Abstract. We present a single common tool to strictly subsume all known cases of polynomial time blackbox polynomial identity testing (PIT), that have been hitherto solved using diverse tools and techniques, over fields of zero or large characteristic. In particular, we show that polynomial (in the size of the circuit) time hitting-set generators for identity testing of the two seemingly different and well studied models – depth-3 circuits with bounded top fanin, and constant-depth constant-read multilinear formulas – can be constructed using one common algebraic-geometry theme: Jacobian captures algebraic independence. By exploiting the Jacobian, we design the first efficient hitting-set generators for broad generalizations of the above-mentioned models, namely:

• depth-3 (ΣΠΣ) circuits with constant transcendence degree of the polynomials computed by the product gates (no bounded top fanin restriction), and
• constant-depth constant-occur formulas (no multilinear restriction).

Constant-occur of a variable, as we define it, is a more general concept than constant-read. Also, earlier work on the latter model assumed that the formula is multilinear. Thus, our work goes further beyond the related results obtained by Saxena & Seshadhri (STOC 2011), Saraf & Volkovich (STOC 2011), Anderson et al. (CCC 2011), Beecken et al. (ICALP 2011) and Grenet et al. (FSTTCS 2011), and brings them under one unifying technique.

In addition, using the same Jacobian based approach, we prove exponential lower bounds for the immanant (which includes permanent and determinant) on the same depth-3 and depth-4 models for which we give efficient PIT algorithms. Our results reinforce the intimate connection between identity testing and lower bounds by exhibiting a concrete mathematical tool — the Jacobian. The Jacobian is equally effective in solving both the problems on certain interesting and previously well-investigated (but not well understood) models of computation.

Key words. algebraic independence, blackbox, circuits, depth, identity testing, immanant, Jacobian, lower bound, Vandermonde

AMS subject classifications. 68W30, 68Q25

1. Introduction and examples. A polynomial in many variables, when written down verbosely as a sum of monomials, might have a large expression. Arithmetic circuits, on the other hand, provide a succinct way to represent multivariate polynomials. An arithmetic circuit, consisting of addition (+) and multiplication (×) gates, takes several variables as input and computes a polynomial in those variables. The study of arithmetic circuits - as to which algorithmic questions on polynomials can be resolved efficiently in this model of computation, and which polynomials do not admit any polynomial-sized circuit representation - forms the foundation of algebraic complexity theory.

One particular algorithmic question, the problem of polynomial identity testing (PIT), occupies a pivotal position in the theory of arithmetic circuit complexity. It is the problem of deciding if the output of a given arithmetic circuit is the identically zero polynomial. Being such an elementary problem, identity testing has enjoyed its status of prime importance by appearing in several fundamental results including...
primality testing [AKS04], the PCP theorem [ALM+98] and the IP = PSPACE result [LFKN90, Sha90], among many others like graph matching [Lov79, MVV87], polynomial interpolation [CDGK91], matrix completion [IKS10], polynomial solvability [KY08], factorization [SV10], learning of arithmetic circuits [KS06] and the geometric complexity theory approach [Mul12, Mul11]. What is more intriguing is that there is an intimate connection between identity testing and lower bounds [KI03, HS80, AvM10], especially the problem of separating the complexity classes VP from VNP (which must necessarily be shown before showing \(P \neq NP \) [Val79, SV85]).

Proving \(VP \neq VNP \) amounts to showing that an explicit class of polynomials, like the Permanent, cannot be represented by polynomial-sized arithmetic circuits, which in turn would follow if identity testing can be derandomized using a certain kind of pseudo-random generator [Agr05, KI03]. (Note that identity testing has a simple and efficient randomized algorithm - pick a random point and evaluate the circuit at it [Sch80, Zip79, DL78].)

During the past decade, the quest for derandomization of PIT has yielded several results on restricted models of circuits. But, fortunately, the search has been made more focused by a line of work [CKKS13, Koi12, AV08, VSBR83] which states that a polynomial time blackbox derandomization of identity testing for depth-3 circuits (via a certain pseudo-random generator) implies a quasi-polynomial time derandomization of PIT for poly-degree\(^1\) circuits. By polynomial time blackbox test for a circuit class \(C \), we mean:

Construct a polynomial-sized list of points with small integer coordinates such that any non-zero circuit in \(C \) evaluates to a non-zero value on one of the points. (For characteristic \(p > 0 \), one works with a small field extension, where each coordinate of a point is an element of the extension field.)

A Turing machine that runs in time polynomial in the parameters defining \(C \) (precisely, size of circuits in \(C \)) and outputs such a list of points is also called a polynomial time hitting-set generator for \(C \).

With depth-3 as the final frontier, the results that have been achieved so far include polynomial time hitting-set generators for the following models:

- depth-2 (\(\Sigma \Pi \)) circuits (equivalently, the class of sparse polynomials) [KS01],
- depth-3 (\(\Sigma \Pi \Sigma \)) circuits with constant top fanin [SS11],
- constant-depth constant-read multilinear formulas [AvMV11, SV11] (\& their sparse-substituted variants),
- circuits generated by sparse polynomials with constant transcendence degree [BMS11].

To our knowledge, these are the only instances for which polynomial time hitting-set generators are known. The result on depth-3 bounded top fanin circuits is based upon the Chinese Remaindering technique of [KS07] and the ideal-theory framework studied in [SS10]. Their work followed after a sequence of developments in rank bound estimates [DS05, KS08, SS09, KS09b, SS10], some using incidence geometry - although, this result in particular is not rank based. On the other hand, the work on constant-depth multilinear formulas [AvMV11, SV11] is obtained by building upon and extending the techniques of other earlier results [KMSV10, SY09, SY08] on ‘read-once’ models. At a high level, this involved a study of the structure of multilinear formulas under the application of partial derivatives with respect to a

\(^1\)Circuits computing polynomials with degree bounded by a polynomial function in the size of the circuit.
carefully chosen set of variables and invoking depth-3 rank bounds (survey [SY10]).

More recently, a third technique has emerged in [BMS11] which is based upon the abstract concept of algebraic independence of polynomials and a related computational handle called the Jacobian. They showed that for any given poly-degree circuit C and sparse polynomials f_1, \ldots, f_m with constant transcendence degree, a hitting-set for $C(f_1, \ldots, f_m)$ can be constructed in polynomial time.

Our contribution. With these diverse techniques floating around the study of hitting-set generators, one wonders: could there be one single tool that is sufficiently powerful to capture all these models? Is there a common feature in these different models that can be used to construct unified PITs? The answer to both these questions, as we show in this work, is yes. The key to this lies in studying the properties of the Jacobian, a mathematical object lying at the very core of algebraic-geometry. As for the ‘unique feature’, notice that in the above four models some ‘parameter’ of the circuit is ‘bounded’ - be it bounded top fanin, bounded read of variables, or bounded transcendence degree. (Bounded depth should not be seen as an extra restriction on the circuit model because of [GKKS13, AV08]. At an intuitive level, it seems to us that it is this ‘bounded parameter’-ness of the circuit that makes the Jacobian perform at its best.

In the process of finding a universal technique, we significantly strengthen the earlier results. We construct hitting-set generators not only for depth-3 circuits with bounded top fanin, but also for circuits of the form $C(T_1, \ldots, T_m)$, where C is a poly-degree circuit and T_1, \ldots, T_m are products of linear polynomials, with bounded transcendence degree. In case of depth-3 circuits, $C(T_1, \ldots, T_m)$ is simply $T_1 + \ldots + T_m$. Further, we remove the restriction of multilinearity totally from the constant-depth constant-read model and construct the first efficient hitting-set generator for this class. The condition of constant-read is also replaced by the more general notion of constant-occur.

At this point, one is faced with a natural question: how effective is the Jacobian in proving lower bounds? The intimate connection between efficient algorithms and lower bounds has recurrently appeared in various contexts [Wil11, Rag08, Uma03, PSZ00, IW97]. For arithmetic circuits, this link is provably tight [KI03, Agr05, AV08]: Derandomizing identity testing is equivalent to proving circuit lower bounds. Which means, one might have to look for techniques that are powerful enough to handle the dual worlds of algorithm design and lower bounds with equal effectiveness - for e.g. the partial derivative technique has been used to prove lower bounds and identity testing (albeit non-blackbox) on restricted models (survey [CKW11]); the τ-conjecture is another such example [GKPS11]. In this work, we demonstrate the utility of the Jacobian in proving exponential lower bounds for the immanant (which includes determinant and permanent) on the same depth-3 and depth-4 models for which we give efficient PIT algorithms. In particular, this includes depth-4 constant-occur formulas, depth-4 circuits with constant transcendence degree of the underlying sparse polynomials (which significantly generalizes the lower bound result in [GKPS11]), and depth-3 circuits with constant transcendence degree of the polynomials computed by the product gates. To our knowledge, all these lower bounds are new and it is not known how to prove them using earlier techniques. A summary of the results in this paper is provided in Figure 1.1.

Remark - The algorithms of [SST11, SY11] and [AvMY11] work over any field, whereas ours work under the assumption that the field characteristic is zero or large.
Also, [AVMV11] presents a quasi-polynomial time algorithm for arbitrary depth, constant read, multilinear formula - a result which we do not know yet how to capture using our technique. Two other quasi-polynomial hitting sets that our work does not capture are the hitting sets for constant-depth set-multilinear circuits [ASS13] and read-once oblivious ABPs [FS13].

1.1. A tale of two PITs (& three lower bounds). A set of polynomials \(f = \{f_1, \ldots, f_m\} \subset \mathbb{F}[x_1, \ldots, x_n] \) (in short, \(\mathbb{F}[x] \)) is said to be algebraically independent over \(\mathbb{F} \) if there is no nonzero polynomial \(H \in \mathbb{F}[y_1, \ldots, y_m] \) such that \(H(f_1, \ldots, f_m) \) is identically zero. A maximal subset of \(f \) that is algebraically independent is a transcendence basis of \(f \) and the size of such a basis is the transcendence degree \(^3\) of \(f \) (denoted trdeg\(f \)). Our first theorem states:

Theorem 1.1. Let \(C \) be a poly-degree circuit of size \(s \) and each of \(T_1, \ldots, T_m \) be a product of \(d \) linear polynomials in \(\mathbb{F}[x_1, \ldots, x_n] \) such that \(\text{trdeg} \{T_1, \ldots, T_m\} \leq r \). A hitting-set for such \(C(T_1, \ldots, T_m) \) can be constructed in time polynomial in \(n \) and \((sd)^r \), assuming char(\(\mathbb{F} \)) = 0 or \(> d^r \).

If \(C \) is a single \(+ \) gate, we get a hitting-set generator for depth-3 circuits with constant transcendence degree of the polynomials computed by the product gates (there is no restriction on top fanin).

Our second result uses the following generalization of read-\(k \) formulas (where every variable appears in at most \(k \) leaf nodes of the formula) to occur-\(k \) formulas. Two reasons behind this generalization are: One, to accommodate the power of exponentiation - if we take the \(e \)-th power of a read-\(k \) formula using a product gate, the ‘read’ of the resulting formula goes up to \(ek \) - we would like to avoid this superfluous blow up in read. Two, a read-\(k \) formula has size \(O(kn) \), which severely hinders its power of computation - for instance, determinant and permanent cannot even be expressed in this model when \(k \) is a constant [Kal85]. This calls for the following definition.

Definition 1.2. An occur-\(k \) formula is a rooted tree with internal nodes labelled by \(+ \) and \(\times \lambda \) (power-product gate). A \(\times \lambda \) gate, on inputs \(g_1, \ldots, g_m \) with incoming edges labelled \(e_1, \ldots, e_m \in \mathbb{N} \), computes \(g_1^{e_1} \cdots g_m^{e_m} \). At the leaves of this tree are depth-

\(^3\)Estimates the bit complexity of the hitting-set generator; constant factors not stressed (also in higher exponents).

\(^2\)We assume a zero or large characteristic.

\(^3\)Since algebraic independence satisfies the matroid property cf. [Oxl92], transcendence degree is well-defined.
2 formulas computing sparse polynomials (leaf nodes), where every variable occurs in
at most k of these sparse polynomials.

Size of a $\times \lambda$ gate is defined as the integer $(e_1 + \cdots + e_m)$ associated with its incoming
edges, while size of a $+$ gate is counted as one. Size of a leaf node is the size of the
corresponding depth-2 formula. With these conventions, size of an occur-k formula is
defined to be the total size of all its gates (and leaf nodes) plus the number of edges.
Note that any polynomial can be expressed as occur-1 formula albeit of exponential
size.

Depth is defined to be the number of layers of $+$ and $\times \lambda$ gates plus 2 (the ‘plus 2’
accounts for the depth-2 formulas at the leaves). Thus, occur-k is more relaxed than
the traditional read-k as it packs the “power of powering” (to borrow from [GKPS11]),
and the leaves are sparse polynomials (at most kn many) whose dependence on its
variables is arbitrary. E.g. $(x_3^3 x_2 + x_1^2 x_2^2 + x_1 x_4)^e$ is not read-1 but is trivially depth-3
occur-1.

Theorem 1.3. A hitting-set for any depth-D occur-k formula of size s can be
constructed in time polynomial in s^R, where $R = (2k)^{2D-2^D}$ (assuming char(\mathbb{F}) = 0
or $> s^R$).

A tighter analysis for depth-4 occur-k formulas yields a better time complexity.
Note that a depth-4 occur-k formula allows unbounded top fanin. Also, it can be
easily seen to subsume $\Sigma \Pi \Sigma \Pi(k)$ multilinear formulas studied by [SV11, KMSV10].
This is because, any multilinear $\Sigma \Pi \Sigma \Pi(k)$ formula is a sum of k products of sparse
polynomials and every variable appears in at most one of the sparse polynomials in
every such product.

Theorem 1.4. A hitting-set for any depth-4 occur-k formula of size s can be
constructed in time polynomial in s^{k^2} (assuming char(\mathbb{F}) = 0 or $> s^{4k}$).

For constant-depth, the above theorems not only remove the restriction of multi-
linearity (and relax read-k to occur-k), but further improve upon the time complex-
ity of [AvMV11] and [SV11]. The hitting-set generator of [AvMV11] works in time
$n^{O(k^2 + O(kD))}$, and hence is super-exponential when $k = \Omega(s^{\epsilon/2D-2^D})$ for any positive
$\epsilon < 1$ and a constant D, whereas the generator in Theorem 1.3 runs in sub-exponential
time for the same choice of parameters. The running time of [SV11] is $s^{O(k^3)}$, which
is slightly worse than that of Theorem 1.4.

Since any polynomial has an exponential-sized depth-2, occur-1 formula (just the
sparse representation), proving lower bounds on this model is an interesting proposi-
tion in its own right.

