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Abstract

The border, or the approximative, model of algebraic computation (VP) is quite popular due

to the Geometric Complexity Theory (GCT) approach to P̸=NP conjecture, and its complex

analytic origins. On the flip side, the definition of the border is inherently existential in the

field constants that the model employs. In particular, a poly-size border circuit C(ε,x) cannot

be compactly presented in reality, as the limit parameter ε may require exponential precision.

In this work we resolve this issue by giving a constructive, or a presentable, version of border

circuits and state its applications.

We make border presentable by restricting the circuit C to use only those constants, in the

function field Fq(ε), that it can generate by the ring operations on {ε, 1/ε} ∪ Fq within poly-

size circuit. This model is more expressive than VP as it affords exponential-degree in ε; and

analogous to the usual border, we define new border classes called VPε and VNPε. We prove

that both these (now called presentable border) classes lie in VNP. Such a ‘debordering’ result is

not known for the classical border classes VP resp. VNP. We pose VPε = VP as a new conjecture

to study the border.

The heart of our technique is a newly formulated exponential interpolation over a finite

field, to bound the Boolean complexity of the coefficients before deducing the algebraic com-

plexity. It attacks two factorization problems which were open before. We make progress on

(Conj.8.3 in Bürgisser 2000, FOCS 2001) and completely solve (Conj.2.1 in Bürgisser 2000;

Chou,Kumar,Solomon CCC 2018):

1. Each poly-degree irreducible factor, with multiplicity coprime to field characteristic, of a

poly-size circuit (of possibly exponential-degree), is in VNP.

2. For all finite fields, and all factors, VNP is closed under factoring. Consequently, factors

of VP are always in VNP. The prime characteristic cases were open before due to the

inseparability obstruction (i.e. when the multiplicity is not coprime to q).

We also provide analogous theorems of explicitness over characteristic zero fields (eg. number

fields).

∗CSE, IIT Kanpur, bhargav@cse.iitk.ac.in
†CSE, IIT Kanpur, pdwivedi@cse.iitk.ac.in
‡CSE, IIT Kanpur, nitin@cse.iitk.ac.in

1



Contents

1 Introduction 2
1.1 Algebraic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our goal: To make border presentable . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Proof outline 6
2.1 Efficacy of presentable border . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Factor closure over all fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Presentable is explicit: Proof of Theorem 1 10
3.1 Exponential interpolation technique: Proof of Lemma 3.1 . . . . . . . . . . . . . . . 11
3.2 Transfer algebraic complexity to boolean: Proof of Lemma 3.2 . . . . . . . . . . . . 14
3.3 Explicitness over rationals: A weaker presentable border (Theorem 3) . . . . . . . . 16
3.4 An application to deborder factors: Proof of Corollary 1.3 . . . . . . . . . . . . . . . 18

4 VNP is factor closed: Proof of Theorem 2 19
4.1 Factoring prime powers or Valiant’s converse: Proof of Lemma 4.2 . . . . . . . . . . 21
4.2 Factoring co-prime factors: Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . 22

5 Conclusion 25

1 Introduction

The notion of “approximation” is a powerful idea in theoretical computer science, both in designing

algorithms for problems and in analyzing their computational hardness. In Valiant’s framework of

algebraic complexity theory [Val79, Val82], the border complexity of a polynomial measures how

efficiently it can be approximated. In this framework, a multivariate polynomial is computed1 by a

non-uniform model called an algebraic circuit – a directed acyclic graph with internal nodes labeled

by + and × operators, leaves labeled by variables or constants from the underlying field F, and a

designated output node. The circuit computes an n-variate polynomial f(x) ∈ F[x1, . . . , xn] in a

natural bottom-up way.

The measure of efficiency is the size (the number of vertices and edges) of the graph. We denote

the size of the smallest circuit (over F) computing the polynomial f by sizeF(f). Valiant [Val79]

hypothesized that there are explicit polynomials that cannot be computed by circuits of small size.

