
Integer factoring using small algebraic
dependencies∗

Manindra Agrawal1, Nitin Saxena2, and Shubham Sahai Srivastava3

1 Indian Institute of Technology, Kanpur, INDIA
manindra@cse.iitk.ac.in

2 Indian Institute of Technology, Kanpur, INDIA
nitin@cse.iitk.ac.in

3 Indian Institute of Technology, Kanpur, INDIA
ssahai@cse.iitk.ac.in

Abstract
Integer factoring is a curious number theory problem with wide applications in complexity and

cryptography. The best known algorithm to factor a number n takes time, roughly, exp(2 log1/3 n·
log2/3 logn) (number field sieve, 1989). One basic idea used is to find two squares, possibly in a
number field, that are congruent modulo n. Several variants of this idea have been utilized to
get other factoring algorithms in the last century. In this work we intend to explore new ideas
towards integer factoring. In particular, we adapt the AKS primality test (2004) ideas for integer
factoring.

In the motivating case of semiprimes n = pq, i.e. p < q are primes, we exploit the difference
in the two Frobenius morphisms (one over Fp and the other over Fq) to factor n in special
cases. Specifically, our algorithm is polynomial time (on number theoretic conjectures) if we
know a small algebraic dependence between p, q. We discuss families of n where our algorithm is
significantly faster than the algorithms based on known techniques.

1998 ACM Subject Classification Primary: F.2.1 ; Secondary: I.1.2

Keywords and phrases integer, factorization, factoring integers, algebraic dependence, depend-
encies

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.7

1 Introduction

Factoring a positive integer n is the process of finding a positive integer m (1 < m < n) that
divides n. Integer factorization has been fascinating mathematicians for centuries [9]. There
has been continuous attempts to expand our abilities to factor larger and larger integers (see
[14], [3]).

In general, factoring a composite number is widely believed to be a “hard" problem, with
no efficient general purpose algorithms known. There are several special purpose factoring
algorithms which can factor composites efficiently, provided some specific property is satisfied.
Some of the algorithms being: Trial division (or Eratosthenes sieve, see [12]), Fermat’s
factorization [15], Euler’s factorization [20][22], Pollard’s rho algorithm [24], Pollard’s p− 1
algorithm [23], Williams’ p + 1 algorithm [30], Lenstra’s elliptic curve factorization [18],
quadratic sieve [10], and the number field sieve [6]. Sieve ideas have been the most successful
ones in factoring, see an excellent survey in [26].

∗ N.S. is supported by DST/SJF/MSA-01/2013-14.

© Manindra Agrawal, Nitin Saxena and Shubham Sahai Srivastava;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Integer factoring using small algebraic dependencies

The “hardness” of integer factorization has no known proof, but, the belief hinges only on
our inability to factor a general composite efficiently. However this belief is so strong, that
the most widely used public key cryptosystems (eg. RSA [5]) are based on this “inherent”
difficulty to factorize integers. Such applications in cryptography make integer factorization
problem even more interesting. Giving a polynomial time algorithm to factorize any given
integer, might result in breaking most widely used cryptosystems. On the other hand, proving
(or giving evidence) that no efficient algorithm exists for factoring a general composite would
further strengthen the trust on these cryptosystems.

This does not mean that no progress was made in the direction, to come up with a
general purpose algorithm. Although there is no algorithm that can factor (even heuristically)
all integers in “polynomial time" (i.e. polynomial in the bit-size of the input number),
yet there are several algorithms that run in subexponential time (i.e. exp(O(logε n)) time
for ε < 1). These are faster than the simple “high school” method (i.e. trial division
algorithm, having exponential running time). The fastest general purpose algorithm for
factoring a number n, is the general number field sieve (see [16]), with heuristic running time
exp

((
3
√

64/9 + o(1)
)

(logn)
1
3 (log logn)

2
3
)
. The other widely used algorithm in practice is

the quadratic sieve algorithm [25], having running time exp
(
(1 + o(1))

√
logn log logn

)
, which

is a modification of Dixon’s algorithm [8], that had a (rigorously provable) running time of
exp

(
(2
√

2 + o(1))
√

logn log logn
)
.

In 1997, Peter Shor discovered the first polynomial time algorithm for factoring integers
on a quantum computer [28]. To factor an integer n, it takes O((logn)2 log logn log log logn)
time1 on quantum computer and O(logn) post-processing time on classical computer for
converting the output of quantum computer to factors of n. If one day quantum computation
becomes feasible for large inputs, then this will have serious implications in cryptography [4].

One common thread in these, increasingly complex, algorithms is the trick of finding
two squares in some number field, such that the difference of the squares, say a2 − b2, is a
multiple of n. Then we can hope that the factors (a− b), (a+ b) would also lead us to the
factors of n. The origins of this trick dates back atleast to Fermat, and was also exploited
by Gauss, Seelhoff and Kraitchik (see the early history of factoring in [31]). One wonders
whether other natural tricks or ideas could be discovered for factoring integers.

In this work we propose a method for factoring semiprimes n = pq (i.e. p < q are primes)
using the difference in the Frobenius morphisms over the finite fields Fp and Fq. We do this
by working in a cyclotomic ring extension (Z/nZ)[ζ] := Z[X]/

(
n, X

r−1
X−1

)
. We pick a random

element u(ζ) ∈ (Z/nZ)[ζ] and compute the exponentiation ue, for a carefully chosen positive
integer e. For example, when e = n we can invoke the Frobenius morphisms to deduce
u(ζ)n = u(ζp)q (mod p) and u(ζ)n = u(ζq)p (mod q). A similar line of thought has been
explored in [7], where they viewed the problem from the perspective of AKS [1] polynomial.
Although no family of n was identified in that work to be particularly good. The asymptotic
complexity of the algorithm was also not analyzed, but some supporting experimental data
was included.