Definition 1.5. [LR34] Let S_n denote the permutation group on n points
and \mathbb{C}^\times be the nonzero complex numbers. For any map $\chi : S_n \to \mathbb{C}^\times$, the
immanant of a matrix $M = (x_{ij})_{n \times n}$ with respect to χ is defined as $\text{Imm}_\chi(M) = \sum_{\sigma \in S_n} \chi(\sigma) \prod_{i=1}^n x_{i\sigma(i)}$.
Determinant & permanent are special cases of the immanant with χ as the alternating
sign character & the identity character, respectively. Denote $\text{Imm}_\chi(M)$ by Imm_n for
an arbitrarily fixed χ.

Theorem 1.6. Any depth-4 occur-k formula that computes Imm_n must have size
$s = 2^{\Omega(n/k^2)}$ over any field of characteristic zero (even counting each $\times \lambda$ gate as size
one).
Thus, if each variable occurs in at most $n^{1/2-\varepsilon}$ ($0 < \varepsilon < 1/2$) many underlying sparse polynomials, it takes an exponential sized depth-4 circuit to compute Imm_n. Our next result is an exponential lower bound on the model for which hitting-set was developed in \cite{BMS11} (but no lower bound was shown). It is also an improvement over the result obtained in \cite{GKPS11} which holds only for more restricted depth-4 circuits over reals.

Theorem 1.7. Let C be any circuit. Let f_1, \ldots, f_m be sparse polynomials (of any degree) with sparsity bounded by s and their $trdeg$ bounded by r. If $C(f_1, \ldots, f_m)$ computes Imm_n then $s = 2^\Omega(n/r)$ over any field of characteristic zero.

Which means, any circuit involving fewer than $n^{1-\varepsilon}$ $\Sigma\Pi$-polynomials at the last levels, must have exponential size to compute Imm_n. (The models of Theorem 1.6 & 1.7 are incomparable). The next result is on the model for which hitting-set is given by Theorem 1.1.

Theorem 1.8. Let C be any circuit and T_1, \ldots, T_m be products of linear polynomials. If $C(T_1, \ldots, T_m)$ computes Imm_n then $trdeg_F\{T_1, \ldots, T_m\} = \Omega(n)$ over any field of characteristic zero.

Which means, any circuit involving only $o(n)$ many algebraically independent $\Pi\Sigma$-polynomials at the last levels cannot compute Imm_n.

A related lower bound is one by Shpilka and Wigderson \cite{SW02} who showed that any depth three circuit computing Det_n (the determinant of an $n \times n$ symbolic matrix) requires top fan-in $\Omega(n^2)$ and size $\Omega\left(\frac{n^4}{\log n}\right)$. Theorem 1.8 implies a top fan-in lower bound of $\Omega(n^2)$ for depth three circuits computing Det_n. In this regard, Shpilka and Wigderson’s result is stronger than the above theorem. On the other hand, Theorem 1.8 states that Det_n cannot be computed by a depth three circuit with large (possibly $\omega(n^2)$) number of product gates T_1, \ldots, T_m whose transcendence degree is $o(n)$. In this sense, the theorem says something stronger than a top fan-in lower bound.

1.2. Deterministic testing of algebraic independence.

The construction of hitting-set generators (stated in the previous section) also implies deterministic algorithms for certain special cases of the following problem: Given a set of polynomials as arithmetic circuits, check deterministically if they are algebraically independent. In fact, for these special cases we only require a blackbox access to the input circuits.\footnote{The classical (Jacobian-based) efficient algorithm for testing the algebraic independence of general circuits, over large or zero characteristic, is randomized and whitebox.}

In this respect, it can be said that our hitting-set generators (and to some extent the lower bounds) exist because these independence testers exist.

The proof of Theorem 1.1 yields the following tester.

Theorem 1.9. Given blackbox access to polynomials T_1, \ldots, T_r that are products of d linear polynomials in $\mathbb{F}[x_1, \ldots, x_n]$, there is a poly$(nd^r)$ time algorithm to test whether they are algebraically independent, assuming $\text{char}(\mathbb{F}) = 0$ or d'.\footnote{The classical (Jacobian-based) efficient algorithm for testing the algebraic independence of general circuits, over large or zero characteristic, is randomized and whitebox.}

Similarly, the proof of Theorem 1.3 yields the following tester.

Theorem 1.10. Let T_1, \ldots, T_r be n-variate degree d polynomials computed by depth-D occur-k formulas of size s and presented as blackboxes. There is an $(sdx)^R$-time algorithm, where $R = r \cdot (2k)^{2^{D-2^{D}}}$, to test whether $\{T_1, \ldots, T_r\}$ are algebraically independent, assuming $\text{char}(\mathbb{F}) = 0$ or s^R.\footnote{The classical (Jacobian-based) efficient algorithm for testing the algebraic independence of general circuits, over large or zero characteristic, is randomized and whitebox.}
1.3. Our ideas. The exact reasons why our techniques work, where older ones failed, are extremely technical. However, we now give the motivating, but imprecise, ideas. To a set of products of sparse polynomials \(\{ T_1, \ldots, T_m \} \) we associate a polynomial - the Jacobian \(J(T_1, \ldots, T_r) \). It captures the algebraic independence of \(T_1, \ldots, T_r \) (assuming this to be a transcendence basis of the \(T_i \)'s). If we could find an \(r \)-variate linear map \(\varphi \) that keeps \(\varphi \circ J(T_1, \ldots, T_r) \) nonzero, then \(\varphi(T_1), \ldots, \varphi(T_r) \) are again algebraically independent and it can be shown that for any \(C \): \(C(T_1, \ldots, T_m) = 0 \) iff \(C(\varphi(T_1), \ldots, \varphi(T_m)) = 0 \). Since \(T_i \)'s are not sparse, the Jacobian is usually a difficult polynomial to work with, and so is finding \(\varphi \). However, for the special models in this paper we are able to design \(\varphi \) - mainly because the Jacobian (being defined via partial derivatives) has a nice ‘linearizing effect’, on the circuit product gates, that factors itself. The map \(\varphi \) ultimately provides a hitting-set for \(C(T_1, \ldots, T_m) \), as we reduce to a PIT of a polynomial over “few” (roughly equal to \(r \)) variables.

The initial idea for lower bounds is similar. Suppose \(\text{Imm}_n = C(T_1, \ldots, T_m) \). Then, by algebraic dependence, \(J(\text{Imm}_n, T_1, \ldots, T_r) = 0 \). Our proofs then exploit the nature of this identity for the special models. This part requires proving certain combinatorial properties of the immanant.

Remark - The dependence of our results on the field characteristic is because the Jacobian criterion, which involves taking derivatives, is used to characterize algebraic independence. We believe that the condition on the field characteristic in our results is probably not a fundamental requirement - rather, lifting this condition is perhaps a technical hurdle due to the lack of a suitable criterion that captures algebraic independence for low characteristic fields. (Intuitively, a low characteristic enables more ‘cancellations’, polynomial identities and configurations \([SS10]\).) Recently, this direction of research is investigated in \([MSS14]\), where a new criterion for algebraic independence, namely the Witt-Jacobian, is presented that works even for small characteristic. Applying this new criterion it is shown in \([MSS14]\) that the problem of testing algebraic independence is in \(\text{NP}^{\text{gap}} \). However, it seems that this criterion is not yet effective enough to be applied to our problem and lift the restriction on field characteristic from our results.

2. Preliminaries: Jacobian and faithful homomorphisms. Our contribution, in this section, is an elementary proof of Theorem \([2.3]\) which was originally proved in \([BMS11]\) using Krull’s \textit{Hauptidealsatz}. Here, we state the main properties of the Jacobian and faithful homomorphisms without proofs - for details, refer to \([BMS13]\).

Definition 2.1. The Jacobian of a set of polynomials \(\mathbf{f} = \{ f_1, \ldots, f_m \} \) in \(\mathbb{F}[x_1, \ldots, x_n] \) is defined to be the matrix \(J_\mathbf{x}(\mathbf{f}) = (\partial_{x_j} f_i)_{m \times n} \), where \(\partial_{x_j} f_i = \partial f_i / \partial x_j \). Let \(S \subseteq \mathbf{x} = \{ x_1, \ldots, x_n \} \) and \(|S| = m \). Then \(J_S(\mathbf{f}) \) denotes the minor (i.e. determinant of the submatrix) of \(J_\mathbf{x}(\mathbf{f}) \) formed by the columns corresponding to the variables in \(S \).

Fact 2.2 (Jacobian criterion). Let \(\mathbf{f} \subset \mathbb{F}[\mathbf{x}] \) be a finite set of polynomials of degree at most \(d \), and \(\text{trdeg}_\mathbf{y} \mathbf{f} \leq r \). If \(\text{char}(\mathbb{F}) = 0 \) or \(\text{char}(\mathbb{F}) > d^r \), then \(\text{trdeg}_\mathbf{y} \mathbf{f} = \text{rank}_{\mathbb{F}(\mathbf{x})} J_\mathbf{x}(\mathbf{f}) \).

The proof of this fact may be found in \([BMS13]\).

Definition 2.3. A homomorphism \(\Phi : \mathbb{F}[\mathbf{x}] \to \mathbb{F}[\mathbf{y}] \) (\(\mathbf{y} \) is another set of variables) is said to be faithful for a finite set of polynomials \(\mathbf{f} \subset \mathbb{F}[\mathbf{x}] \) if \(\text{trdeg}_\mathbf{y} \mathbf{f} = \text{trdeg}_\mathbf{y} \Phi(\mathbf{f}) \).
Theorem 2.4 (Faithful is useful). Let Φ be a homomorphism faithful for $f = \{f_1, \ldots, f_m\} \subset \mathbb{F}[x]$. Then for any $C \in \mathbb{F}[y_1, \ldots, y_m]$, $C(f) = 0 \iff C(\Phi(f)) = 0$.

Proof. It is trivial to see that $C(f) = 0 \Rightarrow C(\Phi(f)) = 0$. Since Φ is faithful for f, there is a transcendence basis (say, f_1, \ldots, f_s) of f such that $\Phi(f_1), \ldots, \Phi(f_s)$ is a transcendence basis of $\Phi(f)$. Since $\{f_1, \ldots, f_s\}$ are algebraically independent, the field $\mathbb{F}(f_1, \ldots, f_s)$ is isomorphic to $\mathbb{F}(y_1, \ldots, y_s)$. Further, since every other f_i is algebraically dependent on $\{f_1, \ldots, f_s\}$, it is also algebraic over $\mathbb{F}(f_1, \ldots, f_s)$. Hence,

$$\mathbb{F}(f_1, \ldots, f_m) \equiv (\mathbb{F}(f_1, \ldots, f_s))(f_{s+1}, \ldots, f_m) \equiv (\mathbb{F}(f_1, \ldots, f_s))[f_{s+1}, \ldots, f_m]$$

In other words, the elements of the field $\mathbb{K} = \mathbb{F}(f)$ can be written as polynomials in f_{s+1}, \ldots, f_m with coefficients from $\mathbb{F}(f_1, \ldots, f_s)$. Suppose $C(f)$ is a nonzero element of \mathbb{K}, then there is an inverse $Q \in \mathbb{K}$ such that $Q \cdot C(f) = 1$. Since Q is a polynomial in f_{s+1}, \ldots, f_m with coefficients from $\mathbb{F}(f_1, \ldots, f_s)$, by clearing off the denominators of these coefficients in Q, we get an equation $Q \cdot C(f) = P(f_1, \ldots, f_s)$, where Q is a nonzero polynomial in f and P is a nonzero polynomial in f_1, \ldots, f_s. Applying Φ to both sides of the equation, we conclude that $C(\Phi(f)) = 1$, which is not possible as $\Phi(f_1), \ldots, \Phi(f_s)$ are algebraically independent and P is a nontrivial polynomial. \qed

Recipe for faithful homomorphisms. All the PITs in this paper proceed by constructing faithful homomorphisms for a certain set of polynomials. The following fact describes the changes in the Jacobian after a “change of variables”.

Fact 2.5 (Chain rule). For any finite set of polynomials $f \subset \mathbb{F}[x]$ and a homomorphism $\Phi : \mathbb{F}[x] \to \mathbb{F}[y]$, we have $\mathcal{J}_x(\Phi(f)) = \Phi(\mathcal{J}_x(f)) \cdot \Phi(x)$ (where Φ applied to a matrix/set refers to the matrix obtained by applying Φ to every entry).

Proof. Follows directly from the chain-rule of differentiation. \qed

The recipe for faithful homomorphisms uses the following “rank preserving linear maps” studied by Gabizon and Raz [GR05] Theorem 5.

Lemma 2.6 (Theorem 5 of [GR05]). Let A be a $r \times n$ matrix with entries in a field \mathbb{F}, and let t be an indeterminate. Then, \(\text{rank}_{\mathbb{F}(t)}(A \cdot (t^j))_{i \in [n], j \in [r]} = \text{rank}_{\mathbb{F}}A. \)

Lemma 2.7 (Recipe for faithful maps). Let $f \subset \mathbb{F}[x]$ be a finite set of polynomials of degree at most d, $\text{trdeg}_\mathbb{F} f \leq r$, and char($\mathbb{F}$) = 0 or $> d^r$. Let $\Psi : \mathbb{F}[x] \to \mathbb{F}[z]$ be a homomorphism such that $\text{rank}_{\mathbb{F}(x)}(\mathcal{J}_x(f)) = \text{rank}_{\mathbb{F}(z)}(\Psi(\mathcal{J}_x(f))).$

Then, the map $\Phi : \mathbb{F}[x] \to \mathbb{F}[z, t, y_1, \ldots, y_r]$ that maps, for all i, $x_i \mapsto \left(\sum_{j=1}^r y_j t^j \right)^i + \Psi(x_i)$ is a faithful homomorphism for f.

We stress that in the above lemma all we require from Ψ is that the rank of $\mathcal{J}_x(f)$ equals the rank of $\Psi(\mathcal{J}_x(f))$, which is just Ψ applied on each entry of $\Psi(\mathcal{J}_x(f))$. Note that $\Psi(\mathcal{J}_x(f))$ is not the Jacobian of $\Psi(f)$, and hence Ψ is not necessarily faithful for f. Here Ψ is just a map that preserves the non-zeroness of some minor of $\mathcal{J}_x(f)$ and hence Ψ could in principle be a scalar map. Of course, a scalar map can never be faithful to any non-trivial set of polynomials f. Nevertheless, the above recipe allows us to take any such map Ψ and modify it to a map Φ that is faithful for f.

