1 Contributions of this Thesis

The main aim of this thesis is to move closer towards getting polynomial sparsity

bounds on factors of a polynomial, as per Conjecture 1.1.
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Presently, the best known upper bounds for the sparsity of factors of a polynomial

f are ||f ||O(d2log n), as shown in [BSV20]. They get their result by using the convex

polytope representation of a polynomial to upper bound the size of the polytope

(denoted E) in terms of its vertex set (denoted V ) as E ≤ V O(d2log n). At the

same time though, they also provide an example of a polytope (called Hadamard

polytope) for which the above stated bound is tight, i.e., E = V Θ(log n), when d is

a constant. Informally, this means we can have a ‘dense’ polytope with a ‘sparse’

vertex set. This raises the possibility that the polynomial corresponding to the

Hadamard polytope could be a factor of a ‘sparse’ polynomial, consequently refuting

the sparsity conjecture. But in our first result Corollary 3.6, we are able to show

that the product of any ‘sparse’ polynomial with the polynomial corresponding to

the Hadamard polytope always gives a ‘dense’ polynomial, preserving hope for the

sparsity conjecture. We then generalize those proof techniques to come up with

improved sparsity bounds for factors of certain classes of polynomials in Theorem 3.8

and Theorem 3.12. Moreover, we provide some counterexamples to show why our

proof techniques can’t be generalised further, and why certain other approaches may

be doomed too.



Chapter 2

Preliminaries

In this chapter, we will briefly discuss the terminology that will be used in the thesis.

Along with this, we will also introduce some important results upper bounding the

sparsity of factors.

2.1 Basic notations and definitions

We use x to denote the variable set {x1, x2, ..., xn}. For a field F, we define F[x] as

the ring of polynomials in variables x with the coefficients coming from F. For a

poly f ∈ F[x], a monomial m in f is denoted as m ≜ xe =
∏n

i=1 x
ei
i where e ∈ Zn

≥0.

Also, the set of monomials of polynomial f is denoted as Mf . A polynomial f ∈ F[x]

is said to have individual degree d, if for every monomial m =
∏n

i=1 x
ei
i in f , ei ≤ d.

Finally, f ∈ F[x] ismultilinear if ∀ xi ∈ f , deg(xi) ≤ 1. Similarly, f ismultiquadratic

if ∀ xi ∈ f , deg(xi) ≤ 2. Apart from this, we use |A| to denote cardinality of a set

A.

Definition 2.1 (Support of a polynomial). Let f ∈ F[x] such that,

f =
s∑

i=1

ai1ai2 ...ain · xi1
1 x

i2
2 ...x

in
n

5
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the support of f (denoted as supp(f)) is defined as:

supp(f) = {(i1, i2, ..., in) | ai1ai2 ...ain ̸= 0} ⊆ Rn

Definition 2.2 (Sparsity of a polynomial). Let f ∈ F[x]. The sparsity of f (denoted

as ∥f∥) is defined as:

∥f∥ = |supp(f)|

2.2 Sparsity bounds using induction

We can use a simple induction argument (courtesy [Vol17]), that helps us prove that

all factors of “sparse” polynomial with individual degree ≤ 2 are also “sparse”.

Theorem 2.3. Let f, g ∈ F[x] such that f is multiquadratic. Then,

g | f ⇒ ∥f∥ ≥ ∥g∥

Proof. Proof by induction on number of variables n.

Basis: n=0. Thus, ∥f∥ = 1 = ∥g∥

Hypothesis: Let it hold for number of variables < n.

Induction: Let f have n variables. Suppose f = g · h for some h ∈ F[x]. Let

var(g), var(h) be the variable sets of polynomials g, h. If var(g)∩var(h) = ϕ. Then,

gi · hj is unique for all monomials gi ∈ g and hj ∈ h. Otherwise, they would have to

share atleast one variable. Thus, in this case, ∥f∥ = ∥g ·h∥ = ∥g∥∥h∥ ⇒ ∥f∥ ≥ ∥g∥.

Otherwise, let y ∈ var(g) ∩ var(h). Write g = g1y + g0, and h = h1y + h0, where

g0, g1, h0, h1 are free of y, and hence polynomials in n − 1 variables. Also, by the

above representation, ∥g∥ = ∥g1∥ + ∥g0∥, ∥h∥ = ∥h1∥ + ∥h0∥. f = g · h = g1h1y
2 +

(g1h0+g0h1)y+g0h0 ⇒ ∥f∥ = ∥g1h1∥+∥g1h0+g0h1∥+∥g0h0∥ ≥ ∥g1h1∥+∥g0h0∥ ≥

∥g1∥+ ∥g0∥ (by induction hypothesis). Hence, ∥f∥ ≥ ∥g1∥+ ∥g0∥ = ∥g∥.
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This result proves the sparsity conjecture mentioned in [Vol17] for ideg ≤ 2. How-

ever, it fails to generalise for the case where ideg ≥ 3, motivating the need to look

for other proof techniques.

2.3 Sparsity Bounds using Newton polytope - A

convex geometry approach

2.3.1 Notations and definitions

We will use boldface for vectors, and regular font for scalars, i.e., a vector v⃗ =

(v1, v2, ..., vn) ∈ Rn will be represented as v, and a scalar s ∈ R will be denoted as

s. Multiplication of a vector x by a scalar z will be denoted as the product z · x.

Dot product between two vectors x,y will be x · y =
∑n

i=1 xiyi. We will now define

a few important terms:

Definition 2.4 (Convex span of a set). Let P = {p2, p2, ..., pr} be a set. The convex

span of P (denoted CS(P )) is defined as:

CS(P ) =

{
r∑

i=1

λipi

∣∣∣∣ λi ≥ 0 ∀i &
r∑

i=1

λi = 1

}

Definition 2.5 (Polytope). A set P ∈ Rn is a Polytope if ∃ a finite set of points

y1, ...,yk ∈ Rn such that P = CS(y1, ...,yk)

Definition 2.6. (Convex set) A convex set C ∈ Rn is a set such that CS(x,y) ⊆

C ∀ x,y ∈ C

Definition 2.7. (Supporting hyperplane) A supporting hyperplane H of a convex

set C ∈ Rn is a hyperplane denoted by h · x = a, where h ∈ Rn \ {0}, a ∈ R such

that H intersects the closure of C in Rn and h · x ≤ a ∀ x ∈ C.
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Definition 2.8. (Face of a polytope) Let P be a polytope. A face of P is the

intersection of P with a supporting hyperplane H. That is, F = P ∩ {h · x =

a | x ∈ P} is a face of P .

Definition 2.9. (Vertex of a polytope) Let P be a polytope. A vertex v of P is a

face of dimension 0, i.e., v can’t be written as a convex combination of two points

x, y ∈ P \ {v}. Formally,

v ̸= λx+ (1− λ)y ∀ x, y ∈ P \ {v}, λ ∈ [0, 1]

The vertex set of P is denoted as V (P ).

Corollary 2.10. By Definition 2.7, Definition 2.8, Definition 2.9, for every vertex

v ∈ V (P ), ∃h ∈ Rn \ {0} such that h · x < h · v ∀ x ∈ P .

Definition 2.11 (Minkowski Sum of two polytopes). Let A,B be polytopes. The

Minkowski Sum of the two polytopes (denoted as A+B) is defined as:

A+B = {u+ v | u ∈ A, v ∈ B}

Lastly, we will define an alternate way of representing a polynomial.

Definition 2.12 (Newton Polytope of a polynomial). Let f ∈ F[x]. The Newton

polytope of f (denoted as Pf ) is defined as:

Pf = CS(supp(f)) ⊆ Rn

where supp(f) is as defined in Definition 2.1.

This is the most important definition, and will be used frequently in the subsequent

sections.
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2.3.2 Important properties of Newton polytopes

We will now prove some interesting results on polytopes in general, and use them to

get non-trivial properties about polynomials by leveraging the connection between

polytopes and polynomial shown in Definition 2.12

Lemma 2.13. Let V be a vector space over R.

Given xi,yj ∈ V ∀i ∈ [n], and j ∈ [m]. Let ai, bj ∈ R ∀i ∈ [n], and j ∈ [m] such

that
∑n

i=1 ai =
∑m

j=1 bj.

Then, we can always get sij ∀i ∈ [n], j ∈ [m] such that:

1.
n∑

i=1

ai · xi +
m∑
j=1

bj · yj =
n∑

i=1

m∑
j=1

sij · (xi + yj)

and

2.
n∑

i=1

m∑
j=1

sij =
n∑

i=1

ai =
m∑
j=1

bj

Proof. By induction on m.

Basis (m=1): Since, we have
∑n

i=1 ai =
∑m

j=1 bj, it means that
∑n

i=1 ai = b1

⇒
∑n

i=1 ai · xi + b1 · y1 =
∑n

i=1 ai · (xi + y1)

Thus, condition holds.

Hypothesis: Let it hold for all values of m < r.