It is formalized as what we now call the VP ̸= VNP conjecture. The class VP (Valiant’s P) consists

of all polynomials with degree polynomial in the number of variables n (=: poly(n)), which can be

computed by algebraic circuits of size poly(n). He also defined an algebraic analogue of NP using

an exponential sum of VP polynomials. More formally,

1Computing a polynomial always refers to computing a family of polynomials {fn}, one for each n ∈ N.
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Definition 1.1 (Valiant’s NP). The class VNP is the set of all polynomials f ∈ F[x1, . . . , xn] such
that there exists a polynomial g ∈ F[x1, . . . , xn, y1, . . . , ym] in VP with m = poly(n) and

f(x) =
∑

a∈{0,1}m
g(x,a).

We call y1, . . . , ym the witness (or hypercube) variables and g(x,y) as the verifier circuit. It is

straightforward to see that VP ⊆ VNP, and Valiant’s conjecture is that the inclusion is strict. The

surveys of [SY10, CKW10, Mah14, Sap15] provide an excellent overview of algebraic complexity

and the current state of lower bounds. For a more extensive but slightly dated treatment, see

[BCS97, Bü00].

1.1 Algebraic approximation

There is a natural way to associate a Euclidean (or Zariski) topology with the polynomial ring.

This confers a notion of limit and, thereby, a way of approximating a polynomial by a sequence of

polynomials (see, e.g., [BI18, Section 2.3]). The topological notion has been extensively studied in

the context of designing algorithms for matrix multiplication [Str74, BCRL79, Bin80, CW90, LO15].

However, in Valiant’s framework, the simplest definition for algebraic approximation and border

complexity (and the one we will use) was given by Bürgisser [Bü04]. We say that a polynomial

f ∈ F[x1, . . . , xn] is approximated by a polynomial g ∈ F[ε][x1, . . . , xn] to an order of approximation

M if g(x, ε) = εMf(x) + εM+1Q(x, ε), for some Q ∈ F[ε][x1, . . . , xn]. The border size of f denoted

size(f), is defined as sizeF[ε](g), the size of the polynomial g over the ring F[ε] (instead of being

over the constants F).
Note that limε→0 ε

−Mg(x, ε) = f(x). Furthermore, arbitrary polynomials in ε are treated as

‘free constants’ in the circuit of g. Alternately, we can also consider the approximating polynomial g

over the rational function field F(ε) (as done in our paper abstract) and aim for an approximation

of the form g′ = f + εQ, with the effect of limε→0 g
′ = f . It is not hard to see via scaling

arguments (g′ := ε−Mg) that these notions are equivalent. For a discussion of the different notions

of approximation and their equivalence, see [Bü04, Lemma 5.6], [BIZ18, Section 2] and also [Mum76,

Theorem 2.33].

As a natural extension, we can define the approximate closure of VP, called VP as the set of

poly(n)-degree polynomials whose border size is bounded by poly(n). Clearly, VP ⊆ VP. In an

ambitious program to resolve the P
?
= NP question using methods from algebraic geometry and

representation theory, Mulmuley and Sohoni [MS01] strengthened Valiant’s conjecture by postu-

lating that VNP is not contained in VP 2. Their proposal (detailed further in [MS08]) was to use

techniques from representation theory to prove lower bounds on border complexity. For expository

references on the GCT program, see [Reg02, Mul11, Mul12, Lan17, BI18].

2More precisely, they conjectured that the padded Permanent does not lie in the orbit closure of small Determi-
nants.
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Completely independently and almost at the same time, Bürgisser [Bü04] (also see [Bü20])

introduced and used border complexity to factor multivariate polynomials. Factorization is a very

basic notion in algebra, and a complexity class is ‘well behaved’ in some sense if it is closed under

factorization. In a string of highly influential papers [Kal85, Kal86, Kal87, Kal89], Kaltofen showed

that over fields of characteristic zero, the class VP is closed under taking factors (also see [KT90]). In

fact, if a polynomial factorizes as f = uev with u and v co-prime, then Kaltofen [Kal87] showed that

u can be computed by a circuit of size poly(e,deg(u), size(f)). One might expect, for exponential-

degree f , that the size of u depends only on its degree and the size of f , and that the dependence

on multiplicity e can be completely removed. In other words, we expect that any poly(n)-degree

factor of a poly(n)-size circuit (with no restrictions on degree) is in VP. This is known as the

Factor Conjecture [Bü00, Conjecture 8.3]. In his work, Bürgisser [Bü04] showed that for border

complexity, the factor conjecture is indeed true – the factor u above, is in VP. This makes factor

conjecture an important stepping-stone towards understanding algebraic computation. Our work

will build on this theme.