Proof. Without loss of generality, let $\text{trdeg}_\mathbb{F} f = r$, which then (by Jacobian criterion) is the rank of $\mathcal{J}_x(f)$. We show that the matrix $\mathcal{J}_x(\Phi(f))$ is of rank r, which would imply (by Jacobian criterion) that $\text{trdeg}_{\mathbb{F}(x)}(\Phi(f)) = r$. Note that if $\text{trdeg}_{\mathbb{F}(x)}(\Phi(f)) = r$, then we also have $\text{trdeg}_\mathbb{F}(\Phi(f)) \geq r$. Since we know $\text{trdeg}_\mathbb{F}(f) = r$, this would force $\text{trdeg}_\mathbb{F}(\Phi(f)) = r$ as well.
Consider the projection J' of $\mathcal{J}_y(\Phi(f))$ obtained by setting $y_1 = \cdots = y_r = 0$.

$$J' = [\mathcal{J}_y(\Phi(f))]_{y=0} = [\Phi(J_x(f)) \cdot \mathcal{J}_y(\Phi(x))]_{y=0} = \Psi(J_x(f)) \cdot \mathcal{J}_y(\Phi(x))$$

where the second line follows simply by Fact 2.5 and the third line uses the fact that $\Phi(x_i)$ is linear in y.

Observe that the matrix $\mathcal{J}_y(\Phi(x))$ is exactly the Vandermonde matrix that is present in Lemma 2.6. Also, $\Psi(J_x(f))$ has entries in $F(z)$, and by assumption has the same rank as $\mathcal{J}_x(f)$. Hence, by Lemma 2.6

$$\text{rank}_{F} J' = \text{rank}_{F} \Psi(J_x(f)) \cdot \mathcal{J}_y(\Phi(x))$$

$$= \text{rank}_{F} \Psi(J_x(f)) = r.$$

And since J' is just a projection of $\mathcal{J}_y(\Phi(f))$, the rank of the latter must also be r. Hence, Φ is indeed faithful. \(\square\)

3. Hitting-set for depth-3 circuits of constant transcendence degree.

Let C be an circuit and D be the circuit $C(T_1, \ldots, T_m)$, where each T_i is of the form $\prod_{j=1}^{d} \ell_{ij}$, every ℓ_{ij} is a linear polynomial in $F[x_1, \ldots, x_n]$. For simplicity, assume without loss of generality that all the ℓ_i's are monic with respect to the lexicographic ordering $x_1 > \cdots > x_n$. Denote by T the set $\{T_1, \ldots, T_m\}$ and by $L(T_i)$ the multiset of linear polynomials that constitute T_i. Suppose $\text{trdeg}_F T = k$ and $T_k = \{T_1, \ldots, T_k\}$ be a transcendence basis of T.

Since $\mathcal{J}_x(T_k)$ has full rank (char(F) = 0 or char(F) > d^k), without loss of generality assume that the columns corresponding to $x_k = \{x_1, \ldots, x_k\}$ form a nonzero $k \times k$ minor of $\mathcal{J}_x(T_k)$. By Lemma 2.7, if we construct a $\Psi : F[x] \to F[z]$ that keeps $\mathcal{J}_x(T_k)$ nonzero then Ψ can easily be extended to a homomorphism $\Phi : F[x] \to F[z, t, y_1, \ldots, y_k]$ that is faithful for T. And hence, by Theorem 2.4 it would follow that $\Phi(D) = 0$ if and only if $D = 0$.

The linearity of the determinant would allow us to express $J_x(T_k)$ as a depth-3 circuit.

FACT 3.1. For any set of vectors $v_{11}, \ldots, v_{kn} \in F^n$,

$$\det \left[\sum_{i=1}^{k} v_{11}, \ldots, \sum_{i=1}^{k} v_{ni} \right] = \sum_{1 \leq i_1, \ldots, i_n \leq k} \det [v_{1i_1}, \ldots, v_{ni_n}]$$

Note that if $T_i = \prod_{j=1}^{d} \ell_{ij}$, then

$$\partial_x T_i = T_i \cdot \left(\sum_{j=1}^{d} \frac{\partial x \ell_{ij}}{\ell_{ij}} \right).$$

Using this with the linearity of the determinant, $J_x(T_k)$ takes the following form,

$$J_x(T_k) = \sum_{\ell_1 \in L(T_1), \ldots, \ell_k \in L(T_k)} T_1 \cdots T_k \cdot \det \left[\frac{\partial x_1 \ell_1}{\ell_1} \cdots \frac{\partial x_k \ell_1}{\ell_k} \right] \cdots \left[\frac{\partial x_1 \ell_k}{\ell_1} \cdots \frac{\partial x_k \ell_k}{\ell_k} \right]$$

$$= \sum_{\ell_1 \in L(T_1), \ldots, \ell_k \in L(T_k)} T_1 \cdots T_k \cdot J_x(\ell_1, \ldots, \ell_k) \quad (3.1)$$
Call a set of linear polynomials \textit{independent} if the corresponding homogeneous linear parts (i.e., the constant-free parts) are \mathbb{F}-linearly independent. The term $J_{x_k}(\ell_1, \ldots, \ell_k)$ ensures that the above sum is only over those ℓ_1, \ldots, ℓ_k that are independent linear polynomials (otherwise the Jacobian vanishes). Note that this implies that no ℓ_i can repeat in any denominator of (3.1). The sum has the form of a depth-3 circuit, call it H_0, and we construct a low-variate Ψ such that $\Psi(H_0) \neq 0$. We show that this is achieved by a Ψ that preserves the independence of a ‘small’ set of linear polynomials - which we call a \textit{certificate} of H_0. (The certifying path technique is from [SS11].)

\textbf{Certificate of H_0:} We can assume that each of the terms $J_{x_k}(\ell_1, \ldots, \ell_k)$ in equation (3.1) \textit{are nonzero} field constants. Let $\mathcal{L}(H_0)$ be the set of all linear polynomials occurring in the denominator terms “$\ell_1 \cdots \ell_k$” of all the summands in sum (3.1).

Hence, $\mathcal{L}(H_0)$ is the set of all distinct ℓ_i’s that occur in the denominator of (3.1). This means, the depth-3 circuit H_0 has the form $H_0 = T \cdot \sum_{L} \alpha_L / \ell_1 \cdots \ell_k$, where $T := \prod_{i=1}^{k} T_i$, α_L is a nonzero field constant and the sum runs over some sets $L = \{\ell_1, \ldots, \ell_k\}$ of independent linear polynomials contained in $\mathcal{L}(H_0)$.

Define, \textit{content} of a depth-3 circuit $G = \sum P_i$, where P_i is a product of linear polynomials, as $\text{cont}(G) := \gcd_{i} \{P_i\}$, and let the \textit{simple part}, denoted by $\text{sim}(G)$, be defined as $G / \text{cont}(G)$. Hence $\text{cont}(H_0) = \gcd_{L} \{T / \ell_1 \cdots \ell_k\}$ and

$$\text{sim}(H_0) = F_0 \sum_{L} \frac{\alpha_L}{\ell_1 \cdots \ell_k}, \quad \text{where } F_0 = \frac{T}{\text{cont}(H_0)}, \quad (3.2)$$

Note that F_0 is the lcm of the denominators in (3.1), and hence equal to the product of the linear polynomials in $\mathcal{L}(H_0)$. Thus, $\deg(F_0) = |\mathcal{L}(H_0)|$. For any $\ell \in \mathcal{L}(H_0)$, the terms in $\text{sim}(H_0)$ that survive modulo ℓ are those with ℓ in the denominator “$\ell_1 \cdots \ell_k$” of the above expression. Hence,

$$H_1 := \text{sim}(H_0) \mod \ell_1 = \frac{F_0}{\ell_1} \sum_{L=\{\ell_2, \ldots, \ell_k\}} \frac{\alpha_L}{\ell_2 \cdots \ell_k}.$$

We can treat H_1 as a depth-3 circuit in one less variable: Suppose that $\ell_1 = c_1 x_1 + \sum_{i=2}^{n} c_i x_i$ where c_i’s $\in \mathbb{F}$ and $c_1 \neq 0$, then we can replace x_1 by $-\sum_{i=2}^{n} c_i x_i / c_1$ in $\text{sim}(H_0)$, particularly in F_0 / ℓ_1 (of course, after dividing F_0 by ℓ_1) as well as in each of ℓ_2, \ldots, ℓ_k in the denominators, so that H_1 becomes a depth-3 circuit in $\mathbb{F}[x_2, \ldots, x_n]$.

Therefore, it makes perfect sense to talk about $\text{cont}(H_1)$ and $\text{sim}(H_1)$. Observe that ℓ_2, \ldots, ℓ_k remain independent linear polynomials modulo ℓ_1, and so H_1 is a depth-3 circuit of the ‘same nature’ as H_0 but with one less linear polynomials in the denominators. Also, the set of linear polynomials $\mathcal{L}(H_1)$ is a subset of the set of linear polynomials $\mathcal{L}(H_0)$ modulo ℓ_1. Extending the above argument, it is possible to define a sequence of circuits: $H_i := \text{sim}(H_{i-1}) \mod \ell_i$, $(1 \leq i \leq k)$ where $\ell_i \in \mathcal{L}(H_{i-1})$.

Further, $\mathcal{L}(H_i)$ is a subset of $\mathcal{L}(H_{i-1})$ modulo ℓ_i, which implies that essentially there are independent linear polynomials, say ℓ_1, \ldots, ℓ_k, in $\mathcal{L}(H_0)$ such that $\ell_i \equiv \ell_i \mod (\ell_1, \ldots, \ell_{i-1})$ and therefore $H_i = \text{sim}(H_{i-1}) \mod (\ell_1, \ldots, \ell_i)$.

\textbf{Lemma 3.2 (Certifying path).} There exist independent linear polynomials $\{\ell_1, \ldots, \ell_k\} \subseteq \mathcal{L}(H_0)$ such that $H_i \neq 0 \mod (\ell_1, \ldots, \ell_i)$, $\forall i \in [k]$, and H_k is a nonzero product of linear polynomials in $\mathcal{L}(H_0)$ modulo (ℓ_1, \ldots, ℓ_k).

\textbf{Proof.} Since T_1, \ldots, T_k was a transcendence basis, we start with $H_0 \neq 0$. The proof is by induction on k and follows the sketch given while defining $\text{sim}(\cdot)$.

The degree of the nonzero polynomial \(\text{sim}(H_0) \) is \(|L(H_0)| - k \). By Chinese remaindering, there exists an \(\ell_1 \in L(H_0) \) such that \(H_1 := \text{sim}(H_0) \mod \ell_1 \neq 0 \). In the base case \((k = 1) \), it is easy to see that \(H_1 \) is a nonzero product of linear polynomials modulo \(\ell_1 \). For any larger \(k \), the depth-3 polynomial \(H_1 \) has exactly the same form as \(H_0 \) but with \(k - 1 \) independent linear polynomials in the denominators. Inducting on this smaller value \(k - 1 \), keeping in mind that \(L(H_i) \subset L(H_0) \) modulo \((\ell_1, \ldots, \ell_i) \), completes the proof. \(\square \)

A set \(\{\ell_1, \ldots, \ell_k\} \), satisfying Lemma \ref{lemma:certifying}, is called a certifying path of \(H_0 \). Fix a certifying path \(\{\ell_1, \ldots, \ell_k\} \). Let \(\Psi : \mathbb{F}[x] \to \mathbb{F}[z_1, \ldots, z_{k+1}] \) be such that \(\Psi(\ell_1), \ldots, \Psi(\ell_k) \) are independent linear polynomials in \(\mathbb{F}[z] \) and for every \(\ell \in \cup_{i=1}^k L(T_i) \), \(\ell \neq 0 \mod (\ell_1, \ldots, \ell_k) \) iff \(\Psi(\ell) \neq 0 \mod (\Psi(\ell_1), \ldots, \Psi(\ell_k)) \). We call such a \(\Psi \) a rank-\((k+1)\) preserving map for \(L(H_0) \). It can be shown that one of the maps \(\Psi_b : x_i \mapsto \sum_{j=1}^{k+1} z_j b_j \), where \(b \) runs over \(dkn(k+1)^2 \) distinct elements of \(\mathbb{F} \), is a rank-\((k+1)\) preserving map for \(H_0 \). (It is a simple corollary of Lemma \ref{lemma:rank}.)

Theorem 3.3. If \(\Psi : \mathbb{F}[x] \to \mathbb{F}[z_1, \ldots, z_{k+1}] \) is a rank-\((k+1)\) preserving map for \(L(H_0) \), then \(\Psi(H_0) \neq 0 \).

Proof. Let \(\{\ell_1, \ldots, \ell_k\} \) be the certifying path of \(H_0 \) fixed above. Let \(\mathcal{I}_i := \langle \ell_1, \ldots, \ell_i \rangle \), the ideal generated by the linear forms \(\{\ell_1, \ldots, \ell_i\} \). The proof is by reverse induction on \(k \): Assuming \(\Psi(H_i) \neq 0 \mod \mathcal{I}_i \), we show that \(\Psi(H_{i-1}) \neq 0 \mod \mathcal{I}_{i-1} \) for \(k \geq i \geq 2 \). The base case is easy, as by Lemma \ref{lemma:certifying} \(H_i \) is a nonzero product of linear polynomials in \(L(H_0) \) modulo \(\mathcal{I}_k \). Hence, by the definition of a rank-\((k+1)\) preserving map, \(\Psi(H_k) \neq 0 \mod \mathcal{I}_k \) (ideal generated by independent linear polynomials is an integral domain).

The proof of the inductive step proceeds as follows. Assume that we know \(\Psi(H_i) \neq 0 \mod \mathcal{I}_i \). By construction,

\[
H_{i-1} = \text{cont}(H_{i-1}) \cdot \text{sim}(H_{i-1}) = \text{cont}(H_{i-1}) \cdot [q_i \ell_i + H_i] \mod \mathcal{I}_{i-1}
\]

for some polynomial \(q_i \). Which means, \(\Psi(H_{i-1}) = \Psi(\text{cont}(H_{i-1})) \cdot [\Psi(q_i)\Psi(\ell_i) + \Psi(H_i)] \mod \Psi(\mathcal{I}_{i-1}). \)

If \([\Psi(q_i)\Psi(\ell_i) + \Psi(H_i)] = 0 \mod \Psi(\mathcal{I}_{i-1}) \)

then \(\Psi(H_i) = \Psi(\text{cont}(H_{i-1}))\Psi(q_i)\Psi(\ell_i) + \Psi(H_i) \mod \Psi(\mathcal{I}_{i-1}) \)

which contradicts the induction hypothesis. Also, by Lemma \ref{lemma:certifying} \(H_{i-1} \neq 0 \mod \mathcal{I}_{i-1} \) implies that \(\text{cont}(H_{i-1}) \neq 0 \mod \mathcal{I}_{i-1} \). Note that \(\text{cont}(H_{i-1}) \) is a product of linear polynomials in \(L(H_0) \) modulo \(\mathcal{I}_{i-1} \), and hence each factor \(\ell \) of \(\text{cont}(H_{i-1}) \) is not in \(\mathcal{I}_{i-1} \). Since \(\Psi \) is a rank-\((k+1)\) preserving map, \(\Psi(\ell) \) continues to not be in \(\Psi(\mathcal{I}_{i-1}) \).