Induction (m=r):

n∑
i=1

ai · xi +
r∑

j=1

bj · yj =
n∑

i=1

sir · (xi + yr) +
n∑

i=1

(ai − sir) · xi +
r−1∑
j=1

bj · yj

We have,

n∑
i=1

(ai − sir) =
n∑

i=1

ai −
n∑

i=1

sir =
n∑

i=1

ai − br =
r−1∑
j=1

bj − br =
r−1∑
j=1

bj
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Thus, we can apply induction hypothesis to get,

n∑
i=1

(ai − sir) · xi +
r−1∑
j=1

bj · yj =
n∑

i=1

r−1∑
j=1

sij · (xi + yj)

such that
∑n

i=1

∑r−1
j=1 sij =

∑r−1
j=1 bj. Thus,

n∑
i=1

ai · xi +
r∑

j=1

bj · yj =
n∑

i=1

sir · (xi + yr) +
n∑

i=1

(ai − sir) · xi +
r−1∑
j=1

bj · yj

=
n∑

i=1

sir · (xi + yr) +
n∑

i=1

r−1∑
j=1

sij · (xi + yj) =
n∑

i=1

r∑
j=1

sij · (xi + yj)

. Also, we can easily check that

n∑
i=1

r∑
j=1

sij =
n∑

i=1

r−1∑
j=1

sij +
n∑

i=1

sir =
r−1∑
j=1

bj + br =
r∑

j=1

bj

Hence, the condition holds for m = r, and as a result for all values of m.

Theorem 2.14 ([Sch00]). Let P1, P2 be two Newton polytopes. Then their Minkowski

Sum P1 + P2 is also a Newton polytope.

Proof. We will be done if we can show that the Minkowski Sum P1+P2 is the convex

span of some set by Definition 2.5.

Let V (P1) := vertex set of P1 = {u1,u2, ...,ur}

Let V (P2) := vertex set of P2 = {v1,v2, ...,vs}

Let V (P1) + V (P2) = M ≜
{
u+ v

∣∣ u ∈ V (P1),v ∈ V (P2)
}
. Then,

CS(M) =

{
λ11(u1 + v1) + ...+ λ1s(u1 + vs) + ...+ λrs(ur + vs)

∣∣∣∣ λij ≥ 0 ∀i ∀j,
∑∑

λij = 1

}

=

{
s∑

j=1

λ1ju1 + ...
s∑

j=1

λrjur +
r∑

i=1

λi1v1 + ...+
r∑

i=1

λisvs

∣∣∣∣ λij ≥ 0 ∀i ∀j,
∑∑

λij = 1

}
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Now, define the following terms:

∀i ∈ [r]βi ≜
s∑

j=1

λij and ∀j ∈ [s], γj ≜
s∑

i=1

λij

Also, we have
∑r

i=1 βi =
∑r

i=1

∑s
j=1 λij = 1. Similarly,

∑s
j=1 γj = 1. Therefore,

CS(M) =

{
β1u1 + ...+ βrur + γ1v1 + ...+ γsvs

∣∣∣∣βi ≥ 0, γj ≥ 0,
∑

βi = 1,
∑

γj = 1

}

But β1u1 + ...+ βrur is a convex combination of vertices of P1 and hence lies in the

polytope P1, and similarly γ1v1 + ...+ γsvs is a point in the polytope P2. Thus,

CS(M) =
{
p1 + p2

∣∣ p1 ∈ P1, p2 ∈ P2

}
⇒ CS(M) ⊆ P1 + P2 (2.1)

Conversely,

P1 + P2 =

{
µ1 + µ2

∣∣∣∣ µ1 ∈ P1, µ2 ∈ P2

}
But, any point in a polytope is a convex combination of it’s vertices. Thus, µ1 is

convex combination of {ui} and µ2 is convex combination of {vj}. Using Lemma 2.13

with
∑

ai =
∑

bj = 1, we can write µ1 + µ2 as a convex combination of {ui +

vj}i=r,j=s
i=1,j=1. Thus, P1 + P2 ⊆ CS(V (P1) + V (P2)) = CS(M). Combining with (2.1),

we get P1 + P2 = CS(V (P1) + V (P2)). Hence, the Minkowski Sum P1 + P2 is also a

Newton polytope.

Theorem 2.15. ([Sch00]) Let P1, P2 be ploytopes in Rn and P1 + P2 be their

Minkowski Sum. Then,

1. every vertex w ∈ V (P1 + P2) can be expressed uniquely as w = u + v, where

u ∈ V (P1),v ∈ V (P2) and,

2. For every vertex u ∈ V (P1), there exists a vertex v ∈ V (P2) such that u+v ∈

V (P1 + P2)
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Proof.

1. Let w ∈ V (P1 + P2). It follows that there exists a hyperplane h ∈ Rn, such

that h · r < h · w for all r ∈ P1 + P2 \ {w}. Since w ∈ P1 + P2, it can be

written as w = x1 + x2 where xi ∈ Pi. Suppose there exists y1 ∈ P1,y2 ∈ P2

such that (y1,y2) ̸= (x1,x2) and w = y1+y2. Now, y1+x2,x1+y2 ∈ P1+P2

implies that h · (y1 + x2) < h · w = h · (x1 + x2) giving us h · y1 < h · x1.

Similarly, h · y2 < h · x2. Now h ·w = h · (y1 + y2) < h · (x1 + x2) < h ·w.

Thus, we get a contradiction. Hence, w ̸= y1+y2, and is uniquely represented

as w = x1 + x2. Further, consider r = z1 + x2 where z1 ∈ P1 \ {x1}. Since,

r ∈ P1+P2 it means that h · r < h ·w ⇒ h · z1 < h ·x2 ∀z1 ∈ P1 \ {x1} Thus,

we have x1 ∈ V (P1) (by Corollary 2.10). Similarly, x2 ∈ V (P2).

2. Proof from [BSV20].

Let u ∈ V (P1). By definition of a vertex, there exists a hyperplane h ∈

Rn \{0}, such that ∀w ∈ P1 \{u}, h ·w < h ·u. Define a degree 1 polynomial

ph(x) = h · x − h · u. Thus, ph(u) = 0 and ∀w ∈ P1 \ {u}, ph(w) < 0.

Consider polynomial p
′

h(x) = ph(x) − d, where d ∈ R. For large enough d,

∀y ∈ P2, p
′

h(y) < 0. Start decreasing the value of d, until ∃v ∈ P2 such that

p
′

h(v) = 0. We can ensure that only one such point in P2 has this property

by carefully choosing the initial hyperplane h from the family of hyperplanes

that satisfy the initial condition for u. Thus, we have that p
′

h(v) = 0, and

∀y ∈ P2 \ {v}, p
′

h(y) < 0. Thus, v ∈ V (P2) by Corollary 2.10. Now, we will

show that u + v ∈ V (P1 + P2). Define p(x) = h · x − 2h · u − d. It follows

that, p(u + v) = h · (u + v) − 2h · u − d = h · v − h · u − d = p
′

h(v) = 0.

Also, for any w ∈ P1 \ {u},y ∈ \{v}, p(w + y) = h · (w + y) − 2h · u − d =

(h ·w−h ·u) + (h · y−h ·u− d) = ph(w) + p
′

h(y) < 0. Thus, the hyperplane

represented as h ·x = b, where b = 2h ·u+d acts as the supporting hyperplane

for P1 + P2 such that h ·w < b ∀w ∈ P1 + P2 \ {u+ v}, and h · (u+ v) = b.

Hence, u+ v is a vertex of P1 + P2.
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Corollary 2.16. Let P1, P2 be ploytopes in Rn. Then

|V (P1 + P2)| ≥ max {|V (P1)|, |V (P2)|}

Proof. By item 2 of Theorem 2.15, for each vertex of P1, there exists a vertex of

P1 +P2. Thus, |V (P1 +P2)| ≥ |V (P1)|. Similarly, for each vertex of P2, there exists

a vertex of P1 + P2. Thus, |V (P1 + P2)| ≥ |V (P2)|.

The following is a result observed by Ostrowski ([Ost21]) in 1921, which will play

an important part in proving an lower bound on the size of vertex set of polynomial

f in terms of the sizes of the vertex set of its factors g and h.

Theorem 2.17. Let f ∈ F[x], such that f = g · h. Then, Pf is the Minkowski Sum

of Pg and Ph, i.e., Pf = Pg + Ph

Proof. Let supp(g) = {g1, ..., gn}, supp(h) = {h1, ..., hm}. We know that Pf =

CS(supp(f)), Ph = CS(supp(h)). Since f = g · h ⇒ supp(f) = ∪i∈[n],j∈[m]{gi + hj}.

Also, Pg = CS(supp(g)).

Pg + Ph =

{
n∑

i=1

λigi +
m∑
j=1

βjhj

∣∣∣∣ λi ≥ 0 ∀i,
n∑

i=1

λi = 1, βj ≥ 0 ∀j,
m∑
j=1

βj = 1

}

Using Lemma 2.13 with
∑

λi =
∑

βj = 1, we can write it as a convex combination

of {gi + hj}i=n,j=m
i=1,j=1 . Thus, Pg + Ph ⊆ CS(supp(f)) = Pf .

Conversely, every monomial xe ∈ f is generated via product of some monomials

xeg ∈ g and xeh ∈ h. Thus, supp(f) ⊆ supp(g) + supp(h) ⇒ Pf = CS(supp(f)) ⊆

CS(supp(g) + supp(h)) = Pg + Ph.

In [DdO14], the authors cleverly exploited the connection between a polynomial and

a polytope, and the above properties to give an elegant approach for bounding the

sparsity of factors of a general polynomial of some given ideg d. Now, we present

the sparsity bound provided by them:
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Corollary 2.18. (Sparsity bound of factors) Let f, g, h ∈ F[x] s.t. f = g ·h. Then,

∥f∥ ≥ |V (Pf )| ≥ max{|V (Pg)|, |V (Ph)|}

Proof. Using Theorem 2.17, and Corollary 2.16, we get |V (Pf )| ≥ max{|V (Pg)|, |V (Ph)|}.