1.2 Our goal: To make border presentable

The notion of approximation in Valiant’s framework arose at the same time in different contexts.

This suggests that it is indeed very natural. But a basic question, made even more pertinent

by the discussion above, that remains open to this day is whether approximation bestows more

computational power, or in other words, whether VP
?
= VP [Bü04, Problem 4.3]. In a recent work

[DDS21] asked a more general question, which they called de-bordering. Given a polynomial f ∈ C
in the approximate closure of a class C, what is an upper bound on the exact (non-approximate)

complexity of f? Although one might expect a class to not differ too much from its border class

(a class C is border-closed if C = C), it is far from clear since, in the definition of approximation,

we allow arbitrary polynomials in ε of arbitrary complexity to be used as free constants. This

arbitrariness makes the definition of approximation inherently existential. In fact, we do not even

know whether VP is contained in VNP.

As a way of making approximation more constructive, while retaining its essence, in this work

we propose and study a natural restriction on the definition of approximation, that we call pre-

sentability. The presentable class VPε is the same as VP but with the additional condition that all

the polynomials in ε used as ‘constants’ in the approximating circuit g(x, ε), have polynomial-size

circuits themselves (see Definition 3.12).

There has previously been an attempt via ‘degenerations’ [GMQ16] to identify a subclass of VP

that is explicit. In what they term p-definable one-parameter degeneration, the authors restrict the

coefficients of the ε-polynomials to be generated using circuits in VP. Our presentable border is a

more natural version of VP and cannot be obtained as a p-definable degeneration of VP, making

our notion incomparable to the concept of degeneration as studied in [GMQ16]. We can extend

our concept of presentable border to VNPε over any field F.
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Definition 1.2 (Presentable VNP). The presentable border class VNPε, over F, is defined as the set

of polynomials f ∈ F[x1, . . . , xn] such that there is an approximating polynomial g ∈ F[ε][x1, . . . , xn]
expressing

g(x, ε) =: εMf(x) + εM+1Q(x, ε) ,

for some error Q ∈ F[ε][x1, . . . , xn] and order M ∈ N; moreover, there exists a verifier polynomial

h ∈ F[x1, . . . , xn, y1, . . . , ym, ε], with m,degx,y(h) and sizeF(h) all bounded by poly(n), satisfying a

hypercube-sum expression ∑
a∈{0,1}m

h(x,a, ε) = g(x, ε) .

The pair (m, sizeF(h)) constitutes the size parameters for the polynomial family f = fn in VNPε.

Crucially, although the bound on sizeF(h) (instead of sizeF[ε](h)) constrains the ε-polynomials to

have small circuits, we do not restrict the degree of ε, which could be exponential in sizeF(h). This

makes this new class potentially harder than VNP. It is easy to see that VNP ⊆ VNPε ⊆ VNP. But,

it is not clear whether these containments are strict. Similarly, the containment VP ⊆ VPε ⊆ VP

raises new questions.

1.3 Our results

Our first main result is the de-bordering of the presentable border classes.

Theorem 1 (Presentable is Explicit). Over any finite field, VNPε = VNP.

Remark. The theorem continues to hold over number fields if all rational numbers that appear

in the computation have polynomial bit complexity. Refer to Theorems 3 and 4 for the formal

statements.

This gives us an interesting tower of containments VP ⊆ VPε ⊆ VNP. In addition, it yields a

generalization of Valiant’s conjecture to all presentable models: VP
?
= VPε

?
̸= VNP.

As a consequence of our debordering result, we also make progress toward the aforementioned

Factor Conjecture [Bü00, Conjecture 8.3]. As noted earlier, Bürgisser showed that any poly(n)-

degree factor of a poly(n)-size circuit is in VP. We observe that it is in fact in VPε, and thus by

Theorem 1 in VNP.