Therefore,

\[
\Psi(H_{i-1}) = \Psi(\text{cont}(H_{i-1})) \cdot [\Psi(q_i)\Psi(\ell_i) + \Psi(H_i)] \neq 0 \mod \Psi(\mathcal{I}_{i-1})
\]

as \(\mathcal{I}_{i-1} \) is generated by \((i-1) \) independent linear polynomials.

Finally, to obtain \(\Psi(H_0) \neq 0 \) from \(\Psi(H_1) \neq 0 \mod \Psi(\mathcal{I}_1) \), use the same argument as above and that \(\Psi(\ell) \neq 0 \) for every \(\ell \in \cup_{i=1}^k L(T_i) \). \(\square \)

Since \(H_0 \) was just a maximal non-zero minor of \(J(T_1, \ldots, T_r) \), we have the following corollary (using Fact \ref{fact:rank}).

Corollary 3.4. Let \(\Psi : \mathbb{F}[x] \to \mathbb{F}[z_1, \ldots, z_{r+1}] \) be a rank-\((r+1)\) preserving map for \(L(T_1) \cup \ldots \cup L(T_m) \) (where \(\{T_1, \ldots, T_m\} \) are products of linear functions with
transcendence degree bounded by r). Then, $\Phi : \mathbb{F}[x] \to \mathbb{F}[z_1, \ldots, z_{r+1}, t, y_1, \ldots, y_{r+1}]$ defined as $\Psi(x_i) \mapsto \Psi(x_i) + \sum_{j=1}^{r+1} t^j y_j$ is a faithful homomorphism for $\{T_1, \ldots, T_m\}$.

Proof. Let $\text{trdeg} \{T_1, \ldots, T_m\} = k \leq r$. Since any rank-$(r+1)$ preserving map Ψ is also a rank-$(k+1)$ preserving map, Theorem 3.3 states that Ψ preserves the rank of $J(T_1, \ldots, T_m)$. Hence by Lemma 2.7 we have that Φ is a faithful homomorphism for $\{T_1, \ldots, T_r\}$. \qed

With this, we can prove both Theorem 1.1 and Theorem 1.9.

Theorem 1.1 (restated). Let C be a poly-degree circuit of size s and each of T_1, \ldots, T_m be a product of d linear polynomials in $\mathbb{F}[x_1, \ldots, x_n]$ such that $\text{trdeg}_C \{T_1, \ldots, T_m\} \leq r$. A hitting-set for such $C(T_1, \ldots, T_m)$ can be constructed in time polynomial in n and $(sd)^r$, assuming $\text{char}(\mathbb{F}) = 0$ or $> d^r$.

Proof of Theorem 1.1 Corollary 3.4 gives a homomorphism $\Phi : \mathbb{F}[x] \to \mathbb{F}[z_1, \ldots, z_{r+1}, t, y_1, \ldots, y_{r+1}]$ that is faithful for $\{T_1, \ldots, T_m\}$. By Theorem 2.4, we have that $C(T_1, \ldots, T_m) = 0$ if and only of $\Phi(C(T_1, \ldots, T_m)) = 0$. Since C is a poly-degree circuit of size s, $\Phi(C(T_1, \ldots, T_m))$ is a polynomial of degree at most $ds^{O(1)}$ and $nrd_s^{O(1)}$ in the variables $\{y, z\}$ and t respectively. Using [Sch80, Zip79, DL78], we can construct a hitting-set for $\Phi(D)$ in time polynomial in $n(sd)^r$. Since construction of Ψ takes time $\text{poly}(n, (sd)^r)$, the total time taken is $\text{poly}(n, (sd)^r)$. \qed

Theorem 1.9 (restated). Given blackbox access to polynomials T_1, \ldots, T_r that are products of d linear polynomials in $\mathbb{F}[x_1, \ldots, x_n]$, there is a poly$(nd)^r$ time algorithm to test whether they are algebraically independent, assuming $\text{char}(\mathbb{F}) = 0$ or $> d^r$.

Proof of Theorem 1.9 Corollary 3.4 gives a homomorphism $\Phi : \mathbb{F}[x] \to \mathbb{F}[z_1, \ldots, z_{r+1}, t, y_1, \ldots, y_{r+1}]$ that is faithful for $\{T_1, \ldots, T_r\}$. Hence it suffices to check if $\{\Phi(T_1), \ldots, \Phi(T_r)\}$ are algebraically independent or not. Since each $\Phi(T_i)$ is a $O(r)$-variate polynomial of degree $\text{poly}(nd)$, they have at most $\text{poly}(nd)^r$ monomials. It is well-known [KS01, BOT88] that an n-variate degree d multivariate polynomial with R monomials can be reconstructed from $\text{poly}(n, d, R)$ evaluations. Hence, using $\text{poly}(nd)^r$ evaluations, each $\Phi(T_i)$ can be explicitly written down as a sum of monomials. Hence, the Jacobian $J(\Phi(T_1), \ldots, \Phi(T_r))$ can be written down explicitly, and an application of the Schwartz-Zippel lemma in [Sch80, Zip79, DL78] allows us to check if $J(\Phi(T_1), \ldots, \Phi(T_r))$ has full rank in deterministic $\text{poly}(nd)^r$ time. \qed

4. Hitting-set for constant-depth constant-occur formulas.

Bounding the top fanin - Let C belong to the class C of depth-D occur-k formulas of size s, with potentially large top fan-in. The following easy observation allows us to slightly modify C to work with a bounded top fan-in formula (without increasing the other parameters too much).

Observation 4.1. If $C(x_1, \ldots, x_n)$ is non-constant and nonzero, then there is an i such that $\bar{C} := C(x_1, \ldots, x_{i-1}, x_i + 1, x_{i+1}, \ldots, x_n) - C(x_1, \ldots, x_n) \neq 0$, assuming $\text{char}(\mathbb{F}) > s^D$ (i.e. the bound on the degree of C).

Corollary 4.2. Let H be a hitting set for the class of occur-2k, top fan-in $2k$, depth $(D+1)$ and size $(s^2 + s)$ formulas. Then, there is a hitting set H' with
\[|\mathcal{H}'| = |\mathcal{H}|^{O(1)} \] for the class of occur-\(k\), depth \(D\), size \(s\) formulas of unbounded top fan-in.

Proof. Let \(C\) be an occur-\(k\), depth \(D\) formula of size \(s\) that computes a non-zero polynomial. By Observation 4.1, there exists some \(i\) such that

\[
\tilde{C} := C(x_1, \cdots, x_{i-1}, x_i + 1, x_{i+1}, \cdots, x_n) - C(x_1, \cdots, x_n) \neq 0
\]

If \(C\) has a + gate on top then \(C(x) = \sum_{i=1}^m T_i\), where \(T_i\)’s are computed by \(\times\) \& gates at the next level. Since \(x_i\) occurs in at most \(k\) of the \(T_i\)’s, \(\tilde{C}\) has top fanin at most \(2k\). If \(C\) has a \(\times\) \& gate on top then \(\tilde{C}\) has a + gate on top with fanin 2 and depth(\(\tilde{C}\)) = \(D + 1\). Therefore, \(\tilde{C}\) belongs to the class of depth-(\(D + 1\)) occur-\(2k\) formulas of size at most \((s^2 + s)\), and a + gate on top with fanin bounded by \(2k\). (The size of \(C(x_1, \cdots, x_{i-1}, x_i + 1, x_{i+1}, \cdots, x_n)\) is bounded by \(s^2\) as the total sparsity of the polynomials corresponding to the leaves of \(C(x_1, \cdots, x_n)\) can grow at most quadratically as \(x_i\) is replaced by \(x_i + 1\).)

Since \(\mathcal{H}\) is a hitting-set for the class of occur-\(2k\), top fan-in \(2k\), depth \(D + 1\), size \(s^2 + s\) formulas, define \(\mathcal{H}' \supset \mathcal{H}\) by including points \((\alpha_1 + 1, \alpha_2, \ldots, \alpha_n), (\alpha_1, \alpha_2 + 1, \ldots, \alpha_n), \ldots, (\alpha_1, \alpha_2, \ldots, \alpha_n + 1)\) in \(\mathcal{H}'\) for every point \((\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathcal{H}\). Observe that \(\mathcal{H}'\) is a hitting-set for \(C\) and \(|\mathcal{H}'| = n \cdot |\mathcal{H}|. \square\)

Therefore, it is sufficient to construct a hitting set for the class of bounded top-fanin bounded-occur formulas. By reusing symbols, assume that \(C\) is a depth-\(D\) occur-\(k\) formula of size \(s\) with a + gate on top having top fanin at most \(k\).

In order to construct a hitting set for \(C(x) = \sum_{i=1}^k T_i\), we shall solve the following slightly more generalized goal:

Goal: Let \(T_{i_1}, \ldots, T_{i_k}\) be polynomials computed by occur-\(k\) depth-\(D\) circuits of size \(s\) each. Construct a map \(\Phi\) that is faithful for \(\{T_{i_1}, \ldots, T_{i_k}\}\).

Theorem 2.4 asserts that any such faithful map would preserve the nonzeroness of \(C\). Let \(T_r = \{T_{i_1}, \ldots, T_{i_r}\}\) be a transcendence basis of \(T\). Since \(\mathcal{J}_q(T_r)\) has full rank (\(\text{char}(\mathbb{F}) = 0\) or \(s^{Dr}\)), by Lemma 2.7, assume that the columns corresponding to \(x_r = \{x_1, \ldots, x_r\}\) form a nonzero minor of \(\mathcal{J}_q(T_r)\). By Lemma 2.7 it suffices to construct a \(\Psi\) that keeps \(J_{x_r}(T_r) \neq 0\).

Proof idea - Identify a gate with the polynomial it computes, and count level of a gate from the top - the gates \(T_i\)’s are at level 1. Suppose each \(T_i\) is a \(\times\) \& gate and \(T_i = \prod_{\ell=1}^d P_{i,\ell}^{c_{i,\ell}}\), where \(P_{i,\ell}\)’s are gates at level 2. Since \(T_i\) is also an occur-\(k\) formula, \(x_1, \ldots, x_r\) appear in at most \(kr\) of the \(P_{i,\ell}\)’s, say \(P_{i,1}, \ldots, P_{i,kr}\). Hence,

\[
\partial_{x_{i,j}} T_i = \left(\prod_{\ell=kr+1}^d P_{i,\ell}^{c_{i,\ell}}\right) \cdot \partial_{x_j} \left(\prod_{\ell=1}^{kr} P_{i,\ell}^{c_{i,\ell}}\right) \quad \text{for every } 1 \leq i, j \leq r
\]

\[
\Rightarrow J_{x_r}(T_r) = \left(\prod_{i=1}^r \prod_{\ell=1}^d P_{i,\ell}^{c_{i,\ell}}\right) \cdot J_{x_r} \left(\prod_{i=1}^{kr} P_{i,1}^{c_{i,1}}, \ldots, \prod_{i=1}^{kr} P_{i,kr}^{c_{i,kr}}\right)
\]

Now notice that the Jacobian term on the RHS of the last equation is a polynomial in \(P_{i,\ell}\) and \(\partial_{x_{i,j}} P_{i,\ell}\), for \(1 \leq i, j \leq r\) and \(1 \leq \ell \leq kr\). (Note the irrelevance of the exponents \(c_{i,\ell}\).) So, if \(\Psi\) is faithful for the set \(\mathcal{P} := \{P_{i,\ell}, \partial_{x_{i,j}} P_{i,\ell} : 1 \leq i, j \leq r, 1 \leq \ell \leq kr\}\) and the singleton sets \(\{P_{i,\ell}\}\) for \(1 \leq i \leq r, kr+1 \leq \ell \leq d\), then \(\Psi(J_{x_r}(T_r)) \neq 0\). In other words, the task of constructing a faithful homomorphism is instead replaced by the
task of constructing a map that keeps every factor in the above product non-zero. To
get some more intuition, consider the case of a depth-4 circuit in which case each of
the $P_{i,j}$’s are sparse polynomials. Preserving the non-zeroness of sparse polynomials
can be achieved via ideas from [KS01].

Observe that the polynomials in P and the singleton sets are (zeroth and first
order) derivatives of the gates at level 2, and further these sets involve (the derivatives of)
disjoint groups of level 2 gates. This disjointness feature ensures that the number
of such sets is at most s.

Thus, we have reduced the problem of constructing a faithful map Φ for T (gates
at level 1) to the problem of constructing a map Ψ that is faithful for at most s many
sets each containing derivatives of gates at the second level. Now, the idea is to carry
forward this argument recursively to deeper levels: In the next level of the recursion
we reduce the problem to constructing a map that is faithful for at most s sets con-
taining (zeroth, first and second order) derivatives of disjoint groups of gates at level
3, and so on. Eventually, the recursion reaches the level of the sparse polynomials
(the leaf nodes) where a faithful map can be constructed using ideas from [KS01].

Let us formalize this proof idea. For any multiset of variables S, let $\Delta_S f$ denote
the partial derivative of f with respect to the variables in S (including repetitions, as
S is a multiset). Let $\var(S)$ denote the set of distinct variables in S.

Lemma 4.3 (Gcd trick). Let G be any gate in C and S_1, \ldots, S_w be multisets
of variables. Then there exists another occur-k formula G' for which, the vector of
polynomials $(\Delta_{S_1} G, \ldots, \Delta_{S_w} G) = V_G \cdot (\Delta_{S_1} G', \ldots, \Delta_{S_w} G')$ such
that
1. If G is a $+$ gate then G' is also a $+$ gate whose children consist of at most
 $k \cdot |\bigcup_{i=1}^w \var(S_i)|$ of the children of G, and $V_G = 1$.
2. If G is a \times gate, then G' is also a \times gate whose children consist of at
 most $k \cdot |\bigcup_{i=1}^w \var(S_i)|$ of the children of G, and $V_G = G/G'$.

Further, the gates constituting G' and V_G are disjoint.

Proof.
1. Suppose $G = H_1 + \cdots + H_m$. Then at most $k \cdot |\bigcup \var(S_i)|$ of its children depend
 on the variables present in $\bigcup \var(S_i)$; let G' be the sum of these children. Then,
 $\Delta_S G = \Delta_S G'$ as the other gates are independent of the variables in $\bigcup S_i$.
2. Suppose $G = H_1^{c_1} \cdots H_m^{c_m}$. Since G is a gate in an occur-k formula, at most
 $k \cdot |\bigcup \var(S_i)|$ of the H_i’s depend on the variables in $\bigcup S_i$; call these H_1, \ldots, H_{t_1}. Let
 $G' := H_1^{c_1} \cdots H_T^{c_T}$ and $V_G := G/G'$. Then, $\Delta_S G = V_G \cdot \Delta_S G'$ as claimed.