We identify certain families of n where this idea gives a fast factoring algorithm. Especially,
in our main result we pick e corresponding to a known algebraic dependency of p and q.
In this case, we show that the ring computations in (Z/nZ)[ζ] are expected to factorize n.
We believe that such computations in the cyclotomic ring have a good chance in further
improving the state of the art in factoring. Similar techniques were utilized in [1] to give the

1 We can shorten this using the soft-Oh notation as Õ(log2 n).

M. Agrawal, N. Saxena and S. S. Srivastava 7:3

first deterministic poly-time primality test. Moreover, for integer factoring even “heuristic”
algorithms that are expected to run in poly-time (in the worst-case) would be of great
interest.

Our notion of “small” algebraic dependence and the proof of its existence is captured in
the following proposition. We say that a bivariate polynomial f(X,Y) is nondegenerate if
there appears, with a nonzero coefficient, a monomial XiY j in f such that i 6= j.
I Proposition 1.1 (Small dependency exists). For numbers d, a < b ∈ N, there exists a
degree ≤ d nondegenerate integral polynomial f(X,Y) of sparsity 2γ and coefficients ci’s of
magnitude at most bd/(γ−1) such that: f(a, b) =

∑2γ
i=1 ci a

αi bβi = 0. (Note that 2γ ≤
(
d+2

2
)

as 0 ≤ αi + βi ≤ d.)
It is proven in Section 3. Recall that Fermat’s factoring algorithm works fast when the

primes p, q are really close2; formally, when there is an f(x, y) = y − x− α, for a small α,
such that f(p, q) = 0. We generalize the condition of Fermat’s factoring algorithm to higher
degree dependencies (and with more general coefficients). The above proposition gives the
parameters for such f to exist. Our algorithms will require the knowledge of such an f

(unfortunately, in general, it may be hard to find f given only n).
One such interesting dependence is addressed in Section 4.2. For n = pq, p < q, we

represent q in base p as q = a0 + a1.p + a2.p
2 + a3.p

3 + · · · . We define the pth norm of
q as |q|p :=

∏
i(ai + 1). Given a small bound B on |q|p, our algorithm factors n in time

O(B2 log2 n). This immediately gives us a family of n which can be factored efficiently
(under certain number theory conjectures) using our algorithm. This family is a natural
generalization of the family of numbers (n = ab, where b− a is small) that can be factored
efficiently using Fermat’s factoring algorithm.

Our general approach works in polynomial time, assuming that a suitable dependency
is provided (and that certain number theory conjectures hold). The algorithm presented
in this paper runs in Õ(γ3d log2 n) time, where d is the degree bound of the dependency,
γ is its sparsity, and n is the number to be factored. Observe that once such a bivariate
nondegenerate dependency f(X,Y), of degree d is given, we can easily transform it to get a
univariate polynomial Xdf(X,n/X) which has p as a root. Notice, that it is important here
that the dependency is nondegenerate. For degenerate dependency of the form f(X,Y) =∑
i≤d aiX

iY i the substitution f(X,n/X) will give us a number instead of a univariate
polynomial, and we could not proceed further.

Now, once we get a univariate polynomial f ′ := Xdf(X,n/X) which has p as a root, we
could simply try to find its integral roots by factoring it using Schönhage’s algorithm [27]
having time complexity Õ(d4 · (d2 + log2 |f ′|)), where |f ′| upper bounds the coefficients in f ′.
On the other hand, our new approach is sensitive to sparsity γ and tolerates bigger coefficients.
So, for dependencies, having ‘small’ γ and ‘large’ d, our algorithm will outperform Schönhage’s
algorithm by several orders. For example, given dependence f(x, y) = y + c1x

d + c0, where
|c1| = |c0| = nO(d) , our algorithm will factor it in time Õ(d log2 n), whereas Schönhage’s
algorithm will take time Õ(d4 · (d2 + d2 log2 n)) = Õ(d6 log2 n).

The main result established is presented in Section 5. The section presents the algorithm
to factor n when a small dependency is provided. The result is summarized by the following
theorem.
I Theorem 1.2 (Main Result). For an integer n = p·q (p < q are primes), given a nondegenerate
integral (p, q) dependency of the form f(X,Y) =

∑γ
i=1 ciX

αi Y βi , where ∀i, 0 ≤ αi +βi ≤ d,

2 Essentially, one tries to find q − p by brute-force.

MFCS 2016

7:4 Integer factoring using small algebraic dependencies

|ci| = nO(d) := A we can factor n in Õ(γ3d log2 n) time. (Assuming Artin’s conjecture & 3.)

We also present an alternate analysis of this algorithm in Section 6. This section also
generalizes the result for integers of the form n = p · n′, where p is a prime smaller than the
largest prime factor of n. The following theorem presents the result of that section.

I Theorem 1.3. For an integer n = p · n′ (where p is a prime smaller than the largest
prime factor of n), given a nondegenerate integral (p, n′) dependency of the form f(X,Y) =∑γ
i=1 ciX

αi Y βi , where ∀i, 0 ≤ αi + βi ≤ d, |ci| < nd, we can factor n in Õ(µ3 · γd4 log2 n)
time. Here µ :=

∑
i ei for the prime factorization n =

∏
i p
ei
i . (Assuming Artin’s conjecture

& 4.)