Corollary 1.3 (Debordering factors). Let fn be a n-variate polynomial family over a finite field

that has a poly(n)-degree irreducible factor un of multiplicity co-prime to the characteristic of the

field. If size(fn) is poly(n), then un is in VNP.

Remark. A few points of note:

1. The deg(fn) and hence, the multiplicity of un are possibly exponential in n. This is what

makes standard factoring algorithms hopelessly inefficient.

2. The result holds over Q and its extensions, up to polynomial bit complexity.
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3. We get an explicitness (VNP) result for the factors, instead of a factoring algorithm. Never-

theless, it is concrete evidence supporting the factor conjecture.

Bürgisser [Bü00, Conjecture 2.1] asked if the class VNP is closed under factorization. Over

fields of characteristic zero, Chou, Kumar and Solomon [CKS19b] showed that this is indeed true.

Inspired by the proof technique of Theorem 1, in our second main result, we use similar techniques

to prove that VNP closure under factoring holds over finite fields as well, thus settling Bürgisser’s

conjecture completely.

Theorem 2 (Factor closure). Over any finite field, the class VNP is closed under factorization.

Remark. As a corollary of the above theorem, we find that over finite fields, the factors of polynomi-

als in VP are in VNP. This partially answers the question [Bü00, Problem 2.1] whether VP is closed

under taking factors over fields of positive characteristic. Recall that over fields of characteristic

zero, we already know this to be true from the works of Kaltofen; but those methods fail in finite

fields.

2 Proof outline

We now outline the ideas and techniques used to prove our results. We will also discuss related

previous work and its limitations.

2.1 Efficacy of presentable border

A major obstacle to de-bordering any class is that the expression for approximating a polynomial

f

g(x, ε) = εMf(x) + εM+1Q(x, ε),

says very little about the complexity of the ε-constants involved, which could be huge. A natural

idea to isolate f from the above expression is via interpolation on the ε variable. This seems hard to

do as apriori, the degree of ε in the polynomial g could be arbitrarily large. Already in his founda-

tional work, Bürgisser [Bü04, Theorem 5.7] showed that over algebraically closed fields, the order of

approximation M is at most exponential in size(f) := sizeF[ε](g), the border size of the polynomial

f . Therefore, moving to presentable border classes VPε and VNPε does not lead to any ε-degree

loss, since they allow for an exponential degree in ε. But unless one can show a polynomial bound on

the order of approximation 3, interpolation seems to give a bound of the form size(f) ≤ exp(size(f)).

Known debordering results. Incidentally, the known de-bordering results for restricted models

of computation seldom use interpolation. In his talk [For16], Forbes remarked that Nisan’s char-

acterization implies the closure of ROABPs or equivalently non-commutative ABPs (see [For14,

3See [BIZ18, Corollary 3.10] for an example of debordering through interpolation when a related measure of
approximation called ‘error degree’ is polynomially bounded.
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Chapter 4] for definitions and [BS21, Lemma 5.2] for the proof). Using structural properties of

computational models and monotonicity, it can be shown that almost all the interesting monotone

complexity classes are border-closed [BIM+20, CL22]. We also know of certain cases where a class

is strictly contained in its closure. Using elementary but clever matrix identities, [BIZ18] showed

that the closure of width-2 algebraic branching programs is the same as the closure of general for-

mulas. Together with the results of [BOC92, AW16], this implies that width-2 algebraic branching

programs are not border-closed!

In a similar vein, Kumar [Kum20] showed that the closure of bounded top-fanin (exponential

size) depth-3 circuits is universal whereas there are polynomials that cannot be computed by their

‘classical’ counterparts, regardless of size [CGJ+18, Kum20]. A recent work of Dutta, Dwivedi

and Saxena [DDS21] introduced the DiDIL technique and showed that every polynomial in the

closure of bounded top-fanin depth-3 circuits has a polynomial sized algebraic branching program.

Building on that, Dutta and Saxena [DS22] showed an exponential separation between consecutive

border classes
∑k∏∑ and

∑k+1∏∑. Unfortunately, these de-bordering and separation results

are based on characterizations and properties of restricted classes that are not known for general

classes such as VPε and VNPε.