Also, V (Pf ) = V (CS(supp(f)) ⊆ supp(f) ⇒ |V (Pf )| ≤ |supp(f)| = ∥f∥. Hence,

we get the desired result.

However, we can see that this bound is not tight. Consider the example,

Example 2.1. Let F = R[x, y]. Define, g =
∑d

a=0

∑d
b=0 x

ayb and h = 1. Here,

∥g∥ = d2 and V (Pg) = {(0, 0), (0, d), (d, 0), (d, d)} = 22.

Let f = g · h. By Corollary 2.18, we get that ∥f∥ ≥ max{22, 1} = 22 = |V (Pg)|.

But, ∥f∥ = ∥g∥ = d2 = (2log 2 d)2 = |V (Pg)|log 2 d

Thus, even though the approach did not eventually lead to an efficient sparsity

bound, it did inspire further work in the direction of using convex geometry to

bound the factors of sparse polynomials, notably in [BSV20].

2.3.3 Improved sparsity bounds for factors of sparse poly-

nomials

A well known result in convex geometry is the Catathéodory theoreom (Theorem A.1),

which states that any point in the convex hull of a n − dimensional set U can be

expressed as a convex combination of atmost n + 1 points. There also exists an

“approximate” version of the Carathéodory theorem, which says that we can “rea-

sonably” uniformly approximate any point in the convex hull of a n− dimensional

set U by only O(log n) points of U . It was first proposed in [Bar15]. Before pre-

senting the proof, we will first introduce some notation.
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Definition 2.19. (k-uniformity of a vector) Let M = {x1,x2, ...,xm} ∈ Rn. A

vector u ∈ M is defined to be k − uniform with respect to M if there exists a

multiset S of [m] such that |S| ≤ k and u = 1
k

∑
i∈S xi

Also, for any given vector y ∈ Rn, yj denotes its j − th coordinate ∀ j ∈ [n].

Theorem 2.20. (Approximate Carathéodory theorem) Given a set of vectors U =

u1,u2, ...,um ∈ Rn with maxu∈U∥u∥∞ ≤ 1 and ϵ > 0. For every z ∈ CS(U), there

exists an O( log n
ϵ2

) uniform vector z′ ∈ CS(U) such that ∥z− z′∥∞ ≤ ϵ.

Proof. Since z ∈ CS(U) ⇒ z =
∑m

i=1 aiui where ai ≥ 0 ∀i ∈ [m] and
∑m

i=1 ai = 1.

Consider this as a probability distribution, with the probability of sampling each

ui being ai. Pick t = log n
ϵ2

samples independently from this distribution, with the

resulting vectors being y1, ..., yt.Now, each yi is independently sampled from this

distribution and E(yi) =
∑m

i=1 aiui = z. Define

z′ =
y1 + ...+ yt

t

Therefore, E(z′) = 1
t

∑t
j=1 E(yj) = 1

t

∑t
j=1 z = z. Consider the t independent

samples Y1, Y2, ..., Yt of the random variable Y , such that for each i ∈ [m], Y = (ui)j

with probability ai, i.e., we are sampling the vectors coordinate-wise. Pick any

coordinate k ∈ [n]. Then, clearly E(Y ) = 1
t

∑t
j=1 E(Yj) = 1

t

∑t
j=1

∑m
i=1 ai(ui)k =

1
t

∑t
j=1 zk = zk. Also, z

′
k =

Y1+...+Yt

t
. Using Theorem A.2, we get

P
(∣∣z′k − zk

∣∣ > ϵ
)
≤ 2e−2ϵ2t = 2e−2ϵ2 log n

ϵ2 = 2e−2log n =
2

n2

Now, ∥z′ − z∥∞ > ϵ if |z′k − zk| > ϵ for atleast some k ∈ [n]. Using union bound,

P
(∥∥z′ − z

∥∥
∞ > ϵ

)
= ∪n

k=1P
(∣∣z′k − zk

∣∣ > ϵ
)
≤

n∑
k=1

P
(∣∣z′k − zk

∣∣ > ϵ
)
≤

n∑
k=1

2

n2
=

2

n

Thus, P
(∥∥z′ − z

∥∥
∞ ≤ ϵ

)
> 1 − 2

n
> 0 ∀n ≥ 2 and hence a suitable log n

ϵ2
uniform

vector z′ exists that ϵ− approximates z.
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In [BSV20], the authors were able to cleverly use the “approximate” Carathéodory

theorem, to get strong sparsity bounds on the factors of the polynomials of a sparse

polynomial. We will now present the proof below.

Theorem 2.21. ([BSV20]) Let E ⊆ {0, 1, ..., d}n. Let U = V (CS(E)). Then,

there exists an absolute constant α ∈ R, such that, |U |αd2log n ≥ |E|.

Proof Idea. We will show that every vector u ∈ E is ϵ− approximated uniquely by

the elements of U . We will then compare the size of E with the maximum number

of ϵ− approximations possible from U to get the bound.

Proof. Let Ed = {1
d
u | u ∈ E} ⊆ [0, 1]n. Let ϵ = 1

3d
and Ud = V (CS(Ed)). Clearly,

|U | = |Ud|. Using Theorem 2.20, for every ud ∈ Ed, ∃ an O( log n
ϵ2

) = O(d2log n)

uniform vector u′
d ∈ Ud such that

∥ud − u′
d∥∞ ≤ ϵ =

1

3d
(2.2)

Let u,v be two distinct vectors in E. Then they must differ by atleast one co-

ordinate, i.e., ∃j ∈ [n] such that uj ̸= vj ⇒ |(u)j − (v)j| ≥ 1. Hence, for the

corresponding vectors ud,vd ∈ Ed, we have |(ud)j − (vd)j| ≥ 1
d
. Thus,

∥ud − vd∥∞ ≥ 1

d
(2.3)

Let u′
d,v

′
d be the O(d2log n) uniform vectors for any two vectors ud,vd ∈ Ed respec-

tively. We claim that u′
d ̸= v′

d.

Suppose u′
d = v′

d. Using (2.2) and triangle inequality, we get

∥ud−vd∥∞ = ∥(ud−u′
d)+(u′

d−vd)∥∞ = ∥(ud−u′
d)+(v′

d−vd)∥∞ ≤ ∥ud−u′
d∥∞+∥v′

d−vd∥∞ ≤ 2

3d

which contradicts (2.3).

Now, total number of O(d2log n) approximations that can be generated by Ud is

given by |Ud|O(d2log n). Also, u′
d ̸= v′

d ⇒ for every vector ud ∈ Ed there is an unique
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approximation. It follows that |Ud|O(d2log n) ≥ |Ed|.

Thus, we get |U |αd2log n ≥ |E| for some α ∈ R.

Corollary 2.22. ([BSV20]: Sparsity bounds for factors of sparse polynomials of

bounded individual degree) Let f, g ∈ F[x] such that f has individual degree d.

Then,

g | f ⇒ ∥g∥ ≤ ∥f∥O(d2 log n)

Proof. Let Ug = V (CS(supp(g)), Uf = V (CS(supp(f)). By definition, ∥g∥ =

|supp(g)|. By Theorem 2.21, |Ug|O(d2 log n) ≥ ∥g∥. Also, by Corollary 2.16, |Uf | ≥

|Ug|. Also, we know that ∥f∥ ≥ |Uf |. Thus,

∥g∥ ≤ |Ug|O(d2 log n) ≤ |Uf |O(d2 log n) ≤ ∥f∥O(d2 log n)

Thus, we now have a quasipolynomial bound on the sparsity of any factor of a sparse

polynomial with bounded individual degree. However, it still doesn’t help us settle

the polynomial sparsity of factors, conjectured in [Vol17]. At the same time, it is the

best known bound currently, that works for any s− sparse polynomial of individual

degree d. By Theorem 2.3, we already know of a much stronger bound for factors

of s− sparse polynomial of individual degree d ≤ 2.

The bound in Corollary 2.22 has been obtained by bounding the size of the vertex

set of a polytope in relation to the size of the whole polytope, while looking only

at the intergral points. Thus a natural next step would be to obtain better bounds

for this relative size. However, along with the quasipolynomial bound, [BSV20] also

provide an example of a polytope for which the bound is tight. Thus, we cannot

hope to obtain universally better bounds using the convex geometry approach alone.

Claim 2.23. ([BSV20]: Hadamard Polytope) There is a set E ⊆ {−1, 0, 1}n such

that |V (CS(E))| = n and |E| = nΩ(log n).
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Proof. Let m ∈ N. Let n = 2m, and let H be a n × n Hadamard matrix.

Formally, H ∈ Rn×n with Hij ∈ {±1}, such that index both rows and columns

by vectors in Fm
2 , then the (u,v) entry of H is (−1)⟨u,v⟩ for all u,v ∈ Fm

2 where

⟨u,v⟩ = (
∑m

i=1 uivi).

Let V ⊆ {±1} be the set of column vectors of H. Then, we will show that the

|CS(V )| has atleast nΩ(log n) elements ∈ {−1, 0, 1}. Thus, any polytope with vertex

set as V will have the desired properties, and suffice for our claim. Recall that each

element of V is indexed by an element of Fm
2 . Also, for each subspace S ⊆ Fm

2 , we

will show that on taking the uniform convex span of elements of V that correspond

to those columns that were indexed by vectors in S, we will get an unique element

in {0, 1}n. By Corollary A.4, total number of subspaces of Fm
2 over F2 is 2Ω(m2) =

nΩ(log n). Also, |V | = n. Thus, this will prove our claim.