Here as well, for µ, γ = O(1) the time complexity is better than that of simply factoring
Xdf(X,n/X) by Schönhage’s algorithm. Also, the algorithm seems simpler than the soph-
isticated lattice computations that underlie Schönhage’s polynomial factoring algorithm (see
[13]).

The paper is organized into following sections: Section 2 talks about the notations and
results used in the paper. Section 3 proves the existence of small dependence. In Section
4, we discuss two simple dependencies as motivating examples, and explore the idea of
exponentiation in the cyclotomic ring to factor n. Section 5 presents the main result of the
paper. An alternate analysis of the algorithm is presented in Section 6.

2 Notation and Preliminaries

This section states the notations and number theory results that we will use later.

Polynomial notation. The form of polynomials that we compute in this work is exponen-
tiation; motivated by the AKS polynomial (see [1]) used for primality testing:

P = a(x)e (mod n, xr − 1), where a(x) is a polynomial. (1)

For technical reasons we will actually work modulo the r-th cyclotomic polynomial ϕr(x).
Then, we represent exponentiation by the following shorthand notation

P = a(ζr)e (mod n), and might drop r when clear from the context. (2)

Formally, this arithmetic happens in the ring (Z/nZ)[ζr] := Z[X]/(n, ϕr(X)), where every
element can be written as a (Z/nZ)-linear-combination of the monomials {Xi | 0 ≤ i ≤
ϕ(r) − 1}, where ϕ(r) is the Euler totient function (also, the degree of the cyclotomic
polynomial). This will be our standard representation.

In this paper we assume r to be a prime, mainly, to simplify the analysis since ϕr(x) =
(xr − 1)/(x − 1). Also for composite r’s the cyclotomic extension is quite well structured.
For the basic properties of the cyclotomics see [29, Chap.2].

Artin’s conjecture. Emil Artin (1927, see [21]) conjectured: For any non-square a ∈
Q\{−1} there exist infinitely many primes p such that a is a primitive root modulo p, i.e. the
multiplicative order ordp(a) = p− 1.

There has been impressive positive progress towards this conjecture [11]. Moreover, a
quantitative version of this conjecture is also believed to be true.

I Conjecture (Artin’s conjecture, see [21]). For any non-square a ∈ Q \ {−1}, the number
of primes p ≤ x with ordp(a) = p − 1 is asymptotically at least CArtin · π(x). (π(x) is the
number of primes in the interval [1, x] and CArtin = 0.3739558136192 · · · .)

M. Agrawal, N. Saxena and S. S. Srivastava 7:5

Frobenius morphism. For a prime p consider the polynomial ring R := Fp[X] over the
finite field Fp. Consider the map φ : R→ R given by the exponentiation a(X) 7→ a(X)p. It
is easy to see that φ is actually a (ring) endomorphism of R, and the trivial3 automorphism
of Fp. In other words, we have the useful identity: ∀a(X) ∈ R, a(X)p = a(Xp).

Other notations. We use [n] to denote the set {1, 2 · · · , n}. The notation logq,r p is used
to denote, the discrete log, logq p in the field Fr, i.e. it is the exponent i ∈ {0, . . . , r − 2}
such that p = qi (mod r). Here, we assumed that r is a prime, and q is a primitive root
modulo r. (We hope to get such an r corresponding to a q as the density of r’s is high as per
Artin’s conjecture.) Bold faced symbols (e.g. α) represent vectors. Fq[ζ] represents some
ring Fq[X]/(ϕr(X)).

We recall a useful standard property of cyclotomic polynomials. This is the main reason
why Artin’s conjecture appears in this work.

I Lemma 2.1. Let q 6= r be primes. The integral polynomial ϕr(x) = (xr − 1)/(x − 1) is
irreducible over Fq iff q is a primitive root modulo r.

Proof. Let q generate F∗r . Wlog assume r > 2, as ϕr(x) is linear for r = 2. Suppose ϕr(x)
is reducible and has a degree d factor g(x), where d ∈ [r − 2]. Let α be a root of g(x) in
the (splitting) field Fq[x]/(g(x)). As this is the field Fqd , the multiplicative order ord(α) will
divide qd − 1. Since α is a root of xr − 1, we also have ord(α)|r. Thus, ord(α) is 1 or r. It
cannot be 1 as q 6= r. So,

ord(α) = r.

Consequently, r | qd − 1
qd = 1 (mod r)

(r − 1) | d [∵ q generates F∗r] .

This contradicts d ∈ [r − 2]. Hence, ϕr(x) is irreducible modulo q.
For the converse note that ϕr(x) being irreducible modulo q, means that it divides

xq
r−1 − x, and no other xqi − x for a smaller i. Equivalently, r | qr−1 − 1 and no other qi − 1

for a smaller i. Thus, q generates F∗r . J

3 Existence of small dependencies

Our basic idea is based on the following elementary property of numbers.

Proof for Proposition 1.1. Clearly, 2γ ≤
(
d+2

2
)

=: γ0 which is the upper bound for the
number of exponents (αi, βi) in f .

Let A := 2bd/(γ−1). Consider a set S of nondegenerate combinations (i.e. i1 6= i2 for at
least one monomial in each sum),

S :=

 ∑
0≤i1+i2≤d

αi1,i2 · ai1bi2

∣∣∣∣∣∣ αi1,i2 ∈ Z, |αi1,i2 | ≤
A

2 , at most γ αi1,i2 ’s are nonzero

 .