Adapting interpolation to presentable border. Surprisingly, although interpolation seemed

unhelpful on first glance, we show that a structural modification does indeed help in de-bordering

when we move to presentable border classes. Note that VNP ⊆ VNPε by definition. For the other

direction, to show the containment in VNP, instead of directly using the definition, we turn to

the following criterion of Valiant [Val79] (also see [Bü00, Prop. 2.20]) which essentially states that

low-degree polynomials whose coefficients are effectively computable in the boolean world are in

VNP in the algebraic world. Here, we state a version that works over all fields. For a mathematical

object a, we denote its boolean encoding by ⟨a⟩.

Proposition 2.1 (Valiant’s criterion). Let f =
∑

e cex
e be a polynomial in n variables of degree

poly(n) over a field F. Suppose that there exists a string function ϕ : {0, 1}∗ 7→ {0, 1}∗ in #P/poly

such that ϕ(⟨e⟩) = ⟨ce⟩. Then, the polynomial f is in VNP over the field F.

Remark. Unlike the usual definition of #P which consists of functions mapping {0, 1}∗ to N, we find
it more convenient to consider functions that output binary strings (Definition B.1). Coefficients

are usually elements of a finite field Fq of size p
a (say). Each element in Fq is a univariate polynomial

of degree less than a with coefficients from Fp (see [Sho09, Chapter 19] and [MP13]). Since Fp is

isomorphic to Z mod p, we treat each element of Fq as a list of a integers encoded as a string of

length O(a log p).

Consider now a polynomial f =
∑

e cex
e in VNPε (as in Definition 1.2) over the finite field Fq.

We would like to show that the coefficient function ϕ : ⟨e⟩ 7→ ⟨ce⟩ is in #P/poly. We have access
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to f only using the approximating polynomial g

g(x, ε) = εMf(x) + εM+1Q(x, ε),

which is of the following hypercube-sum form

g(x, ε) =
∑

a∈{0,1}m
h(x,a, ε),

for some verifier circuit/polynomial h ∈ Fq[x1, . . . , xn, y1, . . . , ym, ε], whose degree in the variables

x and y is bounded by poly(n). Note that h is not in VP since its degree in ε can be exponential

in n.

We will extract the coefficient of εMxe in g by carefully choosing the interpolation points to

be roots of unity, whose (multiplicative) order is ‘only’ exponential. Consequently, we show that

the coefficient ce can be obtained as a hypercube sum of an exponential degree algebraic circuit of

polynomial size (Lemma 3.1) We enumerate two tricky issues that are handled in the proof.

1. It would not be possible to control the size of this extraction circuit (over the underlying field

Fq) if we were to use the usual definition of VNP, mainly because the ε-constants might truly

require exponential size circuits. Working with VNPε lets us keep the circuit size small while

retaining the exponentially large degree of ε.

2. The choice of interpolation points must be careful; otherwise, just to write down the interpo-

lation formula, we would need to invert an exponentially large matrix of generic constants,

which would again require circuits of exponential size. In addition, we need the various points

to eventually map to a suitable hypercube {0, 1}ℓ, which places further constraints on the

design of the points.

We solve these problems by using the properties of finite fields that allow us to transfer to

a much better-behaved Boolean computation model. In particular, we use a multiplicative

generator ω of an exponentially large field Fq′ to realize the hypercube points.

Using finite field arithmetic and the closure of the Boolean class #P under exponential sums,

we move from the algebraic world to the Boolean one (Lemma 3.2). Thus, we show that the

algebraic circuit above (from Lemma 3.1) can be simulated by a (multi-output) Boolean circuit of

polynomial size; furthermore, the hypercube sum computing the coefficient function is demonstrated

in #P/ poly. Valiant’s criterion (Proposition 2.1) now implies that the polynomial f is indeed in

VNP.

To prove explicitness over Q, we reduce the problem to the case of finite fields. But in order

to do this transfer, we need to restrict the numbers appearing in the computation or else, one

has to deal with enormous numbers with arbitrary bit complexity. The main idea is to choose a

‘good prime’ and work over the field Fp and later reconstruct the rational numbers. This involves
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a restriction on the coefficients of the polynomial as well as the computational model. We point

the reader to Section 3.3 for more details and extensions to number fields.