Let ci, rj ∈ Fm
2 be the vectors indexing column i and row j of H respectively. For

any subspace S ⊆ Fm
2 , let uS ∈ Rn be it’s characteristic vector. If ci ∈ S then

(uS)i = 1, else (uS)i = 0. For showing that the uniform convex span of elements of

V gives a vector in {0, 1}n, we need to show that 1
|S|(H · uS) ∈ {0, 1}n.

Consider T = {v ∈ Fm
2 | ⟨u,v⟩ = 0 ∀ u ∈ S}. Now,

(H · uS)i =
n∑

j=1

Hij(uS)j =
n∑

j=1
cj∈S

Hij =
n∑

j=1
cj∈S

(−1)⟨ri,cj⟩

Case 1: For rows indexed by vectors in T , we have ⟨ri, cj⟩ = 0 ∀cj ∈ S. Thus,

(H · uS)i =
∑n

j=1
cj∈S

1 = |S|.

Case 2: For rows not indexed by vectors in T . Therefore, there exists cj ∈ S

such that ⟨ri, cj⟩ = 1. Consider any vector cj ∈ S, then ⟨ri, cj + cj⟩ =

⟨ri, cj⟩+⟨ri, cj⟩ = ⟨ri, cj⟩+1. Thus, (−1)⟨ri,cj⟩ and (−1)⟨ri,cj+cj⟩ have different

signs. Hence (H · uS)i = 0 in this case.

Thus, we have 1
|S|(H · uS) ∈ {0, 1}n with ones in rows indexed by elements of T ,

and zeros otherwise. Now, we are just left to show that unique subspaces generate
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unique elements in {0, 1}n.

Notice that 1
|S|(H · uS) has ones only in rows indexed by T . But by definition, T is

orthogonal complement of S. It can be easily shown that T is also a subspace. By

Theorem A.6 we see that unique subspaces have unique orthogonal complements.

Hence each subspace S generates a unique T , and hence a unique vector H · uS

Remark 2.24. In order to obtain a polytope with non-negative coordinates, just

translate the whole polytope in Rn by 1.

Claim 2.23 gives us a polytope with a “small” vertex set but a “large” number

of integral points in it. In the next chapter we will look at the implications of this

result, as well as build towards obtaining better sparsity bounds for factors of certain

classes of polynomials.



Chapter 3

Sparsity bounds for factors of

certain classes of polynomials

As we saw in chapter 2, we have a quasipolynomial bound on sparsity of factors

of a polynomial of bounded individual degree, obtained by analyzing the convex

polytope representation of a polynomial. The result stated that the number of inte-

gral points in any polytope P ⊆ {0, 1, ..., d}n for some constant d is upper bounded

by |UP |O(d2log n), where UP is the vertex set of the polytope. At the same time,

Claim 2.23 gives us a polytope, called the Hadamard polytope, for which this bound

is tight. In this chapter, we will analyse how the existence of Hadamard Polytope

has the potential for negatively impacting our quest to prove Conjecture 1.1. How-

ever, in our first result (Corollary 3.6) we will show that in fact, it doesn’t act as

an impediment towards proving Conjecture 1.1. We will then generalise these proof

techniques to prove polynomial sparsity bounds for certain classes of polynomials in

Theorem 3.8, and Theorem 3.12. Lastly, we will look at the limitations of our proof

techniques by describing some counter examples, and rule out certain approaches

towards attaining polynomial sparsity bounds.

20
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3.1 Limitations of the polytope approach

Firstly, we define the polynomial corresponding to the Hadamard polytope.

Definition 3.1. (Hadamard polynomial)

Let gH be the polynomial with vertex set as the columns of H, where H is the

Hadamard matrix as per Claim 2.23. Every internal point in gH corresponds to

some subspace of Fm
2 . Formally,

Vg = {v | v is a column vector of H}

For every subspace S ⊆ Fm
2 , let vS denote the vector generated by taking the uniform

convex span of those columns of H that were indexed by elements in S.

Eg = {vS | S is subspace of Fm
2 }

Now we define

supp(gH) = Vg ∪ Eg

Then gH is the Hadamard polytope.

Remark 3.2. gH is apolynomial with |Vg| = n and ∥gH∥ = |supp(gH)| = n +

nΩ(log n) ≈ |Vg|Ω(log n). Also by Theorem 2.21, ∥gH∥ = |Vg|O(d2 log n). Therefore when

d is some constant, we get ∥gH∥ = |Vg|Θ(log n).

Therefore, a possibility arises that there exists some polynomial h ∈ F[x], such

that f = gH · h gives us f with ∥f∥ = O(n), in accordance with Corollary 2.18.

However such a f would have gH as a factor with ∥gH∥ = nΘ(log n). This would imply

that the sparsity bound obtained in Corollary 2.22 is tight for some polynomials,

and would refute the polynomial sparsity conjecture mentioned in [Vol17]. Thus, a

natural first step is to either find such a polynomial h which gives f satisfying the

above conditions, or show that the Hadamard polynomial gH , with superpolynomial

sparsity in n, can’t be a factor of any polynomial f with polynomial sparsity.
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In the following sections we will show that the product of the Hadamard polynomial

gH with any polynomial h where ∥h∥ is not too “large”, then the resulting polynomial

f = gh·h has ∥f∥ ≥ ∥g∥. In other words, product of gH with any “sparse” polynomial

h, gives us a “dense” f . Before proceeding, we highlight some interesting properties

of the Hadamard polytope which will be used in the proofs.

Lemma 3.3 (Orthogonality of rows, columns of Hadamard matrix). Any two rows

of the Hadamard matrix are orthogonal. Similarly, any two columns of Hadamard

matrix are orthogonal.

Proof. : Consider any two rows r1, r2 ∈ Rn indexed by y1,y2 ∈ Fm
2 respectively in

H where y1 ̸= y2. Let columns of H be indexed by z1, z2, ..., zn ∈ Fm
2 . Let (r1)i

denote ith elt. of r1. Then, (r1)i = (−1)⟨y1,zi⟩.

⟨r1, r2⟩ =
∑n

i=1 (−1)⟨y1,zi⟩ · (−1)⟨y2,zi⟩ =
∑n

i=1 (−1)⟨y1+y2,zi⟩

=
∑n

i=1 (−1)⟨y3,zi⟩ ( y1,y2 ∈ Fm
2 ⇒ y3 = y1 + y2 ∈ Fm

2 )

=
∑

z∈Fm
2
(−1)⟨y3,z⟩ = 0 (by Claim A.7, if y3 ̸= 0).

Since 2 · y = 0 when y ∈ Fm
2 , we have y3 = 0 ⇒ y1 + y2 = 0 ⇒ y1 = y2

As we had distinct rows, y1 ̸= y2. Hence, ⟨r1, r2⟩ = 0.

Thus, any two rows in H are mutually orthogonal. Symmetrically, any two columns

are orthogonal in H.

Corollary 3.4 (Linear Independence of rows, columns in Hadamard matrix). Rows

in H are linearly independent. Similarly, columns in H are linearly independent.

Proof. : Let the rows ofH be r1, r2, ..., rn. Let ci ∈ R be scalars. Then
∑n

i=1 ci·ri = 0

⇒
∑n

i=1 ci · ⟨ri, rj⟩ = ⟨0, rj⟩ ⇒ cj · ⟨rj, rj⟩ = 0 ⇒ cj = 0.

Since j was arbitrary, it follows that cj = 0 ∀j ∈ [n].

We now prove an important lemma which helps us get the sparsity bounds for the

product of gH with any “sparse” polynomial h.
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Lemma 3.5. Let gH be the Hadamard polynomial. Let h ∈ F[x] with h1,h2 as two

distinct vectors in supp(h). Let gi1 ,gi2 ∈ supp(gH) such that h1 + gi1 = h2 + gi2.

Then, there exists at most one other distinct pair gi3 ,gi4 ∈ supp(gH) such that

h1 + gi3 = h2 + gi4.

Proof Idea. We use a few important properties of the Hadamard polynomial gH in

our proof. Crucially, we use the linear independence of vertices, as shown above in

Corollary 3.4. It helps us to get constraints on the coefficients of each vertex, which

are subsequently used to rule out possibilities of more than two pairs of vectors

in supp(gH) cancelling. Along with this, we use the fact that all internal points

correspond to some subspace of Fm
2 , and that each such point is generated by a

uniform convex span of the vertices of gH . Additionally, we use the fact that the 0

is present in every subspace S of Fm
2 . Using these features we are able to show that

for any two monomials in h, there can be atmost four cancellations in the product

f = gH · h.

Proof. Let supp(gH) = {g1,g2, ...,gT}. Let Vg = V (CS(supp(gH))) = {g1, ...,gn}

and Eg = supp(g) \ Vg. Without loss of generality, we assume that the first column

of H is indexed by the 0 ∈ Fm
2 , and hence the vector corresponding to it (i.e. g1) is

present in every internal point in Eg.

Let us assume that there exists two pairs of vectors in supp(gH) such that h1+gi1 =

h2 + gi2 and h1 + gi3 = h2 + gi4 . Trivially, gi1 ̸= gi2 and gi3 ̸= gi4 as otherwise

h1 = h2. On rearranging we get,

h2 − h1 = gi1 − gi2 = gi3 − gi4 (3.1)

We can see that, gi1 = gi3 ⇐⇒ gi2 = gi4 giving us the same pair. Thus gi1 ̸= gi3 ,

and gi2 ̸= gi4 . Manipulating (3.1) we get,

gi1 − gi2 − gi3 + gi4 = 0 (3.2)
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Recall that g1, ...,gn are vertices in gH and any internal point is convex combination

of these vertices. Therefore, for all k ∈ [4], gik =
∑n

l=1 alk · gl where alk ≥ 0 ∀l and∑n
l=1 alk = 1. Rearranging and using independence of vertices in (3.2), we get:

al1 − al2 = al3 − al4 ∀l ∈ [n] (3.3)

In general, if gik is a vertex then, gik = gr for some r ∈ [n]. Then,

alk =

 0 , l ̸= r

1 , l = r .