3 Fermat’s little theorem (1640).

MFCS 2016

7:6 Integer factoring using small algebraic dependencies

Then, we have

∀β ∈ S, |β| ≤ γ · A2 · b
d .

Consider the set V comprising the coefficient-vectors α corresponding to every element
of S. Then the cardinality of V can be lower bounded (by doing a sum over the possible
supports of α) as,

|V| ≥
(
γ0

γ

)
·Aγ +

(
γ0

γ − 1

)
·Aγ−1 + · · ·+

(
γ0

1

)
·A+ 1

>

(
γ0

γ

)γ
·Aγ [Simple binomial estimate]

Clearly, if |V| = |S| is greater than max{|β| | β ∈ S}, then by the pigeon-hole principle
there will be atleast two distinct vectors α,α′ ∈ V that correspond to the same number
β ∈ S. This gives us the desired dependency,

0 =
∑

0≤i1+i2≤d
(αi1,i2 − α′i1,i2) · ai1bi2 .

Hence, for the desired small dependency it suffices to ensure that,

|V| > max{|β|}

or
(
γ0A

γ

)γ
≥ γ · A2 · b

d

or Aγ−1 ≥
(
γ

γ0

)γ
· γb

d

2

or A ≥
(
γ

γ0

)γ/(γ−1)
·
(γ

2

)1/(γ−1)
· bd/(γ−1)

or A ≥ 2 · bd/(γ−1) (3)

Clearly, for our A, Equation 3 is satisfied. Hence, the required dependency exists. J

Hence, there is a trade-off between the sparsity (γ) and the magnitude (ci) of the
dependency polynomial.
I Remark. This bound is not optimal. Eg. if we allow f to have sparsity γ0 then a slightly
better bound of A = 2bd/(γ0−1) can be shown; which for d = 1 seems optimal.

For a nonconstant γ, or a superpolynomial coefficient-bound A, it would be quite expensive
to search for such a dependency f in general. So, our algorithms would be interesting only
for those n = pq where it is relatively easy to find an f such that f(p, q) = 0.

4 Motivating Dependencies

In the previous section we have shown that a “small" dependency will always exist (Proposition
1.1). Although, in general this dependency could be hard to find, but in special cases there
are several natural dependencies. Some of them have already been witnessed and worked
upon. An example of one such naturally occurring dependency is, when the two factors are
very close to each other. In other words, for n = pq, q − p = α, where α is some small4

4 The term “small" is used vaguely here. The running time of the algorithm is proportional to α. Hence,
we could work with α according to the running time we aim for. For polynomial time algorithm, we
want α = poly logn.

M. Agrawal, N. Saxena and S. S. Srivastava 7:7

constant. Consequently, in such cases both p and q will be close to
√
n. Hence, to factor

n, we can simply use the trial division algorithm, starting from
√
n, which would work

efficiently as α is small. A more sophisticated and faster way to factor a number having such
a dependency (q− p = α) would be to use Fermat’s factorization method. We propose a new
method to factor numbers having such a dependency.

4.1 Factoring numbers having dependency of the form q − p = α

Assuming that we have n and a bound B such that q − p = α ≤ B the idea is to pick an
element (x+ a) ∈ (Z/nZ)[x]/(n, xr − 1) and compute P := (x+ a)n, for an r slightly bigger
than B. The hope is that the two (underlying) polynomials, Pq = (xq + a)p (mod q, xr − 1)
and Pp = (xp + a)q (mod p, xr − 1) would have different supports (i.e. there is a monomial
xi, i ∈ [0, 1, · · · , r− 1], that appears with zero coefficient in exactly one of the polynomials5).
We can clearly see, that r ≤ q is the trivial upper bound. But we can likely improve this
upper bound further.

For r < p < q it seems likely that for most a’s, (x+ a)p (mod q, xr − 1) will have each of
the r monomials (i.e. xi, i ∈ [0, 1, · · · , r − 1]) appearing with nonzero coefficient6. We pose
this formally.

I Conjecture 1. For primes p < q, 1 ≤ r < p and a random a ∈ Z/qZ, (x+a)p (mod q, xr−1)
is full support with high (i.e. constant) probability.

The rationale for this conjecture is that we expect (x + a)p to be a “random” element
in the cyclotomic ring. So, it will be rare that there is a zero coefficient in its standard
representation.

On the other hand (x+ a)q (mod p, xr − 1), for r ≥ 2B + 3, has proper support as we
now show.

I Theorem 4.1. For primes p < q and r ≥ 2(q − p) + 3, (x+ a)q (mod xr − 1, p) is proper
support.

Proof. Consider the polynomial,

Pp = (x+ a)q (mod p)
= (x+ a)p(x+ a)q−p (mod p)
= (xp + a)(x+ a)q−p (mod p)
= (xp)(x+ a)q−p︸ ︷︷ ︸

Sparsity≤q−p+1

+ a · (x+ a)q−p︸ ︷︷ ︸
Sparsity≤q−p+1

(mod p) .

Hence, Sparsity(Pp) ≤ 2(q − p+ 1). So, taking r ≥ 2(q − p+ 1) + 1 will ensure that atleast
one monomial in (x+ a)q (mod xr − 1, p) has the zero coefficient. J

These observations motivate the following algorithm.

5 It is easy to see that this implies that one of the coefficients in P will share a nontrivial gcd with n.
6 Such a polynomial we call full support, and its opposite is proper support.