2.2 Factor closure over all fields

The two classical paradigms involved in factoring multivariate polynomials are Hensel lifting and

Newton iteration (see, e.g. [vzG84, vzGG13]), which have historical origins in complex analysis.

Since the foundational results of Kaltofen on uniform closure of the class VP under taking factors,

variants of these techniques 4 have been used successfully to study factors of classes inside VP, such

as sparse polynomials [vzGK85, Len99, Gre16, BSV20], polynomials with bounded-depth circuits

[DSY10, Oli16] and bounded individual degree [Oli16], algebraic branching programs [KK08, Jan11,

ST21] and even classes beyond VP such as VNP [CKS19b] and polynomials of exponential degree

[DSS22], not only to show closure results, but also to provide factoring algorithms.

The proofs and techniques introduced in these works have evolved to provide applications

in various areas of computer science, eg. hardness-randomness tradeoffs [KI04, DSY10, AGS19,

CKS19b, KST19, KS19, GKSS22], polynomial identity testing [SV10, KSS15], coding theory [Sud97,

GS99], cryptography [CR88], proof complexity [FSTW21], convex optimization [Oli20] and more.

See [FS15, Sax23] for an introduction and survey of polynomial factoring.

In a recent work, [CKS19b] showed that VNP is closed under factoring over fields of character-

istic zero. A crucial step in their proof, which involves approximating a root of a polynomial to

increasingly higher precision using Newton iteration, fails to work over finite fields (a more impor-

tant case in computer science applications). To prove that the class VNP is closed under factoring

over fields of positive characteristic p, we reduce the problem to two cases. Let f be a polynomial

in VNP. Following [CKS19a], we have one of the following:

1. The polynomial f = ue is a power of a factor u.

2. The polynomial f = u · v is a product of co-prime polynomials u and v.

We would like to show that the factor u is in VNP in both cases. The proof of Case 2 (Lemma 4.3)

uses slight modifications of standard techniques developed over the years [Kal87, KSS15, CKS19b].

We first transform the polynomial so that it is monic and bi-variate. We start the Hensel lifting

process with two coprime univariate factors and lift them to high enough precision (with respect to

a degree measure). We use a version of the lift that automatically gives us the factors at the end.

To finally show that the factor we obtain is in VNP, we use a one-shot analysis as in [CKS19b].

Over fields of characteristic zero, it can be shown that proving Case 2 is sufficient (see proof of

[CKS19a, Lemma 1.3]). However, in a finite field Fq, this reduction only works if the characteristic

p of the field does not divide the exponent e (we can call this the separable case). Our main

4There have been many proofs of the original VP closure result itself! See [Bü00, KSS15, Oli16, CKS19a, DSS22]
for some alternate ones.
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contribution is showing that if f = up
k
for some k ≥ 1, then u is in VNP (Lemma 4.2). Using this

result, we can then handle all powers (Lemma 4.4).

All previous known techniques fail in the case where the exponent e is a prime power. Inspired

by the proof of Theorem 1, we take a completely different approach. Consider the simple case

where f = up. The coefficients of u and coefficients of f are related by a simple Frobenius action.

It turns out that Valiant’s criterion (Proposition 2.1) for a polynomial being in VNP also has a

converse (Lemma 4.5). It was remarked in [MP08, Section 6] that the fact has been observed before

in [Pé04], though we could not find a written reference 5. We give an independent proof for finite

fields in this paper by first noting that any coefficient of a VNP polynomial can be obtained as a

hypercube-sum of evaluations of a VP circuit. Next, we use ideas similar to the proof of Theorem 1

to convert the algebraic expression thus obtained to a Boolean #P/ poly circuit.

Since f ∈ VNP, the inverse of Valiant’s criterion gives us that its coefficient function is in

#P/poly. We obtain the coefficients of u by performing an inverse Frobenius transform, which we

demonstrate in #P/poly. Finally, using Valiant’s criterion in the forward direction, we see that

the factor u is in VNP.

3 Presentable is explicit: Proof of Theorem 1

In this section we will prove that polynomials in VNPε are explicit over finite fields. Later in

Section 3.3, we will discuss analogous results over rationals and its extensions.