We say that a map is faithful for a collection of sets if it is faithful for every set in the
collection. Going by the ‘proof idea’, suppose at the ℓ-th level of the recursion we want
to construct a Ψ_ℓ that is faithful for a collection of (at most) s sets of polynomials,
each set containing at most r_1 partial derivatives (of order up to c_1) of the gates at
level ℓ. Moreover, the sets involve derivatives of disjoint groups of gates. To begin with:
$\ell = 1$ and we wish to construct a Ψ_1 that is faithful for just one set T, so
$r_1 \leq k$ and $c_1 = 0$. The next lemma captures the evolution of the recursion, and is
essentially a careful analysis of the growth of the sets as we descend levels.

Lemma 4.4 (Evolution via factoring). Let U be a set of r_ℓ derivatives (of orders
up to c_ℓ) of gates G_U at level ℓ, and U' be a transcendence basis of U. Any $|U'| \times |U'|$
minor of $J_G(U')$ is of the form $\prod V_i^{r_i}$, where V_i’s are polynomials in at most $r_{\ell+1}$:=
(c_t + 1) \cdot 2^{\ell + 1} k \cdot r_\ell^2 many derivatives (of order up to c_{\ell + 1} := c_\ell + 1) of disjoint groups of children of G_{\ell}.}

Proof. Let r' = |U'| and M be an arbitrary r' × r' sub-matrix of \(J_x(U') \). Let
\((\Delta_{S_1} G, \ldots, \Delta_{S_r} G)\) be an arbitrary row of M that corresponds to certain derivatives of a node G at level \(\ell \). Since each of the derivatives are of order at most \(c_\ell + 1 \), we have that \(|U'_{i = 1} \var(S_i)| \leq r'(c_\ell + 1) \leq r'(c_\ell + 1) + 1 \). By applying Lemma 4.3 to this row, we can express this row as \(V_G \cdot (\Delta_{S_1} G, \ldots, \Delta_{S_r} G') \). So, in \(\det(M) = \prod V_G \cdot \det M' \) where \(M' \) is the submatrix obtained after removing the \(V_G \)'s common from each of the rows. Thus, the elements present inside \(M' \) are of the form \(\Delta_{S_i} G' \), where \(G' \) has at most \(kr'(c_\ell + 1) \) children.

Since each \(|S_i| \leq c_\ell + 1 \) and \(G \) is a node in an occur-k formula, at most \(k(c_\ell + 1) \) children of \(G' \) depend on \(\var(S_i) \).

If \(G' \) is a + gate, then \(\Delta_{S_i} G' \) is the sum of the derivatives of at most \(k(c_\ell + 1) \) of its children (that depend on \(\var(S_i) \)).

If \(G' \) is a ×, gate computing \(H_{t_1}^i \cdots H_{t_r}^i \) (where \(r \leq kr'(c_\ell + 1) \)), then \(\Delta_{S_i} G' \) is a polynomial combination of the \(H_{t_j}^i \)'s and \(\{\Delta_j H_j\}_{\forall \neq T \subseteq S_i} \) for each \(H_j \) depending on \(\var(S_i) \).

Hence in either case, \(\Delta_{S_i} G' \) is a polynomial in at most \(kr'(c_\ell + 1) + k(c_\ell + 1)(2^{c_\ell + 1} - 1) \) many derivatives (of order atmost \(c_\ell + 1 \)) of the children of \(G' \). Summing across the \(r' \) elements in that row, the number of derivatives used are at most \(kr'(c_\ell + 1) + k(c_\ell + 1)(2^{c_\ell + 1} - 1) \), \((2^{c_\ell + 1} - 1) r' \leq kr'(c_\ell + 1)2^{c_\ell + 1} \). Summing over all \(r' \) rows, the number of derivatives used is at most \(kr'^2(c_\ell + 1)2^{c_\ell + 1} \). Further, each \(V_G \) that was removed as a common factor in a row is just a product of gates in level \((\ell + 1) \), and are disjoint from the gates whose derivatives constitute \(M' \) (by Lemma 4.3). Thus, if \(r_\ell \) was an upper-bound for \(r' \), then we have that the number of derivatives used is at most

\[r_{\ell + 1} = kr^2(c_\ell + 1)2^{c_\ell + 1} \]

as claimed. \(\square \)

Let \(C_\ell \) denote the collection of sets for which we want to construct a faithful map \(\Psi_\ell \) at the \(\ell \)-th level of the recursion. To begin with \(C_1 = \{ \{T_1, \ldots, T_k\} \} \) and the collection \(C_{\ell + 1} \) is formed from \(C_\ell \) in the following fashion:

For any \(S \in C_\ell \), consider a maximal non-singular minor of \(J(S) \), and by Lemma 4.4 this minor can be written as a product of \(V_i^{(S)} \)'s where each \(V_i^{(S)} \) is a function of at most \(r_{\ell + 1} \) derivatives of polynomials computed in level \(\ell + 1 \). Denote the set of derivatives that \(V_i^{(S)} \) depends on as \(\text{Elem}(V_i^{(S)}) \). Then, \(C_{\ell + 1} = \{ \text{Elem}(V_i^{(S)}) : S \in C_\ell \} \).

It follows from the above lemma that the groups of gates whose derivatives form the different \(\text{Elem}(V_i) \)'s are disjoint and therefore \(|C_{\ell + 1}| \leq s \). Using Lemma 2.7 & 4.4, we can lift a map \(\Psi_{\ell + 1} \) to construct a faithful \(\Psi_{\ell} \).

Corollary 4.5. If \(\Psi_{\ell + 1} \) is faithful for \(C_{\ell + 1} \) then \(\Psi_{\ell} : x_i \mapsto \left(\sum_{i=1}^{r_i} y_j, t_i \cdot (t_\ell)^{ij} \right) + \Psi_{\ell + 1}(x_i) \) is faithful for \(C_\ell \), where \(\{y_1, \ell, \ldots, y_{r_\ell + 1}, \ell\} \) is a fresh set of variables.

Unfolding the recursion until we reach the level of the sparse polynomials (at level \((D - 2) \)), if \(\Psi_{D - 2} \) is a faithful homomorphism for \(C_{D - 2} \), then \(\Psi_1 \) defined by

\[\Psi_1(x_i) \mapsto \sum_{\ell=1}^{D - 3} \left(\sum_{j=1}^{r_\ell} y_j, t_\ell^{ij} \right) + \Psi_{D - 2}(x_i) \] (4.1)
is faithful for \(\{T_1, \ldots, T_k\} \). Hence, we are reduced to the task of constructing a faithful map for the collection \(C_{D-2} \) which consists of at most \(s \) sets of derivatives of \(s \)-sparse polynomials (i.e. consisting of at most \(s \) monomials), and each set being of size at most \(r_{D-2} \). Constructing a faithful homomorphism for a collection of sets of sparse polynomials can be achieved using standard techniques used in sparse-polynomial identity testing.

Lemma 4.6. Let \(C = \{W_1, \ldots, W_s\} \) where each \(W_s \) is a set of \(r \) polynomials that are \(n \)-variate, degree \(d \) and \(s \)-sparse. For each \(1 \leq p \leq O((s^r n d)^4) \), the map \(\Psi(p) : \mathbb{F}[x] \rightarrow \mathbb{F}[y_1, \ldots, y_r, t, u] \) is defined by

\[
\Psi(p) : x_i \mapsto \left(\sum_{j=1}^{r} y_j t^{ij} \right) + u^{(dr+1)'} \mod p.
\]

Then one of the maps \(\Psi(p) \) (as \(p \) varies over the specified range) is faithful for the collection \(C \).

Proof. For each \(W \in C \). Any maximal non-zero minor of \(J_p(W) \) is a sparse polynomial with sparsity bounded by \(s^r \) and degree bounded by \(dr \). Using [KS01], the nonzeroness of this determinant is maintained by one of the maps \(\Phi(W) \) for the collection \(C \). Then one of the maps asserts that \(\Psi(x) \mapsto \sum y_j t^{ij} + \Phi(x) \) is faithful for \(C \). \(\square \)

With the above lemma and equation (4.1), we can achieve our goal of constructing a faithful homomorphism for \(\{T_1, \ldots, T_k\} \).

Theorem 4.7. Let \(T_1, \ldots, T_k \) be polynomials computed by depth-\(D \) occur-\(k \) formulas of size at most \(s \) each. Then, a homomorphism that is faithful for \(\{T_1, \ldots, T_k\} \) can be constructed in time polynomial in \(s^R \), where \(R = (2k)^{2D-2^D} \) (assuming \(\text{char} (\mathbb{F}) = 0 \) or \(> s^R \)).

Proof. Unfolding the recursion in Corollary 4.5 and equation (4.1), it suffices to construct a map \(\Psi(p) \) that is faithful for \(C_{D-2} \) (as defined earlier). Recall that \(C_{D-2} \) is a collection of \(s \) sets of at most \(r_{D-2} \) derivatives of \(s \)-sparse polynomials of degree at most \(d \). Hence, we can apply Lemma 4.6 to this collection \(C_{D-2} \) to get that

\[
\Psi(p)(x_i) \mapsto \sum_{\ell=1}^{D-2} \left(\sum_{j=1}^{r_{\ell}} y_j t^{ij}_{\ell} \right) + u^{(s^r \ell+1) \mod p}
\]

Using the relation between \(r_{\ell+1} \) and \(r_\ell \) from Lemma 4.4 it is easy to show that \(r_{D-2} \leq R = (2k)^{2D-2^D} \) and \(\sum_{\ell=1}^{D-2} r_\ell = O(R) \).

With the above construction for a faithful homomorphism, we can prove both Theorem 1.3 (repeated) and Theorem 1.10.

Theorem 1.3 (repeated). A hitting-set for any depth-\(D \) occur-\(k \) formula \(C(x) = T_1 + \cdots + T_k \) of size \(s \) can be constructed in time polynomial in \(s^R \), where \(R = (2k)^{2D-2^D} \) (assuming \(\text{char} (\mathbb{F}) = 0 \) or \(> s^R \)).

Proof. Theorem 4.7 gives a homomorphism \(\Psi(p) \) that is faithful for \(\{T_1, \ldots, T_k\} \) and reduces the number of variables to \(O(\sum_{\ell=1}^{D-2} r_\ell) = O(R) \). By Theorem 2.4 we have that \(C = T_1 + \cdots + T_k = 0 \) if and only if each of \(\Psi(p)(T_1) + \cdots + \Psi(p)(T_k) = 0 \). Since \(C \) is a poly-degree circuit of size \(s \), \(\Psi(p)(C) \) is a polynomial of degree at most \(\text{poly}(s) \) in the \(O(R) \) variables. Using the Schwartz-Zippel lemma in [Sch80, Zip79, DL78], we can construct a hitting-set for \(\Phi(D) \) in time polynomial in \(s^R \). \(\square \)
Theorem 1.10 (restated). Let T_1, \ldots, T_r be n-variate degree d polynomials computed by depth-D occur-k formulas of size s and presented as blackboxes. There is an $(sdn)^R$-time algorithm, where $R = r \cdot (2k)^{2D^22^O}$, to test whether $\{T_1, \ldots, T_r\}$ are algebraically independent, assuming $\text{char}(\mathbb{F}) = 0$ or $> s^R$.

Proof. Theorem 4.7 gives a homomorphism $\Psi^{(p)}$ that is faithful for $\{T_1, \ldots, T_r\}$. Hence it suffices to check whether $\{\Psi^{(p)}(T_1), \ldots, \Psi^{(p)}(T_r)\}$ are algebraically independent or not. Since each $\Psi^{(p)}(T_i)$ is a $O(R)$-variate polynomial of degree poly(sdn), they have at most poly$(sdn)^R$ monomials. Using the interpolation algorithms from [KS01, B088] each $\Psi^{(p)}(T_i)$ can be explicitly written down as a sum of monomials from poly$(sdn)^R$ evaluations. Hence, the Jacobian $\mathcal{J}(\Psi^{(p)}(T_1), \ldots, \Psi^{(p)}(T_r))$ can be written down explicitly, and an application of the Schwartz-Zippel lemma in [Sch80, Zip79, DL78] allows us to check if $\mathcal{J}(\Psi^{(p)}(T_1), \ldots, \Psi^{(p)}(T_r))$ has full rank in deterministic poly$(sdn)^R$ time. \square

4.1. Restriction to the case of depth-4.

Theorem 1.14 (restated). A hitting-set for any depth-4 occur-k formula of size s can be constructed in time polynomial in sk^2 (assuming $\text{char}(\mathbb{F}) = 0$ or $> s^{4k}$).

Proof. Let $C = \sum_{i=1}^k T_i$ be a depth-4 occur-k formula, where $T_i = \prod_{j=1}^d P_{ij}^{c_{ij}}$, P_{ij}’s are sparse polynomials. The discussion at the beginning of this section justifies the assumption that top fanin is k. Once again, assuming T_r to be a transcendence basis of T, we need to design a Ψ such that $\Psi(J_{x_r}(T_r)) \neq 0$. Let us count the number of P_{ij}’s that depend on the variables x_r; the remaining P_{ij}’s can be taken out common from every row of $J_{x_r}(T_r)$ while computing its determinant - this is the first ‘taking common’ step. Let $c_{i\ell}$ be the number of P_{ij}’s present in T_i that depend on x_ℓ. The total number of sparse polynomials depending on x_r is therefore $\sum_{1 \leq i, \ell \leq r} c_{i\ell}$. From the condition of occur-k, $\sum_i c_{i\ell} \leq k$ and hence $\sum_{i, \ell} c_{i\ell} \leq r k \leq k^2$. Let $c_i := \sum_j c_{ij}$, be the number of x_r-dependent P_{ij}’s present in T_i. For an x_r-dependent P_{ij}, we can also take $P_{ij}^{c_{ij}^{-1}}$ common from the i-th row of $J_{x_r}(T_r)$ - call this the second ‘taking common’ step. The sparsity of every entry of the i-th row of the residual matrix M - after the two ‘taking common’ steps - is bounded by $c_i s^c$, where s is the size of C. Thus, $\det(M)$ has sparsity at most $r! \prod_{i=1}^r c_i s^c = s^{O(k^2)}$, which implies that $J_{x_r}(T_r)$ is a product of at most $s+1$ powers of sparse polynomials, each of whose sparsity is bounded by $s^{O(k^2)}$ and degree bounded by sk. As argued before, use [KS01] along with Lemma 2.7 to construct a hitting-set for C in time $s^{O(k^2)}$ (assuming $\text{char}(\mathbb{F}) = 0$ or $> s^{4k}$). \square

5. Lower bounds for the immanant. For sake of simplicity, we prove the lower bounds for $\text{Det}_n - \text{determinant of an } n \times n \text{ matrix } M = ([x_{ij}])$ - assuming zero characteristic. All our arguments apply to $\text{Imn}_\chi(M)$ for any character χ and this is elaborated in Section 5.3. The following two lemmas are at the heart of our approach to proving lower bounds. Let $x := \{x_{ij} : 1 \leq i, j \leq n\}$ and $T := \{T_1, \ldots, T_m\}$, where T_i’s are polynomials in $\mathbb{F}[x]$. We shall defer the proofs of these lemmas to the end of the section.