(3.4)

Otherwise, if gik is an internal point in supp(gH) generated by ti−dimensional sub-

space Si of Fm
2 for any 1 ≤ ti ≤ m. Then,

alk =

 0 , if gl doesn’t contribute in generating gik

1
2ti

, gl contributes in generating gik .

(3.5)

Case 1: gi1 ,gi2 ,gi3 ,gi4 ∈ Vg.

Using (3.2) and (3.4), this means that their linear combination sums to 0,

implying that they are linearly dependent. But, by Corollary 3.4 all vertices

in g are linearly independent. Hence we have a ⇒⇐ to our assumption. Hence,

there exists at most one pair gi1 ,gi2 such that h1 + gi1 = h2 + gi2 .

Case 2: Three of gi1 ,gi2 ,gi3 ,gi4 are vertices in gH and the other is an internal

point. Wlog, let gi1 ,gi2 ,gi3 ∈ Vg, and gi4 ∈ Eg.

Using (3.3) for l = 1, coefficient of LHS (denoted cLHS) ∈ {−1, 0, 1}, as either

none of gi1 ,gi2 = g1, or one of them equals g1. Meanwhile, cRHS ∈ {−1
2t
, 1− 1

2t
},

as gi3 may or may not be g1. Thus, cLHS ̸= cRHS in any case. Hence, we have a

⇒⇐. Hence, there exists at most one pair gi1 ,gi2 such that h1+gi1 = h2+gi2 .

Case 3: Two of gi1 ,gi2 ,gi3 ,gi4 are vertices in gH and the other two are internal

points.
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Subcase 1: Wlog, let gi1 ,gi2 ∈ Vg and gi3 ,gi4 ∈ Eg.

Subsubcase 1: gi1 = g1. This gives us gi2 ̸= g1.

Using (3.3) for l = 1, cLHS = 1 and cRHS = 1
2t3

− 1
2t4

< 1 = cLHS

always. Thus, ⇒⇐. Hence, there exists at most one pair gi1 ,gi2 such

that h1 + gi1 = h2 + gi2 .

The case for gi2 = g1 and consequently gi1 ̸= g1 is analogus.

Subsubcase 2: gi1 ,gi2 ̸= g1.

Using (3.3) for l = 1, cLHS = 0 and cRHS = 1
2t3

− 1
2t4

. Thus, only

possibility is t3 = t4. Suppose now, that gi1 = gz for some z ∈ [n].

Using (3.3) for l = z, cLHS = 1 and cRHS ∈ {0, 1
2t3

, −1
2t4

} ≠ cLHS

always. Thus, ⇒⇐. Hence, there exists at most one pair gi1 ,gi2

such that h1 + gi1 = h2 + gi2 .

The case for gi3 ,gi4 as vertices, and gi1 ,gi2 as internal points is analogus.

Subcase 2: Wlog, let gi1 ,gi3 ∈ Vg and gi2 ,gi4 ∈ Eg.

Subsubcase 1: gi1 = g1.

Using (3.3) for l = 1, cLHS = 1− 1
2t2

and cRHS = −1
2t4

̸= cLHS always.

Thus, ⇒⇐. Hence, there exists at most one pair gi1 ,gi2 such that

h1 + gi1 = h2 + gi2 .

The case for gi3 = g1 is analogus.

Subsubcase 2: gi1 ,gi3 ̸= g1.

Using (3.3) for l = 1, cLHS = −1
2t2

and cRHS = −1
2t4

. Thus, only

possibility is t2 = t4. Suppose now, that gi1 = gz for some z ∈ [n].

Using (3.3) for l = z, cLHS ∈ {1, 1− 1
2t2

} and cRHS ∈ {0, −1
2t4

} ≠ cLHS

always. Thus, ⇒⇐. Hence, there exists at most one pair gi1 ,gi2 such

that h1 + gi1 = h2 + gi2 .

The case for gi2 ,gi4 as vertices, and gi1 ,gi3 as internal points is analogus.

Subcase 3: Wlog, let gi1 ,gi4 ∈ Vg and gi2 ,gi3 ∈ Eg.
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Subsubcase 1: gi1 = g1.

Using (3.3) for l = 1, cLHS = 1− 1
2t2

and cRHS ∈ { 1
2t3

, 1
2t3

− 1}. Only

possibility of cLHS = cRHS is 1 − 1
2t2

= 1
2t3

⇒ t2 = t3 = 1. Let,

gi4 = gz for some z ∈ [n]. Using (3.3) for l = z, cLHS ∈ {0, 1
2
} and

cRHS ∈ {−1, −1
2
}. Thus, we can get equality when cLHS = cRHS =

−1
2
. Thus we can see that the condition in (3.1) is satisfied by

gi1 = g1; gi4 = gz; gi2 = gi3 =
g1 + gz

2

The case for gi4 = g1 is analogus.

Subsubcase 2: gi1 ,gi4 ̸= g1.

Using (3.3) for l = 1, cLHS = −1
2t2

and cRHS = 1
2t3

. Thus, ⇒⇐. Hence,

there exists at most one pair gi1 ,gi2 such that h1 + gi1 = h2 + gi2 .

The case for gi2 ,gi4 as vertices, and gi1 ,gi3 as internal points is analogus.

Case 4: One of gi1 ,gi2 ,gi3 ,gi4 is a vertex in gH and the other three are internal

points. Wlog, let gi1 ∈ Vg, and gi2 ,gi3 ,gi4 ∈ Eg.

Subcase 1: gi1 = g1.

Using (3.3) for l = 1, cLHS = 1 − 1
2t2

and cRHS = 1
2t3

− 1
2t4

̸= cLHS

always. Thus, ⇒⇐. Hence, there exists at most one pair gi1 ,gi2 such

that h1 + gi1 = h2 + gi2 .

Subcase 2: gi1 ̸= g1.

Using (3.3) for l = 1, cLHS = −1
2t2

and cRHS = 1
2t3

− 1
2t4

. Thus, only

possibility is t2 = t3 and t4 = t2 − 1. We know that t4 > 1 as otherwise

gi4 will become a vertex. This implies that t2 = t3 ≥ 2. Suppose now,

that gi1 = gz for some z ∈ [n]. Using (3.3) for l = z, cLHS ∈ {1, 1− 1
2t2

}

and cRHS ∈ { 1
2t2

− 1
2t2−1 ,

1
2t2

, −1
2t2−1} = {−1

2t2
, 1
2t2

, −1
2t2−1} ̸= cLHS at any time

as t2 ≥ 2. Thus, ⇒⇐. Hence, there exists at most one pair gi1 ,gi2 such

that h1 + gi1 = h2 + gi2 .
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The case for gi2 or gi3 or gi4 as vertices is analogus.

Case 5: None of gi1 ,gi2 ,gi3 ,gi4 are vertices in gH .

Using (3.3) for l = 1, cLHS = 1
2t1

− 1
2t2

and cRHS = 1
2t3

− 1
2t4

. Hence

cLHS = cRHS ⇒ 1

2t1
+

1

2t4
=

1

2t2
+

1

2t3
(3.6)

Subcase 1: t1 = t4. Putting in (3.6), we get 1
2t1−1 = 1

2t2
+ 1

2t3
⇒ t2 = t3 and

t1 − 1 = t2 − 1 ⇒ t1 = t2 = t3 = t4 = t.

Recall, that Sk represent the subspace from which the internal point gik

is generated.

Claim 1: S1 \ S2 = S3 \ S4

Proof: Let x ∈ S1 \ S2 and z ∈ [n] be the index corresponding to x.

Using (3.3) and (3.5), for l = z, cLHS = 1
2t
. Thus, to get cRHS = 1

2t
=

cLHS, we need az3 =
1
2t
and az4 = 0 ⇒ x ∈ S3\S4 ⇒ S1\S2 ⊆ S3\S4.

Similarly, S3 \ S4 ⊆ S1 \ S2. Thus, we have S1 \ S2 = S3 \ S4.

Claim 2: S2 \ S1 = S4 \ S3

Proof: Similar to Claim 1.

Claim 3: S1 = S3 and S2 = S4

Proof: Let S1 = {x1, ..,xp,y1, ...,yq} and S2 = {z1, .., zp,y1, ...,yq}.

We know that |S1| = |S2| = |S3| = |S4| as they are t−dim subspaces.

Also, by Claim 1 and Claim 2, S3 = {x1, ..,xp,w1, ...,wq}, S4 =

{z1, .., zp,u1, ...,uq}.

Consider e = y1 + x1. If e ∈ S2 ⇒ x1 ∈ S2 − y1 ⇒ x1 ∈ S2 ⇒⇐.

Hence e /∈ S2. This means that e ∈ S1 \ S2 ⇒ e ∈ S3 \ S4 ⇒ e ∈

S3 ⇒ y1 ∈ S3 − x1 ⇒ y1 ∈ S3. Since y1 is distinct from xj for all j,

it means that y1 = wc for some c ∈ [q]. Similarly, taking f = y1+z1,

we can show that y1 ∈ S4. We can extend the same argument to all

yb ∀b ∈ [q], to get S1 = S3 and S2 = S4.
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Thus, by Claim 3, we get gi1 = gi3 and gi2 = gi4 . Hence, there is a

unique pair gi1 ,gi2 ∈ supp(gH) such that gi1 + h1 = gi2 + h2.