We will begin by stating two essential lemmas of our paper which will help us in designing

effective coefficient functions of large degree polynomials. The following lemma shows that the

polynomials computable by the hypercube-sum of small sized circuits are ‘closed’ under coefficient

extraction, i.e. there is a similar algebraic expression for each coefficient. This is like interpolation,

but as the degree and number of monomials is exponential, we desire to achieve an algebraic

expression that is well structured.

Lemma 3.1 (Exponential interpolation). Let s := poly(r, log q) and let g =
∑

e cey
e be an r-variate

polynomial over Fq of degree D := exp(s) such that g =
∑

a∈{0,1}m h(y,a) for some polynomial h

with m, size(h) ≤ s.

Then, taking e as input there exists a polynomial te over a finite field extension Fq′, q
′ ≤

poly(D), such that the coefficient ce =
∑

b∈{0,1}ℓ te(b1, . . . , bℓ) , where ℓ and size(te) are at most

poly(s).

We will prove the above lemma in Section 3.1. In the subsequent lemma we show that the

resulting hypercube sum above can be converted into a boolean function in #P/poly. The two

lemmas together build up the correct setup to invoke Valiant’s criterion. Recall s = poly(r, log q).

5Perifel communicated to us a proof that over Q, the coefficients of constant-free VNP families (see [Mal03]) are
in GapP/ poly.
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Lemma 3.2 (Algebraic to boolean complexity). For any exponent vector e ∈ {0, . . . , D}r, let the
coefficient of ye in g ∈ Fq[y1, . . . , yr], denoted by ce, be computable by a polynomial te over a finite

field extension Fq′, q
′ ≤ poly(D) ≤ 2O(s), as follows:

ce =
∑

b∈{0,1}ℓ
te(b1, . . . , bℓ) , (3.3)

where ℓ and size(te) are at most poly(s). Then, with s as the input-size parameter, there exists a

function ϕg in #P/poly that computes ϕg(⟨e⟩) = ⟨ce⟩.

We will defer the proof of the lemma until Section 3.2. Meanwhile, we will use the technical

lemmas to give the complete proof of our first main result.

Proof of Theorem 1. Consider a polynomial (family) f = fn ∈ Fq[x1, . . . , xn] in VNPε of degree d,

which is approximated by g ∈ Fq[ε, x1, . . . , xn] as per Definition 1.2. Let the VNPε size parameters

of g be (s, s), where s := poly(n) and d := degx(g) ≤ poly(s). The size of the verifier circuit

h from Definition 1.2 is bounded by s, hence the degree D := degε(h) ≤ 2s (as, w.l.o.g., h has

multiplication-fanin two).

Using Lemma 3.1 on g, followed by applying Lemma 3.2, gives a #P/poly function ϕg which

computes the encoding of coefficients of g. The coefficient of a monomial xe in f is the coefficient

of εM · xe in the approximating polynomial g. Observe that if

f =
∑

e∈{0,...,d}n
ce · xe, (3.4)

then ⟨ce⟩ = ϕg(M, e1, . . . , en). From the definition of VNPε, we know that d, log(M) ≤ poly(n).

So, using Valiant’s criterion (Proposition 2.1) we conclude that f is in VNP.

3.1 Exponential interpolation technique: Proof of Lemma 3.1

In this section we will give the proof of Lemma 3.1. We will show that the coefficients of the

polynomial g from the lemma statement can be expressed as a hypercube sum of evaluation of

small size circuits. Recall the size parameter s = poly(r +m, log q) and q =: pa for prime p. We

will induct on the number of variables r.

Consider a positive integer k such that 2s = D < k < Θ(D), and a primitive root of unity

ω of order k. We know that ω ∈ Fq if and only if k divides q − 1 (refer [vzGG13, Lemma 8.8]).

Moreover, if Fq does not contain the particular primitive root of unity, we can obtain them in the

multiplicative group of its finite field extension Fq′ , where k < q′ := pa
′
= Θ(D). Interested readers

are encouraged to read more details in standard literature on Finite Fields, for instance refer to

[vzGG13, Chapter 8] and [Sho09, Exercise 17.24]. For the rest of the section we will assume for

simplicity that ω ∈ Fq; as an identical proof works over the extension Fq′ . Note that 1/k ∈ Fq, as

k|(q − 1) implies that p ∤ k.
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Base case. Suppose g is a univariate polynomial in y = y1 and consider an exponent e ≤ k.

