
opinion

DOI: 10.1145/3631338

BY PROF.DR. NITIN SAXENA

How Easy Is It to Describe
Hard Polynomials?
We study real-life problems via mathematical models, which usually tend to be nonlinear systems,
or equations. A standard trick is to “linearize” this nonlinear system. The newly obtained system
then becomes a subject of linear algebra; at which point we get the happy feeling that we have
solved the original nonlinear system. A key object in this path to happiness is the determinant.
Practitioners in science and engineering use the determinant to solve a linear system, which is
the bedrock of algorithms in optimization, data analysis, graphics, game theory, economics, and
business.

The following paper studies a related polynomial that is easier to describe: Take d square
matrices, each of order n, multiply them, and consider the top-left entry of the product matrix; this
defines the iterated matrix multiplication (IMM) polynomial in dn2 variables. How compactly can
the polynomial IMM be fabricated on a machine? A positive answer to this question would give us
practical algorithms, while a negative answer would mean we have identified a hard polynomial
that is easy to describe.

If we fabricate term by term, a naïve count says there are nd terms in IMM. This is exponential
in d and becomes impossibly large as the input parameter d grows, say, beyond 100. We want
to optimize this situation or prove that no further optimization is possible to fabricate IMM on
machine models. The computer science area that studies such questions is algebraic complexity,
and it is a rapidly growing subarea.

Algebraic complexity develops ideas that are useful in two ways: Upper bound—There are
tools to solve problems like computing the determinant and IMM very fast, finding the root of
a polynomial system, finding a polynomial factor, and testing whether two polynomials are the
same. Lower bound—There are methods to prove that certain natural looking polynomials are
hard to fabricate and compute.

Why should a practitioner care about hard polynomials? Shouldn’t our focus, as computer
scientists, be on only solving problems; say, by adding interesting simplifying assumptions?
Though that may be our ideal job, there are many problems out there that seem to possess
an inherent intractability so that even practical assumptions do not help to solve them in
any meaningful way. Surprisingly, such problems may be a boon to other areas; for example,
cryptography turns hard problems into practical protocols secure to adversarial attacks. This
is what secures the Internet. Thus, it motivates us to find not only an upper bound, whenever
possible, but also a lower bound proof.

A famous example is the problem of counting the number of perfect matchings in a graph. For
instance, you may want to assign tasks to servers in a stable way, given the preference list of each
party involved. How many such assignments are possible? This counting problem lives at the heart
of algebraic complexity theory and exactly defines a polynomial called permanent, per(M), given

COMMUNICATIONS OF THE ACM 1

http://10.1145/3631338
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631338&domain=pdf&date_stamp=2024-01-23


a square matrix M. So, now we have brought on the stage two polynomials: IMM and per(M). It is
widely conjectured that per(M) is the more difficult one among the two; proving its hardness is the
central open question in algebraic complexity (called the VP≠VNP question).

In contrast, it is not difficult to see that IMM is friendlier, in the sense that a clever circuit can
express IMM in a compact way. However, it was an open question to understand the depth of this
circuit. In the spirit of parallel processing, the circuit depth signifies the time taken to compute the
polynomial; while the size refers to the space or the number of arithmetic processors required to
fabricate the polynomial. The paper proves that if we restrict to constant-depth then IMM requires
a circuit of very large size. Roughly put, constant-time matrix multiplication requires exponentially
many arithmetic processors.

Not only is this lower-bound statement prized, more interesting is the proof method that it
develops. It has two important lessons. First, the setting where d (= number of matrices) is
significantly smaller than n (= order of each matrix) is amenable to better structural transformations.
This allows us to make the circuit multiplication gates very well-behaved (namely, set-multilinear).
Second, there is a low-rank matrix associated with these multiplication gates (namely, the
partial-derivative matrix). This shows us that IMM has a low-rank matrix, which yields a
contradiction, unless the circuit size is superpolynomial.

In the past decades, algebraic complexity has taken big strides in the development of techniques.
This paper achieves a landmark in the larger quest of understanding hardness, identity testing, and
reconstruction. It encourages us to try newer circuit transformations that linearize a circuit, just
enough, to apply linear algebra.

Nitin Saxena is the N. Rama Rao Chair Professor in the Department of Computer Science and
Engineering at the Indian Institute of Technology Kanpur, India. Follow his work at https:// bit.ly/
40w8liJ.

COMMUNICATIONS OF THE ACM2