Subcase 2: t1 < t4. Putting in (3.6), we get that LHS is a binary repre-

sentation, hence must be unique. Thus, either (t1 = t2 and t3 = t4) or

(t1 = t3 and t2 = t4).

Subsubcase 1: t1 = t2 < t3 = t4.

We know that gi1 ̸= gi2 implying the existence of gz such that gz ∈

g i1 & gz /∈ gi2 . Thus, using (3.3) for l = z, cLHS = 1
2t1

and cRHS ∈

{0, 1
2t3

,− 1
2t4

} ≠ cLHS always as t1 < t3. Thus, ⇒⇐. Hence, there

exists at most one pair gi1 ,gi2 such that h1 + gi1 = h2 + gi2 .

Subsubcase 2: t1 = t3 < t2 = t4.

Consider some vertex gz in S1 \ S2. Then, cLHS = 1
2t1

and cRHS ∈

{0, 1
2t3

, −1
2t4

, 1
2t3

− 1
2t4

}. The only possibility is gz ∈ S3 \ S4. Thus,

S1 \ S2 ⊆ S3 \ S4. Similarly, S3 \ S4 ⊆ S1 \ S2. Thus, S1 \ S2 =

S3 \ S4. Using a similar argument, S2 \ S1 = S4 \ S3. Consider

gz ∈ S1 ∩ S2 ⇒ cLHS = 1
2t1

− 1
2t2

and cRHS ∈ {0, 1
2t3

, −1
2t4

, 1
2t3

− 1
2t4

}.

The only possibility is gz ∈ S3 ∩ S4. Hence, S1 ∩ S2 ⊆ S3 ∩ S4.

Similarly, S3∩S4 ⊆ S1∩S2. Finally, we have S1∩S2 = S3∩S4, along

with S1 \ S2 = S3 \ S4 and S2 \ S1 = S4 \ S3, which gives us S1 = S3

and S2 = S4. Thus, we get gi1 = gi3 and gi2 = gi4 . Hence, there is a

unique pair gi1 ,gi2 ∈ supp(gH) such that gi1 + h1 = gi2 + h2.

The case of t1 > t4 is analogus

Thus, we see that in most cases there is atmost one unique pair gi1 ,gi2 ∈ supp(gH)

such that gi1 + h1 = gi2 + h2, and only in the very specific case of gi1 = g1,

gi4 = gz, gi2 = gi3 = g1+gz

2
(and it’s analogus cases), do we get two pairs gi1 ,gi2

and gi3 ,gi4 ∈ supp(gH) such that h1 − h2 = gi2 − gi1 = gi4 − gi3 .
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Corollary 3.6 (Sparsity of f where f = gH · h). Let f = gH · h where gH is the

Hadamard polynomial, and h is some polynomial in F[x] such that ∥h∥ is not too

“large” with respect to ∥gH∥. Then, f is denser than gH .

∥h∥ ≤ 1

2
∥gH∥ ⇒ ∥f∥ ≥ ∥gH∥

Proof. By Lemma 3.5, there are at most two pairs of monomials in supp(gH) that

have the same vector difference, for any two monomials h1, h2 ∈ supp(h) ⇒ there

are atmost four cancellations in gH · (h1 + h2). Now, number of ways to choose two

monomials in h is
(∥h∥

2

)
. Thus

∥f∥ = ∥gH · h∥ ≥ ∥gH∥ · ∥h∥ − 4 ·
(
∥h∥
2

)

Also,

∥gH∥ · ∥h∥ − 4 ·
(
∥h∥
2

)
≥ ∥gH∥ ⇒ 2 · ∥h∥2 − (∥gH∥+ 2) · ∥h∥+ ∥gH∥ ≤ 0

The above holds for for all h, such that ∥h∥ ≤ 1
2
∥gH∥. Thus, for any such h, we have

∥f∥ ≥ ∥gH∥ where f = gH · h.

Remark 3.7. An approach like this won’t work for ∥h∥ > 1
2
∥gH∥, as we might po-

tentially have many cancellations. One way to mitigate this could be to look at,

say h1,h2,h3 ∈ supp(h) and say that if h1,h2 have some cancellations, and h2,h3

have some cancellations, then there can be no cancellations between h1,h3. How-

ever, even this wouldn’t help us in bounding the maximum number of cancellations.

Consider elements of supp(h) as nodes of a graph G such that there is an edge be-

tween two nodes ha,hb if there is some cancellation between ha,hb in the product

f = gH ·h. Then, the condition mentioned above means we are looking at the edges

in a triangle free graph. By Theorem A.9, the maximum number of edges in any

such graph is O(|supp(h)|2). Hence even on limiting the number of cancellation per

edge to two by Lemma 3.5, we can still have many cancellations in f .
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Thus, we can see that the polynomial corresponding to the Hadamard polytope

doesn’t prove to be an impediment towards proving Conjecture 1.1, atleast when

considering it’s product with “sparse” polynomials.

3.2 Few results on sparsity bounds

We try to generalise the proof techniques used in proving Lemma 3.5 to arrive at

sparsity bounds for factors of certain classes of polynomials.

Theorem 3.8. Let f, g, h ∈ F[x] s.t. Vg = V (CS(supp(g))), Vh = V (CS(supp(h))).

Suppose, Vg ∪ Vh is a linearly independent set of vectors. Then, ∥f∥ = ∥g∥∥h∥.

Proof. Let g1,g2 ∈ supp(g) and h1,h2 ∈ supp(h) such that

g1 + h1 = g2 + h2 ⇒ g1 − g2 + h1 − h2 = 0

But g1 =
∑

v∈Vg
λvgv, g2 =

∑
v∈Vg

βvgv.

Similarly, h1 =
∑

u∈Vh
γuhu, h2 =

∑
u∈Vh

αuhu.

Rearranging, we get

∑
v∈Vg

(λv − βv)gv +
∑
u∈Vg

(γu − αu)hu = 0

Using linear independence of Vg ∪ Vh, we get

λv = βv ∀v ∈ Vg ⇒ g1 = g2

γu = αu ∀u ∈ Vh ⇒ h1 = h2
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Thus, product of every momomial mg ∈ g ad mh ∈ h is unique. Hence

∥f∥ = ∥g · h∥ = ∥g∥∥h∥

However, the combined linear independence of the vertices of both the polynomials

puts restrictions on both factors, which might not always be possible. Therefore, we

will now look at the case of square polynomials (i.e., f = g2) where we only need

restrictions on one polynomial g.

Lemma 3.9. Let f = gH
2 where gH is the Hadamard polynomial, as per Defini-

tion 3.1. Then, ∥f∥ = Ω(∥gH∥)

Proof. Let supp(gH) = {g1.g2, ...,gt} and Pg = CS(supp(gH)). Let Vg = V (Pg) =

{g1, ...gn}. For all i ∈ [t], consider the monomial g2
i ∈ f = gH

2 which corresponds

to the vector 2 · gi in the Minkowski sum Pf = Pg + Pg . We claim that 2 · gi is

unique for “almost” all points gi in gH .

Suppose ∃gj ̸= gk ∈ Pg such that 2 · gi = gj + gk. If gj = gk ⇒ gj = gk = gi and

we get same points.

Case 1: gi ∈ Vg.

We know that any point in Pg can be written as convex combination of points

in Vg. Thus, gj =
∑n

v=1 avgv, gk =
∑n

v=1 bvgv where av, bv ≥ 0 and
∑n

v=1 av =∑n
v=1 bv = 1.

2 · gi = gj + gk ⇒
n∑

v=1
v ̸=i

(av + bv)gv + (ai + bi − 2)gi = 0

This implies that gi for i ∈ [n] are linearly dependent which contradicts Corol-

lary 3.4. Thus, 2 · gi is unique for all vertices of gH .
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Case 2: gi ∈ supp(gH)\Vg. This means that gi is generated by some t−dimensional

subspace of Fm
2 . Let g1 denote the column vector indexed by the 0 ∈ Fm

2 .

Subcase 1: gj,gk ∈ Vg.

Using (3.3), (3.5) from the proof of Lemma 3.5 for l = 1, we get cLHS =

2 · 1
2t

and cRHS ∈ {0, 1}. Thus, the only possibility is that one cRHS =

cLHS = 1 ⇒ t = 1. Also, this means one of gj,gk equals g1. Without loss

of generality, let it be gk. Using Equation 3.3 for l = j, cRHS = 1, and

cLHS ∈ {0, 2 · 1
2
}. Thus, we get equality when gi =

g1+gj

2
. Thus, when

gi =
g1 + gj

2
; gk = g1 ∈ Vg; gj ∈ Vg

then 2 · gi is not unique, but this happens for only n − 1 choices of

gj ∈ Vg \ {g1}.

Subcase 2: gj ∈ Vg, gk ∈ supp(gH) \ Vg.

Subsubcase 1: gj = g1

Using (3.3) for l = 1, we get cLHS = 2 · 1
2t

and cRHS = 1+ 1
2tk

. Thus,

cLHS ̸= cRHS giving us a ⇒⇐. Thus, 2 · gi is unique in this case.