Lemma 5.1. Suppose $\text{Det}_n = C(T_1, \ldots, T_m)$, where C is any circuit and let $T_r = \{T_1, \ldots, T_r\}$ be a transcendence basis of T with $r < n$. Then, there exist a set of $r + 1$ variables $x_{r+1} \subset x$ and an equation $\sum_{i=1}^{r+1} c_i f_i \cdot M_i = 0$ such that M_i’s are distinct first order principal minors of M. f_i’s are distinct $r \times r$ minors of $J_{x_{r+1}}(T_r)$, not all f_i’s are zero, and $c_i \in \mathbb{F}^\ast$.

Lemma 5.2. If M_1, \cdots, M_t are distinct first order principal minors of M and $\sum_{i=1}^{t} f_i \cdot M_i = 0$ (not all f_i's are zero) then the total sparsity of the f_i's is at least $2^{n/2-t}$.

5.1. Lower bound on depth-4 occur-k formulas.

Proof of Theorem 1.6. Let C be a depth-4 occur-k formula of size s that computes Det_n. Since Det_n is irreducible we can assume a top $+$ gate in C. Then $\tilde{C} := C(x_{11}, x_{12}, \ldots, x_{nn}) - C(x)$ is a depth-4 occur-$2k$ formula of size at most $s^2 + s \leq 2s^2$ and top fanin bounded by $2k$ (similar argument as at the beginning of Section 4). Moreover, \tilde{C} computes the minor of M with respect to x_{11} which is essentially Det_{n-1}. By reusing symbols, assume that C is a depth-4 occur-k formula with top fanin bounded by k, and C computes Det_n.

Let $C = \sum_{i=1}^{k} T_i = \text{Det}_n$, where $T_i = \prod_{j=1}^{d} P_{i_j}^{\epsilon_{i_j}}$. By Lemma 5.1 we have an equation $\sum_{i=1}^{r+1} c_i f_i \cdot M_i = 0$ such that f_i's are distinct $r \times r$ minors of $J_{k+1}(T_r)$ for some set of $r+1$ variables x_{r+1}. Arguing in the same way as in the proof of Theorem 1.4 (in Section 4.1), we can throw away certain common terms from the minors f_i's and get another equation $\sum_{i=1}^{r+1} g_i M_i = 0$, where the sparsity of each g_i is $s^{O(k^2)}$. If we apply Lemma 5.2 on this equation, we get our desired result. \[\square\]

5.2. Lower bound on circuits generated by $\Sigma \Pi$ polynomials.

Proof of Theorem 1.7. In Lemma 5.1 take the T_i's to be sparse polynomials with sparsity bounded by s. Then, in the equation $\sum_{i=1}^{r+1} c_i f_i \cdot M_i = 0$, each f_i has sparsity at most $r! \cdot s^r \leq (rs)^r$. Finally, by applying Lemma 5.2 we get

$$(r + 1) \cdot (rs)^r \geq 2^{n/2-r} \implies s = 2^{\Omega(n/r)}$$

to obtain the desired lower bound. \[\square\]

5.3. Lower bound on circuits generated by $\Pi \Sigma$ polynomials.

Proof of Theorem 1.8. Let $T = \{T_1, \cdots, T_m\}$ be products of linear polynomials such that $C(T_1, \cdots, T_m) = \text{Det}_n$ with $T_k = \{T_1, \cdots, T_k\}$ being a transcendence basis (we choose to denote the transcendence degree by k to be consistent with Section 3). By Lemma 5.1 we get $\sum_{i=1}^{k+1} c_i f_i M_i = 0$ where the f_i's are $k \times k$ minors of $J_{k+1}(T_k)$ and wlog $f_1 \neq 0$.

The coefficient of each M_i in this equation is an $k \times k$ minor of $J(T_1, \cdots, T_k)$. By expanding each such minor using Fact 3.1 we get that the above equation $\sum_{i=1}^{k+1} c_i f_i M_i = 0$ can be expressed as

$$H_0 := T \cdot \sum_{L} \alpha_L(M_{k+1}) = 0$$

where each $\alpha_L(M_{k+1}) := \sum_{i=1}^{k+1} \alpha_L M_i$ is an F-linear combination of the distinct minors $M_{k+1} := \{M_1, \cdots, M_{k+1}\}$. Observe that H_0 is a sum of products of linear polynomials, with ‘coefficients’ being F-linear combinations of M_{k+1}. And since $f_1 \neq 0$, the ‘coefficient’ of M_1 in H_0 is a nonzero depth-3 circuit.

The idea is to apply a similar treatment as in Section 3 to evolve H_0. The invariant that shall be maintained is that the coefficient of M_1 (modulo some linear
polynomials), which is a depth-3 circuit, would stay nonzero. This would finally yield a non-trivial linear combination \(\alpha_1(M_{k+1}) = 0 \mod \ell_k \) (where \(\ell_k \) is a set of \(k \) independent linear polynomials) whence we can apply the following lemma (whose proof shall be deferred to the end of the section as well).

Lemma 5.3. If \(M_1, \ldots, M_t \) are distinct first order principal minors of \(M \) and \(\sum_{i=1}^{t} \alpha_i M_i = 0 \mod \ell_k \) (not all \(\alpha_i = 0 \)) for independent linear polynomials \(\ell_k \), then \(t + k \geq n \).

Formally, define the content of \(H = T \sum_{L} \alpha_L(M_{k+1})/\ell_1 \cdots \ell_k \) as \(\text{cont}(H) := \gcd_{L} \{ T/\ell_1, \ldots, \ell_k \} \), and also define \(\text{sim}(H) := H/\text{cont}(H) \). Therefore,

\[
\text{sim}(H_0) = F_0 \sum_{L} \frac{\alpha_L(M_{k+1})}{\ell_1 \cdots \ell_k} = 0
\]

where \(F_0 \) is the product of all distinct linear polynomials appearing in the denominator.

The coefficient of \(M_1 \) in the above expression is \(F_0 \sum_{L} \alpha_{L,1}/\ell_1 \cdots \ell_k \), which by assumption is a non-zero depth-3 circuit of degree at most \(|L(H_0)| - k \). Therefore by Chinese remaindering, \(\exists \ell_1 \in L(H_0) \) such that this coefficient remains non-zero modulo \(\ell_1 \). Hence, we can define \(H_1 := \text{sim}(H_0) \mod \ell_1 \) which has the form

\[
H_1 = F_0 \cdot \sum_{L \ni \ell_1} \frac{\alpha_L(M_{r+1})}{\ell_2 \cdots \ell_k} = 0 \mod \ell_1.
\]

Thus, we may write \(H_1 = F_1 \sum_{L} \alpha_L(M_{k+1} \mod \ell_1)/\ell_2 \cdots \ell_k = 0 \), and the choice of \(\ell_1 \) maintains the invariant that the coefficient of \((M_1 \mod \ell_1) \) is non-zero.

The above argument can be repeated inductively. In general, we have \(H_i = \text{sim}(H_{i-1}) \mod \ell_i \) for a similar choice of \(\ell_i \) via Chinese remaindering, and \(H_i \) has the form

\[
H_i = F_i \sum_{L} \frac{\alpha_L(M_{k+1} \mod \ell_i)}{\ell_{i+1} \cdots \ell_k} = 0
\]

with the coefficient of \(M_1 \mod \ell_1, \ldots, \ell_i \) continuing to remain non-zero. Eventually, we obtain \(H_k := F_k \cdot \alpha_L(M_{k+1} \mod \ell_k) = 0 \) while the coefficient of \(M_1 \mod \ell_k \) is non-zero. This implies that \(\alpha_L(M_{k+1}) = 0 \mod \ell_k \) is a non-trivial equation. And Lemma 5.3 asserts that this is not possible unless \(2k + 1 \geq n \) or \(k \geq (n - 1)/2 \).

5.4. Proofs of the technical lemmas.

Lemma 5.1 (restated). Suppose \(\text{Det}_{n} = C(T_1, \ldots, T_m) \), where \(C \) is any circuit and let \(T_r = \{T_1, \ldots, T_r\} \) be a transcendence basis of \(T \) with \(r < n \). Then, there exist a set of \(r + 1 \) variables \(x_{r+1} \subset \mathbf{x} \) and an equation \(\sum_{i=1}^{r+1} c_i f_i \cdot M_i = 0 \) such that \(M_i \)'s are distinct first order principal minors of \(M \), \(f_i \)'s are distinct \(r \times r \) minors of \(\mathcal{J}_{x_{r+1}}(T_r) \), not all \(f_i \)'s are zero, and \(c_i \in \mathbb{F}^* \).

Proof. In a column of a Jacobian matrix \(\mathcal{J}_{x}(\cdot) \), all the entries are differentiated with respect to a variable \(x \), we will say that the column is indexed by \(x \). Let \(T_r = \{T_1, \cdots, T_r\} \) be a transcendence basis of \(T \). Amongst the nonzero \(r \times r \) minors of \(\mathcal{J}_{x}(T_r) \) (they exist by Jacobian criterion), pick one (call the matrix associated with the minor, \(N \)) that maximizes the number of diagonal variables \(\{x_{ii} : 1 \leq i \leq n\} \).
indexing the columns of N. Let S denote the set of variables indexing the columns of N. Since $r < n$, there exists a diagonal variable $x_{jj} \notin S$. Consider the $(r+1) \times (r+1)$ minor of $J_{\mathcal{S}} (\{\text{Det}_n\} \cup T_r)$ corresponding to the columns indexed by $S' := S \cup \{x_{jj}\}$ - call the associated $(r+1) \times (r+1)$ matrix \tilde{N}. Since, $\text{Det}_n = C(T)$, the polynomials Det_n and T_1, \ldots, T_r are algebraically dependent and hence $\det(\tilde{N}) = 0$. Expanding $\det(\tilde{N})$ along the first row of \tilde{N}, which contains signed first order minors (cofactors) of M, we have an equation $\sum_{i=1}^{r+1} c_i f_i M_i = 0$, where M_i's are distinct minors of M, f_i's are distinct $r \times r$ minors of $J_{\mathcal{S}}(T_r)$, and $c_i \in \mathbb{F}^*$. If M_i is the principal minor of M with respect to the variable x_{jj} then $f_i = \det(N) \neq 0$ (by construction).

It suffices to show that if M_i is a non-principal minor of M then $f_i = 0$. Consider any non-principal minor M_i in the above sum, say it is the minor of M with respect to x_{kk}. The corresponding f_i is precisely the $r \times r$ minor of $J_{\mathcal{S}} (T_r)$ with respect to the columns $S' \setminus \{x_{kk}\} = (S \setminus \{x_{kl}\}) \cup \{x_{jj}\}$. Hence, by the maximality assumption on the number of diagonal elements of M in S, $f_i = 0$. \[\square\]

Lemma 5.2 (Restated). If M_1, \ldots, M_t are distinct first order principal minors of M and $\sum_{i=1}^{t} f_i \cdot M_i = 0$ (not all f_i's are zero) then the total sparsity of the f_i's is at least $2^{n/2-t}$.

Proof. The proof is by contradiction. The idea is to start with the equation $\sum_{i=1}^{t} f_i M_i = 0$ and apply two steps - sparsity reduction and fanin reduction. We shall apply these two steps alternatively until we arrive at an equation $f_j \cdot M_j = 0$, where neither f_j nor M_j is zero. We shall show that this would always be possible if the total sparsity of the f_i's is less than $2^{n/2-t}$.

With an equation of the form $\sum_{i=1}^{t} g_i N_i = 0$, we associate four parameters τ, s, η, and c. These parameters are as follows: τ is called the fanin of the equation, s is the total sparsity of the g_i's (we always assume that not all the g_i's are zero), every N_i is a distinct first order principal minor of a symbolic $\eta \times \eta$ matrix $N = (x_{ij})$, and c is the maximum number of entries of N that are set as constants. To begin with, $g_i = f_i$ and $N_i = M_i$ for all $1 \leq i \leq t$, so $\tau = t$, $s = s$ (the total sparsity of the f_i's), $\eta = n$, $N = M$ and $c = 0$. In the ‘sparsity reduction’ step, we start with an equation $\sum_{i=1}^{t} g_i N_i = 0$, with parameters τ, s, η, c and arrive at an equation $\sum_{i=1}^{t} g_i' N_i' = 0$ with parameters τ', s', η', c' such that $\tau' \leq \tau$, $s' \leq s/2$, $\eta - 1 \leq \eta' \leq \eta$, and $c' \leq c + 1$. In the ‘fanin reduction’ step, we start with an equation $\sum_{i=1}^{t} g_i N_i = 0$, with parameters τ, s, η, c and arrive at an equation $\sum_{i=1}^{t} g_i' N_i' = 0$ with parameters τ', s', η', c' such that one of the two cases happens - Case 1: $\tau' \leq \tau - 1$, $s' \leq s$, $\eta' = \eta - 1$, and $c' = c$; Case 2: $\tau' = 1$, $s' \leq s$, $\eta' = \eta$, and $c' \leq c + \tau$.

Naturally, starting with $\sum_{i=1}^{t} f_i M_i = 0$, the ‘sparsity reduction’ step can only be performed at most $\log s$ many times (since the total sparsity of the g_i's reduces by at least a factor of half every time this step is executed), whereas the ‘fanin reduction’ step can be performed at most $t - 1$ times (as the fanin goes down by at least one for every such step). Finally, when this process of alternating steps ends, we have an equation of the form $g_i \cdot N_i = 0$ (Case 2 of the fanin reduction step), where $g_i \neq 0$ and N_i is a principal minor of a symbolic matrix N of dimension at least $n - (\log s + t - 1)$ such that at most $(\log s + t)$ entries of N are set as constants. Now, if $\log s + t \leq n - (\log s + t)$ the N_i can never be zero (by Fact 5.8) and hence we arrive at a contradiction. Therefore, $s > 2^{n/2-t}$. Now, the details of the sparsity reduction and the fanin reduction steps.

Suppose, we have an equation $\sum_{i=1}^{t} g_i N_i = 0$ as mentioned above. We may assume that no variable x divides all the g_i's as we can divide the above equation by
If x is a white variable, then we can derive an equation of the form
$$\sum_{i=1}^{r'} \eta'_{i} \cdot N'_{i} = 0$$
where $r' \leq \tau$, each N'_{i} is a minor of an $\eta' \times \eta'$ matrix for $\eta - 1 \leq \eta' \leq \eta$ with at most c' in η' variable set to constants. Further more, the sum of the sparsities of the g'_{i}'s is at most $s/2$.

Pf. Say x is a white variable that one of the g_{i}'s depends on. Writing each g_{i} as a polynomial in x, note that x cannot divide all the g_{i}'s.