MFCS 2016

7:8 Integer factoring using small algebraic dependencies

Algorithm 1 Factoring Integer : FAC1(n,B)
Require: Odd n = pq (p < q are primes) and a parameter B ≥ (q − p).
1: r ← 2
2: while r ≤ 2B + 3 and n is not factored do
3: Choose a random number a < n

4: Compute P = (x+ a)n (mod xr − 1, n)
5: Take gcd of n with ra, and with the coefficients of P.
6: if n is factored then
7: return factor

8: return 0

Time complexity. The polynomial computation in step 4, takes time Õ(r log2 n) using
fast arithmetic. Taking GCD in step 5, takes similar time. Hence, the overall time complexity
of the algorithm is Õ(B2 log2 n). Note that it is a probabilistic algorithm based on Conjecture
1. It can be seen as an alternative (albeit slower) to Fermat’s factoring algorithm.

4.2 Bound based on pth norm of q
This subsection discusses a more general, yet natural, dependency and presents the algorithm
to factor n in such cases.

Let us represent q in base p (so that ai’s are in [0, · · · , p− 1]),

q = a0 + a1.p+ a2.p
2 + a3.p

3 + · · · .

We define the pth norm of q as |q|p :=
∏
i(ai + 1). It is defined as a ‘measure’ for the size

of the coefficients in base p representation of q.
Can we factor n = pq (primes p < q) if we have an upper bound B on |q|p ? We can

generalize the methods of the last section.
By Conjecture 1 we expect (x + a)p (mod xr − 1, q) to be full support, for random a.

The other modulus is covered by the following simple observation.

I Theorem 4.2. For primes p < q and r > |q|p, (x+ a)q (mod xr − 1, p) is proper support.

Proof. By using the base-p representation of q we have,

(x+ a)q = (x+ a)a0+a1.p+a2.p
2+a3.p

3+···

=
∏
i

(x+ a)ai.p
i

=
∏
i

(xp
i

+ a)ai (mod p)

∴ Sparsity((x+ a)q mod p) ≤
∏
i

(ai + 1)

= |q|p .

Hence, for r > |q|p, (x+ a)q (mod xr − 1, p) is proper support. J

Remark. For dependency of the form q − p = α, where 0 < α < p, the pth norm of q
is 2(α+ 1). Hence, we get a natural generalization of numbers n that are good for Fermat
factorization.

These observations again motivate the following algorithm.

M. Agrawal, N. Saxena and S. S. Srivastava 7:9

Algorithm 2 Factoring Integer : FAC2(n,B)
Require: Odd n = pq (p < q are primes) and a parameter B > |q|p.
1: r ← 2
2: while r ≤ B and n is not factored do
3: Choose a random number a < n

4: Compute P = (x+ a)n (mod xr − 1, n)
5: Take gcd of n with ra, and with the coefficients of P.
6: if n is factored then
7: return factor

8: return 0

Time complexity. The overall time complexity of the algorithm is Õ(B2 log2 n), as in
the previous subsection. Note that it is a probabilistic algorithm based on Conjecture 1. It
can be seen as a natural generalization (albeit slower) of Fermat’s factoring algorithm.

4.3 Relaxing conjecture 1

In the previous subsections the proofs of factoring depend on Conjecture 1. In this section
we relax the conjecture; which might make it easier to prove.

The point is that we just need to prove, that for a random a(x), with high probability
there is a difference in the supports of the two polynomials:

a(xp)q (mod xr − 1, p) and,
a(xq)p (mod xr − 1, q) (4)

in the case when r > |q|p. The rationale is again that the first polynomial is proper support,
while the second polynomial is likely to have a support different from the first.

I Conjecture 2. For primes p < q, r > |q|p and a random a(x) ∈ (Z/nZ)[x]/(xr − 1, n), the
two polynomials in Equation 4 have, with high probability, different support.

It can be seen that based on this conjecture, an algorithm similar to Algorithm 2 can be
designed to factor n (in probabilistic time Õ(B2 log2 n)).

5 General dependencies

The previous section addressed dependencies of specific forms. In this section, we move to
the case of more general dependencies between the two factors. For n = pq, primes p < q,
we consider a nondegenerate dependency f(x, y) of degree bound d with at most γ nonzero
coefficients. So, 0 = f(p, q) =

∑γ
i=1 ci p

αi qβi = 0, where ∀i, 0 ≤ αi + βi ≤ d, |ci| = nO(d).
Proposition 1.1 gives the almost optimal parameters for its existence in general.

When we are given n and f , our idea is to compute AKS exponentiation (Eqn.2) in a
cyclotomic ring extension over Z/nZ and try distinguishing the two Frobenius morphisms.
We give the details in the form of an algorithm and then the proof. The key step will be
the computation of an expression

∏γ
i=1 a(ζpαi−βi)cinβi , for a random element a(ζ). Note

that modulo p it is the same as exponentiation by
∑γ
i=1 cip

αiqβi = 0. Also, note that pαi−βi
exists modulo r, when r and p are coprime.

MFCS 2016

7:10 Integer factoring using small algebraic dependencies

Algorithm 3 Factoring Integer : FAC3(n, f)
Require: Odd n = pq (p < q are primes), and a nondegenerate dependency f =∑γ

i=1 cix
αiyβi , where ∀i, 0 ≤ αi + βi ≤ d, |ci| = nO(d).

1: Choose a random prime r ≤ 10γ log γ and verify that gcd(r, n) = 1.
2: for t ∈ [r − 1] do
3: count← 0
4: while count < 5 log lognr do
5: Choose a random element a(ζ) := a(x) ∈ Z[x]/(ϕr(x), n).
6: Compute P :=

∏γ
i=1 a(ζtαi−βi)cinβi .