Subsubcase 2: gj ̸= g1

Using (3.3) for l = 1, we get cLHS = 2 · 1
2t

and cRHS = 1
2tk

. Thus,

cLHS = cRHS ⇒ tk = t − 1 ⇒ t ≥ 2. Using (3.3) for l = j, cLHS ∈

{0, 2 · 1
2t
} ≤ 1

2
while cRHS ∈ {1, 1 + 1

2tk
} ≥ 1. Thus, cLHS ̸= cRHS

giving us a ⇒⇐. Thus, 2 · gi is unique in this case.

Subcase 3: gj,gk ∈ supp(gH) \ Vg.

Using (3.3) for l = 1, we get cLHS = 2 · 1
2t

and cRHS = 1

2tj
+ 1

2tk
. Thus,

cLHS = cRHS ⇒ t = tj = tk. Since gj ̸= gk, there exists some gz ∈ Vg

that generates gj but not gj. Using (3.3) for l = z, cRHS = 1

2tj
= 1

2t
and

cLHS ∈ {0, 2 · 1
2t
. Thus, cLHS ̸= cRHS ⇒ we have a ⇒⇐. Thus, 2 · gi is

unique in this case.
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Thus, we see that 2 · gi is unique for all i ∈ [t] except n − 1 cases. Thus we get

that ∥f∥ ≥ t− (n− 1). Using Definition 3.1, this means ∥f∥ ≥ nΩ(log n) − (n− 1) =

Ω(∥gH∥)

We will now look at another class of polynomials which has “sparse” factors.

Definition 3.10. (Uniform convex polynomial) Let g ∈ F[x]. Let Vg = {g1, ...,gt}

denote set of points that act as vertices for the polytope pf g. Define

UCCg =

{∑
i∈S

1

|S|
gi | ϕ ⊂ S ⊆ Vg

}

Let Eg be some subset of UCCg. Then, g is called an uniform convex polynomial if

supp(g) = Vg ∪ Eg.

Remark 3.11. Note that |UCCg| ≤ 2t − 1 where t = |Vg|. Thus, such polynomials

can be “dense” while having only a “sparse” vertex set.

Theorem 3.12. Let F be a field of char ̸= 2 and g ∈ F[x] be a uniform convex

polynomial with linearly independent vertices. Let f = g2. Then, ∥f∥ ≥ ∥g∥.

Proof. Let supp(g) = {g1, ...,gT} with Vg = V (CS(supp(g)) = {g1, ...,gt}. For any

point gr ∈ supp(g), let mgr denote the monomial corresponding to it in g. We have,

g = α1mg1 + ...+ αTmgT
where αi ∈ F

f = g2 ⇒ f =
T∑
i=1

α2
im

2
gi
+

T∑
i=1

T∑
j=1

2αiαjmgi
mgj

When F has char = 2, the terms containing 2αiαjmgi
mgj

vanish. Hence, here we

are only looking at fields with char ̸= 2.
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Consider any internal point gp in g such that it is the uniform convex combination

of gi1 , ...,gik from Vg. Formally,

gp =
1

k

k∑
l=1

gil ; il ∈ [t]

We claim that for all l ∈ [k], the monomial mgp ·mgil
in f = g2 can’t be cancelled

by any other monomial in f . We will show this using the linear independence of

vertices of g.

Without loss of generality, let l = 1. Suppose that mgp ·mgi1
is cancelled by some

monomial. Then, ∃ga,gb ∈ supp(g) such that

ga + gb = gp + gil ⇒ ga + gb =
1

k

k∑
l=1

gil + gi1 (3.7)

Since Vg has independent vertices, in the above equation the coefficient for each

vertex must match in both sides.

Case 1: ga,gb ∈ Vg

Suppose ga = gi1 ⇒ gb = gp which is a ⇒⇐ as gp is an internal point and gb

a vertex. Hence ga ̸= gi1 . Similarly, gb ̸= gi1 . Thus, looking at the coefficients

for the vertex gi1 in (3.7), we get that cLHS = 0 and cRHS = 1 + 1
k
̸= cLHS.

Hence, there don’t exist any such ga,gb.

Case 2 : ga ∈ Vg,gb ∈ supp(g) \ Vg

Suppose ga = gi1 ⇒ gb = gp. But this would give a term 2αaαbmgamgb
and

won’t lead to a cancellation. When ga ̸= gi1 , looking at coefficient of gi1 in

(3.7), cRHS = 1 + 1
k
and cLHS ∈ {0, 1

tb
}, where tb is the number of vertices

required to generate gb. Since, gb is an internal point, tb ≥ 2 implying that

cLHS ≤ 1
2
̸= cRHS. Hence, there don’t exist any such ga,gb.

Case 3 : ga,gb ∈ supp(g) \ Vg

Looking at coefficient of gi1 in (3.7), cRHS = 1 + 1
k
and cLHS ∈ {0, 1

ta
, 1
tb
, 1
ta
+
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1
tb
} ≤ 1

ta
+ 1

tb
≤ 1

2
+ 1

2
= 1 < cRHS. Thus, cLHS ̸= cRHS. Hence, there don’t

exist any such ga,gb.

Hence, we see that product of each internal point in g with atleast one vertex survives

in f . Also, by item (2) of Theorem 2.15, we know that each vertex of g survives in

f . Thus, we have ∥f∥ ≥ ∥g∥.

3.3 Some limitations and counterexamples

We now look at some limitations of our proof techniques and explore why they can’t

be generalised further, by listing some counterexamples.

1. A natural extension to consider for the approach used in Theorem 3.12 would

be to extend it to polynomials where the internal points can be non-uniform

convex combinations of vertices. We now shown an example of a polynomial

for which this fails.

Example 3.1. Let g be a polynomial in F[x] such that

supp(g) =

{
v1,v2,

3v1 + v2

4
,
7v1 + v2

8

}

Clearly, v1,v2 constitute the vertex set, and the others are internal points.

Then,
3v1 + v2

4
+ v1 = 2 · 7v1 + v2

8

refuting the claim that we make in the proof of Theorem 3.12.

2. Taking inspiration from item (2) of Theorem 2.15, a natural extension to in-

vestigate is the following:

Conjecture 3.13 (Uniquely generated set). Let f = g · h with Pf = Pg + Ph.

Then, there exists a general set S ⊋ Vg such that for every point u ∈ S, there
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exists a point v ∈ Ph such that u+ v is uniquely generated in Pg + Ph, that is

u+ v ̸= u′ + v′ for any other u′ ∈ Pg and v′ ∈ Ph.

We will now provide a counterexample to the above conjecture.

Example 3.2. Consider the case of f = g2. Then for all u ̸= v in supp(g),

we know that u + v is trivially also generated as v + u. Therefore, at most

only the 2u ∈ Pg + Ph can be uniquely generated.

Let Z = {z1, z2, ..., zn} where n = 2m for some m ∈ Z. Let Zk denotes the set

formed by taking the uniform convex combination of any k points from Z, i.e.,

Zk =

{
zi1 + zi2 + ...+ zik

k
| 0 < i1 < i2 < ... < ik ≤ n

}

Thus, |Zk| =
(
n
k

)
.

Define supp(g) = Z1 ∪ Z2 ∪ Z4 ∪ Z8 ∪ ... ∪ Zn
2
. Thus,

|supp(g)| =
m−1∑
t=1

(
n

2t

)
≥
(

n

2m−1

)
=

(
n
n
2

)
≈ exp(n) (using Lemma A.8)

Also,

Vg = V (CS(supp(g))) = Z1 ⇒ |Vg| = n

Thus, this is a “dense” polynomial with a “sparse” vertex set.

Notice that for k > 1, for any g1 ∈ Zk ⊆ supp(g), there exist g2,g3 ∈ Z k
2
⊆

supp(g) such that 2 · g1 = g2 + g3.

Thus, in f = g2, the only uniquely generated monomials 2u correspond to the

vectors u in Z1 inside supp(g). Hence, we have only n uniquely generated

points in f = g2. Thus, it is possible that we might have an f with ∥f∥ = n

and its factor g having ∥g∥ = exp(n).

Thus, a purely combinatorial approach to the factor sparsity problem which

tries to get a bound by analysing the uniquely generated points in f = g · h

can give us a “sparse” polynomial with “dense” factors. Hence, this approach

can’t be used to prove Conjecture 1.1.



Chapter 4

Conclusions and future work

In conclusion, we looked at upper bounds for sparsity of factors of s− sparse poly-

nomials with bounded individual degree with the view of resolution of the Con-

jecture 1.1. We analysed the best known bound ([BSV20]) currently by looking

at it’s limiting case, and showed that the polynomial representation of it in-fact

doesn’t refute polynomial sparsity conjecture. We also gave improved factor spar-

sity bounds for certain special classes of polynomials. Additionally, we showed the

limitations of our proof techniques and some approaches that won’t help in solving

the problem. However, there still remains a lot of scope for work in this problem.

The most important question still remains establishing existence/non-existence of

polynomial sparsity of factors of polynomials of bounded individual degree. The

best lower bound known to us is sd over general fields, as shown in Example 1.1.

However, the polynomial considered in that example is a symmetric polynomial, for

which an sO(d2 log d) upper bound on the factor-sparsity of an s-sparse, symmetric

polynomials with individual degree ≤ d has already been established in [BS22]. For

non-symmetric polynomials, the best known lower bound is even “smaller” than sd

while the best known upper bound result is sO(d2 log n) by [BSV20]. Thus, there re-

mains a considerable gap between the upper bound and lower bounds, and is a very

intriguing question to settle.
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Additional theorems and proofs

Theorem A.1. (Carathéodory theorem) Let M ∈ Rn be a finite set. Let µ ∈

CS(M). Then, µ can be written as a convex combination of atmost n+ 1 points in

M .