Each of the g_{i}'s and N_{i}'s can be expressed as, $g_{i} = g_{i,0} + x \cdot g_{i,1} + \cdots + x^{h} \cdot g_{i,h}$ and $N_{i} = N_{i,0} + x \cdot N_{i,1}$, where $g_{i,j}$'s and $N_{i,j}$'s are x-free. This possible as x is a white variable and it occurs in every N_{i}.

Looking at the coefficients of x^{0} and x^{h+1} in the equation yields $\sum_{i=1}^{r} g_{i,0} \cdot N_{i,0} = 0$ and $\sum_{i=1}^{r} g_{i,h} \cdot N_{i,1} = 0$. Note that $N_{i,0}$'s can be thought of as principal minors of the $\eta \times \eta$ matrix N' obtained by setting $x = 0$ in N. And each of the $N_{i,1}$'s can be thought of as minors of the $(\eta - 1) \times (\eta - 1)$ matrix N' which is the matrix associated with the minor of N with respect to x. Since the monomials in $g_{i,0}$ and $x^{h} g_{i,h}$ are disjoint, either the total sparsity of the $g_{i,0}$'s or the total sparsity of the $g_{i,h}$'s is $\leq s/2$. Thus, one of the equations $\sum_{i=1}^{r} g_{i,0} \cdot N_{i,0} = 0$ or $\sum_{i=1}^{r} g_{i,h} \cdot N_{i,1} = 0$ yields an equation of the form $\sum_{i=1}^{r} g'_{i} \cdot N'_{i} = 0$ with parameters r', s', η', c' as claimed before. (In case, we choose $\sum_{i=1}^{r} g_{i,h} \cdot N_{i,1} = 0$ as our next equation, we also set the variables in the same columns and rows of x to constants in such a way that a $g_{i,h}$ stays nonzero. This is certainly possible over a characteristic zero field \mathbb{F}_{p}.)

The sparsity reduction step is performed whenever the starting equation $\sum_{i=1}^{r} g_{i} \cdot N_{i} = 0$ has a white variable among the g_{i}'s. When all the g_{i}'s are free of white variables, we perform the fan-in reduction step.

Claim 5.5 (Fan-in Reduction). Suppose we have an equation $\sum_{i=1}^{r} g_{i} \cdot N_{i} = 0$ where each N_{i} is a minor of a symbolic $\eta \times \eta$ matrix with at most c variables set to constants and the sum of the sparsities of the g_{i}'s is $s > 1$. If none of the g_{i}'s depend on a white variable, then we can derive an equation of one of the two forms:

- $g' \cdot N' = 0$ for some minor N' of an $\eta \times \eta$ symbolic matrix with at most $c + \tau$ entries set to constants and $g' \neq 0$,
- $\sum_{i=1}^{r} g_{i} \cdot N_{i} = 0$, where $r' \leq \tau - 1$, each N'_{i} is a minor of an $\eta' \times \eta'$ matrix for $\eta - 1 \leq \eta' \leq \eta$ with at most c' in η' variable set to constants, and sum of sparsities of g'_{i}'s bounded by s.

Pf. When we perform this step, all the g_{i}'s consist of black and grey variables. Pick a row R from N barring the first τ rows. Let y_{1}, \cdots, y_{τ} be the grey variables occurring in R (these are, respectively, the variables in the first τ columns of R). We shall first
do some preprocessing to ensure that some g_i is non-zero when $y_2 = y_3 = \cdots = y_r = 0$.
This may not always be true, but we shall slightly modify the equation to enforce this property.

Starting with y_2, divide the equation $\sum_{i=1}^{r} g_iN_i = 0$ by the largest power of y_2
common across all monomials in the g_i's, and then set $y_2 = 0$. With some abuse in
notation, let us call the residual equation also $\sum_{i=1}^{r} g_iN_i$. This process lets us assume
that there exists at least one g_i which is not zero at $y_2 = 0$. On the residual equation,
repeat the same process with y_3 and then with y_4 and so on till y_r. Thus, in the
residual equation (again, abusing notation and using the same symbols), $\sum_{i=1}^{r} g_iN_i = 0$
there is at least one g_i that is not zero when y_2, \ldots, y_r are set to zero.

Suppose that exactly one g_i stays nonzero under the projection $y_2 = \cdots = y_r = 0$
then $(g_iN_i)_{(y_2=\ldots=y_r=0)} = 0$. This is the first form of the derived equation as claimed.

Now, assume that there are at least two g_i's (say g_1 and g_2) that are non-zero
under the projection $y_2 = \cdots = y_r = 0$. Set all the remaining variables of row R
to zero except y_1 - these are the white variables in R. Since the g_i's are free of white
variables (or else, we would have performed the 'sparsity reduction' step), none of the
g_i's is affected by this projection. However, N_1 being a minor with respect to the first
diagonal element of N, vanishes completely after the projection. Any other N_i takes
the form $y_1 \cdot N_i'$, where N_i' is a principal minor of a $(\eta-1) \times (\eta-1)$ matrix N'
which is the matrix associated with the minor of N with respect to y_1. Therefore, after the projection,
the equation $\sum_{i=1}^{r} g_iN_i = 0$ becomes $\sum_{i=2}^{r} \tilde{g}_i \cdot y_1 N_i' = 0 \Rightarrow \sum_{i=2}^{r} \tilde{g}_i \cdot N_i' = 0,$
where \tilde{g}_i is the image of g_i under the above mentioned projection and further $\tilde{g}_2 \neq 0$.
The \tilde{g}_i's might still contain variables from the first column of N. So, as a final step,
set these variables to values so that a nonzero \tilde{g}_i remains nonzero after this projection
(the [Sch80, Zip79, DL78] lemma asserts that such values exist in plenty). This gives
us the desired form $\sum_{i=1}^{r} \tilde{g}_i N_i' = 0$ with parameters τ', s', η', c' as claimed. g (Claim)

These two claims together complete the proof of the Lemma. D

Lemma 5.3 (restated). If M_1, \ldots, M_t are distinct first order principal minors
of M and $\sum_{i=1}^{t} \alpha_i M_i \equiv 0 \mod \ell_k$ (not all $\alpha_i = 0$) for independent linear polynomials
ℓ_k, then $t + k \geq n$.

Proof. Assume that $t + k < n$ (with $t \geq 1$ it means $k \leq n - 2$) and $\alpha_i M_i = 0 \mod \ell_k$.
Recall that reducing an expression modulo $\ell = c_1 x_1 + \sum_{i>1} c_i x_i$ (with $c_1 \neq 0$) is equivalent to replacing x_1 by $\sum_{i>1} (-c_i/c_1)x_i$. Hence, as ℓ_1, \ldots, ℓ_k are
independent linear polynomials, the equation may be rewritten as $\sum_{i=1}^{t} \alpha_i M_i' = 0$
where (M_i')s are minors of the matrix M' obtained by replacing k entries (x_1, \ldots, x_k)
of M by linear polynomials in other variables. We shall call these entries as corrupted
entries. Without loss of generality, we shall assume that M_i' is the minor corresponding
to the i-th diagonal variable and that all the α_i's are nonzero.

Claim 5.6. Each of the first t rows and columns of M must have a corrupted
entry.

Pf. Suppose the first row (without loss of generality) is free of any corrupted entry.
Then, setting the entire row to zero would make all $M_i' = 0$ for $i \neq 1$. But since
$\sum_{i=1}^{t} \alpha_i M_i' = 0$, this forces M_i' to become zero under the projection as well. This leads
to a contradiction as M_i' is a determinant of an $(n-1) \times (n-1)$ symbolic matrix
under a projection, and this can not be zero unless $k \geq n - 1$ (by Fact 5.8). D (Claim)

Since $n - k > t$, there must exist a set of $t - 1$ rows (actually we would have $t + 1$
such rows, but $t - 1$ would suffice), say $\{R_{i_1}, \ldots, R_{i_{t-1}}\}$, of M that are free of any
corrupted entries. Note that by the claim above, none of these rows are the first t rows of M.

For each of these rows, set the j-th variable of row R_j to 1, and every other variable in R_1, \ldots, R_{t-1} to zero. That is, among the rows $R_{i_1}, \ldots, R_{i_{t-1}}$, the only non-zero entries are $\{x_{i_1,1}, x_{i_1,2}, \ldots, x_{i_t,1-t}\}$. This projections make $M'_i = 0$ for all $i \neq t$ (as in these minors an entire row vanishes). And since we had $\sum_{i=1}^t \alpha_i M_i = 0$ to begin with, this forces M'_i to become zero under this projection as well.

But let us take a moment to see what M'_i reduces to upon this projection. The minor M'_i just reduces (up to a sign) to the minor obtained from M' by removing the columns $\{1, \ldots, t\}$ and rows $\{R_{i_1}, \ldots, R_{i_{t-1}}\} \cup \{t\}$. This is a determinant of an $(n-t) \times (n-t)$ symbolic matrix, containing at most $k-t$ corrupted entries, thus $k-t \geq n-t$ (by Fact 5.8). But then $k \geq n$, which contradicts our initial assumption.

5.5. Extensions to immanants. All the lower bound proofs use some very basic properties of \Det_n. These properties are general enough that they apply to any immanant. For any map $\chi : S_n \to \mathbb{C}^\times$, recall the definition of the immanant of an $n \times n$ matrix $M = (x_{ij})$:

$$\Imm\chi(M) = \sum_{\sigma \in S_n} \chi(\sigma) \prod_{i=1}^n x_{i,\sigma(i)}$$

From the image of the map χ it is obvious that $\chi(\sigma) \neq 0$ for any $\sigma \in S_n$.

Definition 5.7. The minor of $\Imm\chi(M)$ with respect to the (i,j)-th entry is defined as

$$(\Imm\chi(M))_{i,j} = \sum_{\sigma \in S_n \atop \sigma(i)=j} \chi(\sigma) \prod_{k \neq i} x_{k,\sigma(k)}$$

This may also be rewritten as $\Imm\chi'(M_{ij})$ for a suitable map $\chi' : S_{n-1} \to \mathbb{C}^\times$, where M_{ij} is the submatrix of M after removing the i-th row and j-th column. From the definition, it follows directly that the partial derivative of $\Imm\chi(M)$ with respect to x_{ij} is precisely the minor with respect to (i,j).

The only crucial fact of determinants that is used in all the proofs is that a symbolic $n \times n$ determinant cannot be zero when less than n of its entries are altered.

Fact 5.8. Let M' be the matrix obtained by setting $c < n$ entries of M to arbitrary polynomials in $\mathbb{F}[x]$. Then for any map $\chi : S_n \to \mathbb{C}^\times$, we have $\Imm\chi(M') \neq 0$.

Proof. We shall say an entry of M' is corrupted if it is one of the c entries of M that has been replaced by a polynomial. We shall prove this by carefully rearranging the rows and columns so that all the corrupted entries are above the diagonal. Then, since all entries below the diagonal are free, we may set all of them to zero and the immanant reduces to a single nonzero monomial.

Since less than n entries of M' have been altered, there exists a column that is free of any corrupted entries. By relabelling the columns if necessary, let the first column be free of any corrupted entry. Pick any row R that contains a corruption and relabel the rows to make this the first row. This ensures that the first column is free of any corrupted entry, and the $(n-1) \times (n-1)$ matrix defined by rows and columns, 2
through \(n \), contain less than \(c - 1 \) corruptions. By induction, the \(c - 1 \) corruptions may be moved above the diagonal by suitable row/column relabelling. And since the first column is untouched during the process, we now have all \(c \) corruptions above the diagonal. Now setting all entries below the diagonal to zeroes reduces the immanant to a single nonzero monomial. \(\square \)

With this fact, all our lower bound proofs of the determinant can be rewritten for any immanant.

6. Conditional lower bounds for depth-\(D \) occur-\(k \) formulas. In this section, we present a lower bound for depth-\(D \) occur-\(k \) formulas similar in spirit to Theorem [1.6] by assuming the following conjecture about determinant minors.

Conjecture 6.1. Let \(M = (x_{ij}) \) be an \(n \times n \) matrix, and let \(x_i \) denote the \(i \)-th diagonal variable \(x_{ii} \). Let \(M' \) be a projection of \(M \) by setting \(c = o(n) \) of the variables in \(M \) to constants. Suppose the elements \(x_1, \ldots, x_k \), where \(k \) is a constant independent of \(n \), are partitioned into non-empty sets \(S_1, \ldots, S_t \). Consider \(M(S_i) \), the set of \(t \)-th order principal minors of \(M' \), each by choosing a \(t \)-tuple \(B \in S_1 \times \cdots \times S_t \) as pivots. Over all possible choices of \(B \), we get \(m := |S_1| \cdots |S_t| \) many minors. Then for any set of diagonal variables \(y_m \) disjoint from \(x_k \), \(J_y(M(S_i)) \neq 0 \).

The conjecture roughly states that the different \(t \)-th-order principal minors are algebraically independent. We will need a generalization of Lemma 5.1 for the purposes of this section.

Lemma 6.2. Let \(\{f_1, \ldots, f_s, g_1, \ldots, g_t\} \) be algebraically dependent polynomials such that trdeg \(\{g_i\} = t \). Let \(\Gamma \subseteq \mathbb{x} \) be a fixed set of variables of size at least \(s + t \). Then there exists a set of \(s + t \) variables \(x_{s+t} \subseteq \mathbb{x} \) and an equation of the form

\[
\sum_{i=1}^{r} c_i \cdot F_i \cdot G_i = 0 \quad \text{where } r \leq \binom{s + t}{t}
\]

such that each \(c_i \in \mathbb{F}^* \), each \(F_i \) is a distinct \(s \times s \) minor of \(J_{x_s \cup \Gamma}(f_s) \), each \(G_i \) is a distinct \(t \times t \) minor of \(J_{x_s}(g_t) \), and not all \(G_i \)'s are zero.

Note that we are not asserting the nonzeroness of \(F_i \)'s. Also, Lemma 5.1 may be obtained from the above lemma by taking \(f_1 = \det_n \), \(s = 1 \) and \(\Gamma \) to be the set of diagonal variables.

Proof. The proof is along the lines of Lemma 5.1. Amongst the nonzero \(t \times t \) minors of \(J_x(g_t) \), pick one (call the matrix associated with the minor, \(N \)) that maximizes the number of variables in \(\Gamma \) indexing the columns of \(N \). Without loss of generality, let \(x_t = \{x_1, \ldots, x_t\} \) be the set of variables indexing the columns of \(N \). Since \(|\Gamma| \geq s + t \), there exist \(s \) other variables in \(\Gamma \), say \(\{x_{s+t}, \ldots, x_{s+t}\} \). Consider the \((s + t) \times (s + t)\) minor of \(J_x(f_s \cup g_t) \) corresponding to the columns indexed by \(x_{s+t} \) - call the associated \((s + t) \times (s + t)\) matrix \(\tilde{N} \).