7: Take gcd of n with the coefficients of P.
8: if n is factored then
9: return factor

10: return 0

To study this algorithm we would need a qualitative conjecture about the distribution of
discrete logarithms.
I Conjecture 3. For a fixed p, q, f as before and R > 10γ, the function logq,r p takes almost
random values e as we vary r ∈ [R] such that, with a constant probability,

γ∑
i=1

ci p
βi qeαi+(1−e)βi 6= 0

(
mod qr−1 − 1

q − 1

)
.

The rationale for this conjecture is that as we vary r in a range bigger than [γ] we
expect e to be “random” enough so that the two γ-dimensional vectors

(
cip

βi | i ∈ [γ]
)

and
(
qeαi+(1−e)βi | i ∈ [γ]

)
are not orthogonal (mod (qr−1 − 1)/(q − 1)). One necessary

condition for this is: {eαi + (1 − e)βi | i ∈ [γ]} be a set of distinct functions in e, with
at least one of them being nontrivially dependent on e. The distinctness holds because
eαi + (1 − e)βi = eαj + (1 − e)βj iff (αi, βi) = (αj , βj) iff i = j. (Note : We use that, for
some i, αi 6= βi as f is nondegenerate.)

Now we are ready to prove the correctness of the algorithm.

Proof for Theorem 1.2. By Artin’s conjecture we can deduce that we will get a prime r,
with constant probability, such that: q generates the unit group of Fr. In this case Lemma
2.1 asserts that ϕr(x) is irreducible over Fq. Hence, Fq[ζ] := Fq[x]/(ϕr(x)) is a field.

We are interested in the iteration when the variable t equals p (mod r). Then we can
write,

P =
γ∏
i=1

a(ζp
αi−βi)cin

βi
. (5)

Going modulo p, and using the “first” Frobenius morphism, we get:

P =
γ∏
i=1

a(ζ)cip
αiqβi (mod p)

= a(ζ)
∑γ

i=1
cip

αiqβi (mod p) = a(ζ)0 (mod p)
= 1 (mod p). (6)

Now let e := logq,r p. So, we can replace p with qe in Equation 5, to get

P =
γ∏
i=1

a(ζq
e(αi−βi)

)cin
βi
.

M. Agrawal, N. Saxena and S. S. Srivastava 7:11

Going modulo q, and using the “second” Frobenius morphism, we get:

P =
γ∏
i=1

a(ζ)cin
βiqe(αi−βi)

(mod q)

=
γ∏
i=1

a(ζ)cip
βiqeαi+(1−e)βi (mod q)

= a(ζ)
∑γ

i=1
cip

βiqeαi+(1−e)βi (mod q) (7)

Let us call the exponent m :=
∑γ
i=1 ci p

βi qeαi+(1−e)βi .
If we can show that a(ζ)m /∈ Fq then, by Equation 6, we get different supports in the

polynomials P (mod p) and P (mod q). This means that step 7 would factor n. So, it
suffices to ensure that a(ζ)m(q−1) 6= 1 (mod q), in other words, the multiplicative order of
a(ζ) in the field Fq[ζ], denoted ord(a(ζ),Fq[ζ]) satisfies:

ord(a(ζ),Fq[ζ]) 6 |m(q − 1) . (8)

From step 5 (of the algorithm) we can treat a(ζ) as a random element in Fq[ζ]. From
the initial discussion we have that Fq[ζ] is the field Fqr−1 . From this we can estimate the
probability of a(ζ) having the largest multiplicative order.

I Claim 5.1. ord(a(ζ),Fq[ζ]) = (qr−1 − 1), with probability at least 1
3 log log(qr−1−1) , when

r > 7.

Proof. See full version of the paper. J

Thus, the repetitions in step 4 ensure that with a high probability we will pick a generator
a(ζ) of Fq[ζ]. Now Equation 8 can be rewritten as:

γ∑
i=1

ci p
βi qeαi+(1−e)βi 6= 0

(
mod qr−1 − 1

q − 1

)
.

Conjecture 3 ensures this with high probability (for a random r). Hence, step 7 will factor
with high (i.e. constant) probability.

Time Complexity. The ‘for’ loop of Step 2-9, runs for r − 1 = Õ(γ) times. The ‘while’
loop in Step 4-9, runs O(log log(nr)) = Õ(1) times.

The polynomial computation in step 6 is the expensive part. We would use repeated
squaring and fast ring arithmetic. It multiplies γ many factors. The exponent of each factor
can be bounded by And, so, by repeated squaring it takes O(d logn + logA) = O(d logn)
time (∵ A := nO(d)). Also, in each step of repeated squaring there will be two polynomials
multiplied in the cyclotomic ring; we can compute the product in Õ(r logn) time. Hence,
step 6 takes Õ(γ · d logn · r logn) = Õ(γ2d log2 n) time.

So, the overall time complexity of the Algorithm 3 is Õ(γ3d log2 n).
J

Clearly, the running time of the algorithm depends on the sparsity. For sparse dependency
f , i.e. γ = Õ(1), the running time becomes Õ(d log2 n) which is only linear in d. If the given
dependency has sparsity γ = O(d1.6) then the running time is a much slower Õ(d5.8 log2 n),
but it is a simple algorithm and still faster than the known methods.

MFCS 2016

7:12 Integer factoring using small algebraic dependencies

6 Alternate Analysis

In this section we present an alternate analysis and a corresponding algorithm to factor n.
The algorithm presented is just a slightly modified version of Algorithm 3, and it will not
need n/p to be a prime. The conjecture that our analysis relies on will be different from
Conjecture 3.