Proof. If |V (M)| ≤ n+1, then the claim always holds, as any point inside the convex

hull of M can be expressed as a convex combination of the vertices.

Otherwise, let V (M) = {x1, ...,xr} where r > n+ 1. Then, xi − xr ∀i ∈ [r − 1] are

linearly dependent, as there are atleast n+ 1 such vectors in Rn. Thus, ∃βi s.t. not

all are 0 and
∑r−1

i=1 βi(xi − xr) = 0. Define βr = −
∑r−1

i=1 βi. Then,

r−1∑
i=1

βi(xi − xr) =
r−1∑
i=1

βixi − (
r−1∑
i=1

βi)xr =
r−1∑
i=1

βixi + βrxr =
r∑

i=1

βixi = 0 (A.1)

r∑
i=1

βi =
r−1∑
i=1

βi + βr = 0 (A.2)

Now, for any point µ ∈ CS(M),

µ =
∑r

i=1 λixi where λi ≥ 0 ∀i ∈ [r], and
∑r

i=1 λi = 1

Using A.1 and A.2, µ =
∑r

i=1 λixi − α(
∑r

i=1 βixi) =
∑r

i=1(λi − αβi)xi where∑r
i=1(λi −αβi) =

∑r
i=1 λi −α(

∑r
i=1 βi) = 1. Thus if we can show that λi −αβi ≥ 0
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for all i ∈ [r], this would also represent a convex combination.

Now, ∀i ∈ [r] s.t. βi ≤ 0, we have λi − αβi ≥ 0. Let T = {j | βj ≥ 0}. Set

α = minj∈T{
λj

βj

} , k = argminj∈T{
λj

βj

} (A.3)

Now ∀ i ∈ T, we have λi − αβi = λi − λk

βk
.βi ≥ λi − λi

βi
βi ≥ 0. Also, λk − αβk = 0.

With α, k as per A.3, we get µ =
∑k−1

i=1 (λi−αβi)xi+
∑r

i=k+1(λi−αβi)xi and hence

a convex combination of only r − 1 points. Repeat the process until you get µ as

a convex combination of n + 1 points. We can always do this as for all values of

r > n+ 1, as we will have linear dependence between the chosen vectors.

Theorem A.2. (Chernoff-Hoeffding’s inequality) Let θ1, ..., θm be identical inde-

pendently distributed random variables such that E(θi) = µ and P(a ≤ θi ≤ b) = 1.

Then,

∀ ϵ > 0, P

(∣∣∣∣ 1m
m∑
i=1

θi − µ

∣∣∣∣ > ϵ

)
≤ 2 exp

(
−2mϵ2

(b− a)2

)

Theorem A.3. Let Vq be a q − dimensional vector space over a finite field Fp.

Then,

1. Number of sets of basis for a k−dimensional subspace W is equal to
∏k−1

i=0 (p
k−pi)

2. Number of k−dimensional subspaces W is equal to
∏k−1

i=0 pq−pi∏k−1
i=0 pk−pi

Proof. 1) Cardinality ofW = pk. For finding a basis, we need k linearly independent

vectors, thus we can choose the first vector v1 in pk − 1 ways, as 0 can’t be part

of any basis. For second choice, we need to avoid all vectors in span {0,v1} , and

hence can make the choice in pk − p ways. Proceeding similarly, the rth choice can

be made in pk − pr−1 ways. Thus the total number of basis =
∏k−1

i=0 (p
k − pi).

2) To generate a k−dimensional subspace W , we only need k linearly independent

vectors from Vq. Using a similar argument as above, we can pick them in
∏k−1

i=0 p
q−pi

ways. But from 1), we know that each such W will have
∏k−1

i=0 (p
k−pi) sets of basis.

Hence, number of distinct k−dimensional subspaces W is equal to
∏k−1

i=0 pq−pi∏k−1
i=0 pk−pi

.
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Corollary A.4. Total Number of subspaces of a q − dimensional vector space Vq

over a finite field Fp is pΩ(q2).

Proof. Let Sn denote number of n − dimensional subspaces of Vq. Let T denote

total number of subspaces.

T = S0 +

q∑
i=1

Si = 1 +

q∑
k=1

(∏k−1
i=0 p

q − pi∏k−1
i=0 p

k − pi

)
≥

q∑
k=1

(∏k−1
i=0 p

q − pk−1∏k−1
i=0 p

k − 1

)

≥
q∑

k=1

(
(pq − pk−1)k

(pk − 1)k

)
≥

q∑
k=1

(
(pq − pk)k

pk2

)
≥ (pq − p

q
2 )

q
2

p
q
4
2 = (p

q
2 − 1)

q
2 = pΩ(q2)

Lemma A.5. Let V be a vector space over F. Let S ⊆ V be a subspace, and S⊥ be

the orthogonal complement of S. Then, S ⊕ S⊥ = V .

Proof. S⊥ = {v | ⟨v,u⟩ ∀ u ∈ S}. This implies that 0 ∈ S⊥. Also, let x,y ∈ S⊥.

Then for any u ∈ S, ⟨ax + by,u⟩ = ⟨ax,u⟩ + ⟨by,u⟩ = 0. Thus ax + by ∈ S⊥ for

any a, b ∈ F. Hence, we can see that S⊥ is a subspace.

Suppose, u ∈ S, S⊥ ⇒< u,u >= 0 ⇒ u = 0. Thus, S ∩ S⊥ = {0}.

Also, S + S⊥ ⊆ V trivially as both are subspaces of V . Consider v ∈ V . Let

S = {x1, ...,xm}, S⊥ = {y1, ...,yn}.

Case 1: v ∈ span(S), then v =
∑m

i=1 αixi ⇒ v ∈ S + S⊥.

Case 2: v ∈ span(S⊥), then v =
∑n

i=1 βiyi ⇒ v ∈ S + S⊥.

Case 3: v /∈ span(S⊥), span(S). v =
∑m

i=1 αixi + βz where z ⊥ xi ∀i. Thus, z can be

written as a linear combination of yj. Therefore, v =
∑m

i=1 αixi+
∑n

i=1 βiyi ⇒

v ∈ S + S⊥.

Thus, V = S + S⊥. Since S ∩ S⊥ = {0} ⇒ S ⊕ S⊥ = V .
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Theorem A.6. (Uniqueness of orthogonal complements) Let V ⊂ Fn be a vector

space. Unique subspaces of V have unique orthogonal complements.

Proof. Suppose S⊕T1 = S⊕T2 = V . Consider t ∈ T1 ⊆ V ⇒ t ∈ S⊕T2 ⇒ t = s+t′

for some s ∈ S, t′ ∈ T2. Taking dot product with s, we get ⟨t, s⟩ = ⟨s, s⟩+ ⟨t′, s⟩ ⇒

0 = ⟨s, s⟩+ 0 ⇒ s = 0 ⇒ t = t′ ⇒ T1 ⊆ T2. Similarly T2 ⊆ T1. Hence T1 = T2.

Claim A.7. Let y ̸= 0 ∈ Fn
2 Then,

∑
z∈Fn

2
(−1)⟨y,z⟩ = 0

Proof. Proof by induction on n.

Basis (n=1): We have y ̸= 0 giving us y = 1. Thus
∑

z∈F2
(−1)⟨1,z⟩ = (−1)⟨1,0⟩ +

(−1)⟨1,1⟩ = 1 + (−1) = 0

Hypothesis: Let it be true for all positive integers n < m.

Induction: For n = m.

∑
z∈Fm

2

(−1)⟨y,z⟩ =
∑

z′∈Fm−1
2

(−1)⟨y,(z
′,0)⟩ + (−1)⟨y,(z

′,1)⟩

Case 1: Last bit of y is 1, i.e. ym = 1.

Then, 1 + ⟨y, (z′, 0)⟩ = ⟨y, (z′, 1)⟩ ⇒ (−1)⟨y,(z
′,0)⟩ + (−1)⟨y,(z

′,1)⟩ = 0

Case 2: Last bit of y is 0, i.e. ym = 0.

Then, ⟨y, (z′, 0)⟩ = ⟨y, (z′, 1)⟩ ⇒ (−1)⟨y,(z
′,0)⟩+(−1)⟨y,(z

′,1)⟩ = 2(−1)⟨y,(z
′,0)⟩ =

2(−1)⟨(y
′,0),(z′,0)⟩ = 2(−1)⟨y

′,z′⟩ where y′, z′ ∈ Fm−1
2 . Finally we get,∑

z∈Fm
2
(−1)⟨y,z⟩ =

∑
z′∈Fm−1

2
2(−1)⟨y

′,z′⟩ = 0 (by Hypothesis)

Lemma A.8. (
2n

n

)
≈ Ω(exp(n))
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Proof. By Stirling’s approximation, n! ≈
√
2nπ(n

e
)n.

(
x+ y

x

)
=

(x+ y)!

x!y!
≈
√

2(x+ y)π(x+y
e
)x+y

√
2xπ(x

e
)x

√
2yπ(y

e
)y

=
1√
2π

√
x+ y

xy

(x+ y)x+y

xx yy

⇒
(
x+ y

x

)
≈

√
1

2π

(
1

x
+

1

y

) (
1 +

y

x

)x (
1 +

x

y

)y

Using this, we get (
2n

n

)
≈ 1√

nπ
4n = Ω(exp(n))

Theorem A.9 (Turan’s theorem [Aig95]). Let G = (V,E) be a graph on n vertices

without a k−clique. Then,

|E| ≤ (k − 2)n2

2(k − 1)
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