Since \(f_s, g_t \) are algebraically dependent, \(\det(\tilde{N}) = 0 \). Expanding \(\det(\tilde{N}) \) over all possible \(s \times s \) minors in the first \(s \) rows, we have an equation

\[
\sum_{U \subseteq x_{s+t}, |U| = s} c_i \cdot F_U \cdot G_U = 0
\]

where each \(F_U \) is an \(s \times s \) minor of \(J_{x_{s+t}}(f_s) \) with respect to the variables in \(U \), and each \(G_U \) the \(t \times t \) minor of \(J_{x_{s+t}}(g_t) \) corresponding to \(U \), and \(c_i \in \mathbb{F}^* \). If \(G_U \) is
the minor with respect to variables x_t, then $G_U = \det(N) \neq 0$ (by construction). It suffices to show that if F_U is a minor indexed by variables outside Γ, then $G_U = 0$. This follows, just like in Lemma 5.1, by the maximality assumption on choice of x_t which we elaborate on now.

Consider some set $U \subset x_{s+t}$ that contains some $x_i \notin \Gamma$. Then, U contains at least one more element of Γ than x_i. Hence, by the choice of x_t, we must have that the Jacobian of g_t with respect to U is singular i.e. $G_U = 0$. \square

The rest of this section shall be devoted to the proof of the following theorem.

Theorem 6.3. Assuming Conjecture 6.1, any depth-D occur-k formula that computes \det_n must have size $s = 2^{O(n)}$ over any field of characteristic zero.

Proof idea: The proof proceeds on the same lines as Theorem 1.6. If T_1, \ldots, T_k is a transcendence basis of gates at level 2 computing the determinant, then $J_x(\det_n, T_1, \ldots, T_k)$ is a matrix of rank k. This yields a non-trivial equation of the form $\sum N_i^{(1)} G_i^{(1)} = 0$ where each of the $N_i^{(1)}$'s are principal minors of $M = (x_{ij})$ and $G_i^{(1)}$'s are $k \times k$ minors of $J_x(T_1, \ldots, T_k)$. Here is where we may use Lemma 5.4 to remove common factors and obtain an equation of the form $\sum N_i^{(2)} G_i^{(2)} = 0$ where $\hat{G}_i^{(1)}$ is a polynomial of constantly many derivatives of polynomials computed at the next level. The above equation may be thought of as a polynomial relation amongst $\{N_i^{(1)}\} \cup \{\text{Elem}(\hat{G}_i^{(1)})\}$. Applying Lemma 6.2 (with a suitable choice of S_2), we get an equation of the form $\sum N_i^{(2)} G_i^{(2)} = 0$ where each $N_i^{(2)}$ is a minor of $J_{S_2}(\{N_i^{(1)}\})$, and $G_i^{(2)}$'s are Jacobians minors of $\bigcup \text{Elem}(\hat{G}_i^{(1)})$. Again after removing common factors, this equation may be interpreted as a polynomial relation amongst the entries of $N_i^{(2)}$ (which are minors of order 2) and $\text{Elem}(\hat{G}_i^{(2)})$.

Repeating this argument, we finally reach the level of sparse polynomials and thus obtain a non-trivial equation $\sum N_i^{(D-2)} \hat{G}_i^{(D-2)} = 0$, where each $N_i^{(D-2)}$ is a Jacobian minor of $(D-3)$-order minors, and each $\hat{G}_i^{(D-2)}$ is a sparse polynomial. With a slightly more careful choice of the sets S_i in Lemma 6.2, each of the minors $N_i^{(D-2)}$ would be a minor of $J_{S_{D-3}}(M(S_1, \ldots, S_{D-3}))$. Assuming Conjecture 6.1 we can show that such an equation is not possible unless the sparsity of the f_i's is large, using a similar argument as in Lemma 5.2.

Lemma 6.4. Suppose \det_n is computed by a depth-D occur-k formula of size s. Then there exist variables x_1, \ldots, x_R where $R = R(k, D)$, a partition of x_R into non-empty sets $S_1, \ldots, S_{D'}$, $(D' \leq (D - 2))$ polynomials f_1, \ldots, f_m (not all zero) where $m = |M(S_D)|^{O(R)}$ and each f_i has sparsity at most s^R, such that

$$\sum_{i=1}^{m} f_i \cdot N_i = 0$$

where each N_i is a minor of $J_x(M(S_{D'}))$ indexed by diagonal variables.

Proof. To begin with, suppose $\det_n = C(T_1, \ldots, T_m)$ where T_1, \ldots, T_m are polynomials computed at the first level. So Lemma 5.1 gives a starting equation, though we do not really have a sparsity bound on the f_i's. The proof shall proceed by transforming this equation into another, involving lower level polynomials, till we get a sparsity bound.
In a general step, we would have an equation of the form \(C_\ell(\mathcal{M}(S_1, \cdots, S_{\ell-1}), T_1^{(\ell)}, \cdots, T_{r_\ell}^{(\ell)}) = 0 \), where each \(T_i^{(\ell)} \) is a derivative (of order at most \(\ell \)) of a polynomial computed at level \(\ell \) of the circuit. Without loss of generality, we may assume that \(\{T_1^{(\ell)}, \cdots, T_{r_\ell}^{(\ell)}\} \) are algebraically independent. Let \(m_\ell := |S_1| \cdots |S_{\ell-1}| \). Choose a set of diagonal elements \(S_\ell \) of size \(|\mathcal{M}(S_1, \cdots, S_{\ell-1})| + r_\ell \) that is disjoint from \(S_1, \cdots, S_{\ell-1} \). Applying Lemma 6.2 with \(\Gamma = S_\ell \), we get an equation of the form

\[
\sum_i c_i^{(\ell)} N_i^{(\ell)} \cdot G_i^{(\ell)} = 0
\]

where \(N_i^{(\ell)} \) is an \(m_\ell \times m_\ell \) minor of \(\mathcal{J}_{S_\ell}(\mathcal{M}(S_{\ell-1})) \) indexed by diagonal variables, each \(G_i^{(\ell)} \) is an \(r_\ell \times r_\ell \) minor of \(\mathcal{J}_{S_\ell}(T_i^{(\ell)}) \). Consider the matrix \(\mathcal{J}_{S_\ell}(T_i^{(\ell)}) \) restricted to the columns appearing in some \(G_i^{(\ell)} \). Applying Lemma 4.4 on this matrix, we can write each \(G_i^{(\ell)} = V_\ell \cdot \tilde{G}_i^{(\ell)} \) where each \(\tilde{G}_i^{(\ell)} \) is a polynomial function of at most \(r_{\ell+1} := (\ell + 1)2^{\ell+1} \cdot k(r_\ell + m_\ell) r_\ell \) many derivatives of polynomials computed at level \(\ell + 1 \), and \(V_\ell \) is the part that comes out common from the rows of the Jacobian after applying the gcd trick of Lemma 4.3. Thus,

\[
V_\ell \cdot \sum_i c_i^{(\ell)} N_i^{(\ell)} \cdot \tilde{G}_i^{(\ell)} = 0.
\]

Note that \(V_\ell \) cannot be zero as at least one \(G_i^{(\ell)} \) was guaranteed to be nonzero by Lemma 6.2. Therefore, \(\sum_i c_i^{(\ell)} N_i^{(\ell)} \cdot \tilde{G}_i^{(\ell)} = 0 \). Since each \(\tilde{G}_i^{(\ell)} \) is a polynomial function of \(r_{\ell+1} \) derivatives at the next level, we now have \(C_{\ell+1}(\mathcal{M}(S_1, \cdots, S_{\ell}), T_1^{(\ell+1)}, \cdots, T_{r_{\ell+1}}^{(\ell+1)}) = 0 \).

Unfolding this recursion, we finally reach the level of sparse polynomials, at which point we have an equation of the form

\[
\sum_i c_i^{(D-2)} N_i^{(D-2)} \cdot \tilde{G}_i^{(D-2)} = 0
\]

and each \(\tilde{G}_i^{(D-2)} \) is a \(r_{D-2} \times r_{D-2} \) Jacobian minor of sparse polynomials. Hence, each \(\tilde{G}_i^{(D-2)} \) is itself a polynomial of sparsity bounded by \(s^{r_{D-2}} \) as claimed. \(\square \)

We now have to show that an equation of the form \(\sum f_i \cdot N_i = 0 \) is not possible unless one of the \(f_i \)'s has exponential sparsity. The above lemma guarantees that at least one of the \(f_i \)'s are nonzero in this equation, but it could be the case that some of the \(N_i \)'s are zero. This was not the case in the depth-4 lower bound as each \(N_i \) was just a determinant minor. However, in this case they are Jacobians of minors. Conjecture 6.1 asserts that the \(N_i \)'s are nonzero, even if 'few' variables are set to zero. This assumption is enough to get the required lower bound.

Lemma 6.5. Let \(|\mathcal{M}(S_1, \cdots, S_D)| =: m \) be a constant and let \(\{N_{i}^{1} \leq i \leq \ell \} \) be distinct \(m \times m \) minors of \(\mathcal{J}_{S}(\mathcal{M}(S_D)) \) where the columns of \(N_i \) are indexed by a set \(T_i \) of diagonal variables of \(M \) disjoint from \(\bigcup_{j=1}^{D} S_j \). Suppose \(f_1, \cdots, f_\ell \) are polynomials such that \(\sum_{i=1}^{\ell} f_i \cdot N_i = 0 \) (not all \(f_i \)'s are zero). Then, assuming Conjecture 6.1 is true, the total sparsity of the \(f_i \)'s is \(2^{\Omega(n)} \).

Proof. The proof is along the similar lines like the proof of Lemma 5.2 and shall proceed by a similar series of sparsity reduction and fanin reduction steps to...
That concludes the proof of Theorem 6.3 as well. Throughout the proof, Conjecture 6.1 shall assert that N_i's stay nonzero (even when few variables are set to constants). We briefly describe the sparsity reduction and the fanin reduction steps and the rest of the proof would follow in essentially an identical fashion as the proof of Lemma 5.2.

Without loss of generality, assume that $\{x_1, \ldots, x_r\}$ is the union of the sets S_i's and T_i's. Let N refer to the matrix of indeterminates that the N_i's are derived from. In our case, N would be obtained by (possibly) setting few variables to constants in $M = (x_{ij})$. We'll refer to all the variables x_{ij} where both $i, j > r$ as white variables; these are present in every entry of each N_i. The variables x_{ij} where both $i, j \leq r$ shall be called black variables, and the rest called grey variables. Here again, the sparsity reduction step shall be applied whenever one of the f_i's depends on a white variable, otherwise the fanin reduction steps shall be applied.

Sparsity-reduction step - Suppose one of the f_i's depend on a white variable x. Then each N_i can be written as $N_i = N_{i,0} \cdot \cdots \cdot x^m N_{i,m}$, and $f_i = f_{i,0} \cdot \cdots \cdot f_{i,h} x^h$. One of the two equations corresponding to the coefficient of x^0 and x^{h+m} yields a similar equation with sparsity reduced by a factor of $1/2$. Observe that $N_{i,0}$ is just $N_i |_{x=0}$, and hence the polynomials $\{N_{i,0}\}$ may be thought of as corresponding Jacobian minors of N' obtained by setting $x = 0$ in N'. Also, $N_{i,m}$ is obtained by replacing every entry of the matrix corresponding to N_i by its minor with respect to x. And hence, $N_{i,m}$ can be thought of as a corresponding Jacobian minor of N_x obtained by taking the minor of N with respect to x. Thus the two equations corresponding to the coefficient of x^0 and x^{h+m} are indeed of the same form as $\sum f_i N_i = 0$. (In the case of the coefficient of x^{h+m}, we need to set other variables in the row/column containing x as in the proof of Lemma 5.2)

Fanin reduction step - Without loss of generality, let $x_1 \in T_1 \setminus T_2$. Pick a row R of N barring the first r rows, and let y_1, \ldots, y_r be the grey variables in R (where y_1 is in the same column as x_1). By a similar process as in the proof of Lemma 5.2, we can assume that at least one f_i is nonzero when y_2, \ldots, y_r are set to zero.

If one of the f_i's become zero when $y_2, \ldots, y_r = 0$, then pick any white variable y in row R and set every variable in row R to zero besides y. This would ensure that the fanin of the equation reduces and each N_i is now $y^m \cdot N'_i$. Each N'_i may be thought of as being obtained from N_y, the minor of N with respect to y. The other variables in the column of y can be set to values to ensure that the f_i's stay nonzero to obtain an equation of the form $\sum f_i N'_i = 0$ of reduced fanin.

If none of the f_i's become zero when $y_2, \ldots, y_r = 0$, then set every variable in row R other than y_1 to zero. This ensures an entire column of the matrix corresponding to N_1 becomes zero (as x_1 indexes one of the columns of N_1), and hence N_1 becomes zero. On the other hand, N_2 remains nonzero and each surviving N_i can be written as $y_1^m \cdot N'_i$, where N'_i is the corresponding Jacobian minor of N_{y_1}. Again, the other variables in the column of y_1 can be set to values to ensure that f_i's stay nonzero and we obtain an equation $\sum f'_i N'_i = 0$ of reduced fanin.

As in the proof of Lemma 5.2, we eventually obtain an equation of the form $f_1 N_1 = 0$ where $f_1 \neq 0$ thus implying that $N_1 = 0$. The number of variables that have been set to constants is bounded by $t + \log S$ where S is the initial total sparsity of the f_i's, and N_1 is a Jacobian minor of a symbolic matrix of dimension $n - (\log S + t - 1)$. Conjecture 6.1 asserts that N_1 would be nonzero unless $\log S + t = \Omega(n - (\log S + t - 1))$, or $S = 2^{\Omega(n)}$. □

That concludes the proof of Theorem 6.3 as well.
7. Conclusion. Spurred by the success of the Jacobian in solving the hitting-set problem for constant-trdeg depth-3 circuits and constant-occur constant-depth formulas, one is naturally inspired to investigate the strength of this approach against other ‘constant parameter’ models - the foremost of which is constant top fanin depth-4 circuits (PTT even for fanin 2?).

Another problem, which is closely related to hitting-sets and lower bounds, is reconstruction of arithmetic circuits [SY10, Chapter 5]. There is a quasi-polynomial time reconstruction algorithm [KS09], for a polynomial computed by a depth-3 constant top fanin circuit, that outputs a depth-3 circuit with quasi-polynomial top fanin. Could Jacobian be used as an effective tool to solve reconstruction problems? If yes, then it would further reinforce the versatility of this tool.

Acknowledgments. We would like to thank the anonymous reviewers for several useful suggestions that have helped us improve the presentation of the paper.

This work was done when MA, RS and NS visited Max-Planck Institute for Informatics (Saarbrücken) and would like to thank the institute for its generous hospitality. MA was supported by Humboldt Forschungspreis and J C Bose Fellowship. RS was supported by IMPECS and MSR (India) Ph.D. Fellowship. CS was supported by the IMPECS Fellowship.

REFERENCES