Algorithm 4 Factoring Integer : FAC4(n, f, µ)
Require: Odd n = pn′ (prime p is not the largest prime factor q of n), and a nondegenerate

(p, n′) dependency f =
∑γ
i=1 cix

αiyβi where ∀i, 0 ≤ αi+βi ≤ d, |ci| ≤ nd. Let µ :=
∑
i ei

for the prime factorization n =
∏
i p
ei
i .

1: r ← 7µd.
2: while r ≤ 10µd log(d+ 1) do
3: Choose the next prime r, and verify that gcd(r, n) = 1.
4: for t in range [r − 1] do
5: Choose a random element a(ζ) := a(x) ∈ Z[x]/(ϕr(x), n).
6: Compute P :=

∏γ
i=1 a(ζtαi−βi)cinβi .

7: Take gcd of n with the coefficients of P.
8: if n is factored then
9: return factor

10: return 0

To study this algorithm we will need a conjecture about discrete logarithm.
I Conjecture 4. For f, p, q, d, µ as before, there exists a prime r ∈ [7µd, 10µd log(d+ 1)] such
that: ordr(q) = r − 1, e := logq,r p < r

2d and f(qe, n/qe) 6= 0.
The rationale behind this conjecture is Artin’s conjecture together with the feeling that

the function logq,r p should take “random” values in {0, . . . , r − 1}, in particular, values as
small as r

2d . Also, since the interval is large enough we expect to get several such (r, e); one
of these qe is expected to not be a root of f(X,n/X).

We now state our theorem.

Proof for Theorem 1.3. See full version of the paper. J

Given a sparse dependence of degree d, (small or constant γ and µ) our algorithm’s
performance is better than Schönhage’s univariate polynomial factoring algorithm.

7 Conclusion

We initiate a new factoring idea using the AKS-type cyclotomic computation [1]. It uses
the two Frobenius morphisms and we have been able to analyze it for specific families of n
(based on some “reasonable” conjectures). It is a simple algorithm and, in special cases, it
performs better than applying the previously known techniques. The outstanding question is
what do we do when there is no dependency f(x, y) readily available for n?

In this (general) case we could compute several (say, poly(logn)-many) AKS-type poly-
nomials

S := {a(ζr)e | r, a, e carefully chosen given n}
and try to apply easy algebraic operations on S. For example, view S as a lattice generator
and apply the famous LLL basis reduction algorithm on it [17]. Or, compute other linear
algebra operations on S. Do these operations lead us to a factor of n ?

M. Agrawal, N. Saxena and S. S. Srivastava 7:13

References
1 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Math,

160(2):781–793, 2004.
2 Eric Bach and Jeffrey Outlaw Shallit. Algorithmic Number Theory: Efficient Algorithms,

volume 1. MIT press, 1996.
3 Shi Bai, Pierrick Gaudry, Alexander Kruppa, Emmanuel Thome, and Paul Zimmermann.

Factorization of RSA-220 with CADO-NFS. 2016.
4 Daniel Julius Bernstein. Introduction to post-quantum cryptography. In Post-quantum

cryptography, pages 1–14. Springer, 2009.
5 Dan Boneh et al. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS,

46(2):203–213, 1999.
6 Joe Peter Buhler, Hendrik Willem Lenstra Jr, and Carl Pomerance. Factoring integers

with the number field sieve. In The development of the number field sieve, pages 50–94.
Springer, 1993.

7 Yingpu Deng and Yanbin Pan. An algorithm for factoring integers. Cryptology ePrint
Archive, Report 2012/097, 2012.

8 John D Dixon. Asymptotically fast factorization of integers. Mathematics of computation,
36(153):255–260, 1981.

9 Carl Friedrich Gauss. Disquisitiones Arithmeticae. 1801. Article 329.
10 Joseph Gerver. Factoring large numbers with a quadratic sieve. Mathematics of Computa-

tion, 41(163):287–294, 1983.
11 Rajiv Gupta and Maruti Ram Murty. A remark on artin’s conjecture. Inventiones math-

ematicae, 78(1):127–130, 1984.
12 F.R.S. Horsley, Rev. Samuel. The sieve of eratosthenes. being an account of his method of

finding all the prime numbers. Philosophical Transactions (1683-1775), 62:327–347, 1772.
13 Ravi Kannan. Algorithmic geometry of numbers. Annual review of computer science,

2(1):231–267, 1987.
14 Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen Klaas Lenstra, Emmanuel Thomé,

Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter Lawrence Montgomery, Dag Arne
Osvik, et al. Factorization of a 768-bit RSA modulus. In Advances in Cryptology–
CRYPTO’10, pages 333–350. 2010.

15 R Sherman Lehman. Factoring large integers. Mathematics of Computation, 28(126):637–
646, 1974.

16 Arjen Klaas Lenstra, Hendrik Willem Lenstra Jr., Mark Steven Manasse, and John M. Pol-
lard. The number field sieve. In Proceedings of the Twenty-second Annual ACM Symposium
on Theory of Computing, pages 564–572, 1990.

17 Arjen Klaas Lenstra, Hendrik Willem Lenstra, and Lászlo Lovász. Factoring polynomials
with rational coefficients. Math. Ann., 261:515–534, 1982.

18 Hendrik Willem Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics,
pages 649–673, 1987.

19 Calvin T Long. Elementary introduction to number theory. Prentice Hall, 1987.
20 James McKee. Turning euler’s factoring method into a factoring algorithm. Bulletin of the

London Mathematical Society, 28(133):351–355, 1996.
21 Pieter Moree. Artin’s primitive root conjecture—a survey. INTEGERS, 10(6):1305–1416,

2012.
22 Oystein Ore. Number theory and its history. Courier Corporation, 2012.
23 John M Pollard. Theorems on factorization and primality testing. In Mathematical Pro-

ceedings of the Cambridge Philosophical Society, volume 76 of Cambridge Univ Press, pages
521–528, 1974.

MFCS 2016

7:14 Integer factoring using small algebraic dependencies

24 John M Pollard. A monte carlo method for factorization. BIT Numerical Mathematics,
15(3):331–334, 1975.

25 Carl Pomerance. The quadratic sieve factoring algorithm. In Advances in cryptology, pages
169–182, 1985.

26 Carl Pomerance. A tale of two sieves. Biscuits of Number Theory, 85, 2008.
27 Arnold Schönhage. Factorization of univariate integer polynomials by diophantine approx-

imation and improved basis reduction algorithm. ICALP, 172:436–447, 1984.
28 Peter Williston Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.
29 Lawrence Clinton Washington. Introduction to cyclotomic fields, volume 83. Springer, 2012.
30 Hugh Cowie Williams. A p + 1 method of factoring. Mathematics of Computation,

39(159):225–234, 1982.
31 Hugh Cowie Williams and Jeffrey Outlaw Shallit. Factoring integers before computers.

Mathematics of computation, 48:481–531, 1994. (1943-1993, Fifty Years of Computational
Mathematics (W. Gautschi, ed.), Proc. Sympos. Appl. Math.).

A Proofs

A.1 Claim 5.1
I Claim. ord(a(ζ),Fq[ζ]) = (qr−1 − 1), with probability at least 1

3 log log(qr−1−1) , when r > 7.

Proof. Clearly, the number of generators in Fq[ζ]∗ is ϕ(qr−1 − 1), using the Euler’s totient
function [19, p.85]. Hence, if we choose a random element a(ζ) in Fq[ζ] then,

Pr [a(ζ) generates Fq[ζ]∗] = ϕ(qr−1 − 1)
(qr−1 − 1)

>
1

3 log log(qr−1 − 1) , for r > 7.

The last line follows from the result: ϕ(n)
n > (1.79 log logn+ 3/ log logn)−1 for n > 2, see [2,

thm.8.8.7]. J

A.2 Theorem 1.3
I Theorem. For an integer n = p ·n′ (where p is a prime smaller than the largest prime factor
q of n), given a nondegenerate (p, n′) dependency of the form f(X,Y) =

∑γ
i=1 ciX

αi Y βi ,
where ∀i, 0 ≤ αi + βi ≤ d, |ci| ≤ nd, Algorithm 4 factors n in Õ(µ3 · γd4 log2 n) time. Here
µ :=

∑
i ei for the prime factorization n =

∏
i p
ei
i . (Assuming Artin’s conjecture & 4.)

Proof. From the proof of Theorem 1.2 we know that, when t = p (mod r) in step 6, then
P = 1 (mod p).

Consider the prime factor q. Let e := logq,r p. From the “second” Frobenius morphism
we get:

P =
γ∏
i=1

a(ζq
e(αi−βi)

)cin
βi

=
γ∏
i=1

a(ζ)ciq
e(αi−βi)nβi (mod q)

= a(ζ)
∑γ

i=1
ciq

e(αi−βi)nβi (mod q) . (9)

M. Agrawal, N. Saxena and S. S. Srivastava 7:15

Let us call the exponent m :=
∑γ
i=1 ciq

e(αi−βi)nβi .
Using the r promised by Conjecture 4 we can upper bound m as:

0 < |m| =
∣∣ γ∑
i=1

ciq
e(αi−βi)nβi

∣∣
<

γ∑
i=1

n′2d qe(αi−βi) nβi [Bound ci]

<

γ∑
i=1

q2(µ−1)d qr/2 qµβi

< q3µd+r/2

<
qr−1 − 1
q − 1 .

Thus, 0 < |m| · (q− 1) < qr−1− 1 = |Fq[ζ]∗|. Consequently, the set {a(ζ)|a(ζ)m(q−1) = 1}
is a proper subgroup of Fq[ζ]∗, and so on randomly picking a(ζ) we will get, with high
probability, P /∈ Fq.

Thus, step 7 is likely to factor n.

Time Complexity. In Algorithm 4, the while loop in step 2-9, runs Õ(µd) times. The
for loop in Step 4-9, runs O(r) = Õ(µd) times.

The expensive step is the AKS polynomial computation in step 6. We would use repeated
squaring and fast ring arithmetic. It multiplies γ many factor polynomials, where each
polynomial has exponent bounded by nO(d), so, by repeated squaring it takes O(d logn)
time. Also, in each step of repeated squaring, there will be two polynomials multiplied,
which requires Õ(r logn) ring operations. Hence, step 6 would take Õ(γ · d logn · µd logn)
= Õ(γµd2 log2 n) time.

So, the overall time complexity of Algorithm 4 is Õ(γµ3d4 log2 n). J

MFCS 2016

	Introduction
	Notation and Preliminaries
	Existence of small dependencies
	Motivating Dependencies
	Factoring numbers having dependency of the form q-p =
	Bound based on pth norm of q
	Relaxing conjecture 1

	General dependencies
	Alternate Analysis
	Conclusion
	Proofs
	Claim 5.1
	Theorem 1.3