To extract the coefficient ce in g, we will interpolate by evaluating g on a set of k distinct points{
ω0, ω1, . . . , ωk−1

}
, constituting all the powers of this primitive root of unity. These evaluations of

g form a linear system using Vandermonde matrix Vω :=
(
ωij
)
0≤i,j<k

as follows:
1 1 1 · · · 1

1 ω ω2 · · · ωk−1

...
...

...
. . .

...

1 ωk−1 ω2(k−1) · · · ω(k−1)2


k×k


...

ce
...


k×1

=


...

g (ωe)
...


k×1

.

Vandermonde matrices are invertible if and only if its entries are all distinct. It is clear that

ω−1 is also a primitive root of unity; moreover, the inverse matrix (Vω)
−1 = (1/k) · V(ω−1) (refer

[vzGG13, Theorem 8.13]). Therefore, we can express the required coefficient with the following

equation:

ce =

k−1∑
j=0

ω−ej

k
· g
(
ωj
)

=
∑

a∈{0,1}m

k−1∑
j=0

ω−ej

k
· h
(
ωj ,a

) . (3.5)

A circuit that computes the inner sum in Equation 3.5 trivially, would be exponentially large

in s because k = Θ(D). However, we can write this as a hypercube-sum by carefully encoding the

powers of ω in a single polynomial using binary representation of the exponent. This encoding will

design a verifier circuit, with a relatively small increase in the witness size. Let wt(k) := ⌈log2 k⌉
and use it to define a polynomial h̄ ∈ Fq[z, z1, . . . , zwt(k)] as follows:

h̄ :=

wt(k)∏
i=1

(
zi · z2

i−1
+ (1− zi) · 1

)
. (3.6)

Let j := (j1, . . . , jwt(k)) be the binary representation of j, then it is easy to verify that h̄(ω, j) = ωj .

Together with h̄, Equation 3.5 can be re-written as follows:

ce =
∑

a∈{0,1}m

∑
j∈{0,1}wt(k)

1

k
· h̄(h̄

(
ω−1, ⟨e⟩), j

)
· h
(
h̄(ω, j),a

)
=:

∑
a,j∈{0,1}ℓ

te(a, j) ,

where ℓ := m + wt(k) ≤ O(s). Observe that size
(
h̄
)
≤ O(wt(k)) ≤ O(s), moreover, composition

and multiplication have additive blow-up on size of the circuit. Since, size(h) was bounded by s,

overall gluing the circuits together shows that size(te) ≤ O(s).
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Induction step. Let us assume that the lemma holds for all such r − 1 variate polynomials.

Now, suppose g is a r-variate polynomial in Fq[y2, . . . , yr][y1] such that

g =
∑
i≤D

gi(y2, . . . , yn) · yi1,

where gi is (r − 1)-variate polynomial of degree at most D. With respect to the fixed exponent

vector e = (e1, e2, . . . , er) ∈ Nr, define e− := (e2, . . . , er) ∈ Nr−1. From the equation above, observe

that computing the coefficient ce of ye11 y
e2
2 · · · yerr in g is equivalent to computing the coefficient ce−

of ye22 · · · yerr in ge1 . To invoke the induction hypothesis on ge1 , we first need to show that, like g, it

can be explicitly expressed as a hypercube-sum of a small sized circuit.

Once again interpolate on g to obtain the coefficient of ye11 . Similar to the base case, begin

by considering the evaluations of g on the set of powers
{
ω0, ω1, . . . , ωk−1

}
. The equivalent linear

system obtained using the Vandermonde matrix Vω is as follows:
1 1 1 · · · 1

1 ω ω2 · · · ωk−1

...
...

...
. . .

...

1 ωk−1 ω2(k−1) · · · ω(k−1)2


k×k


...

ge1
...


k×1

=


...

g (ωe1 ,y)
...


k×1

.

As argued earlier, the matrix is invertible; more importantly, its elements are easily obtained from

(Vω)
−1 = (1/k) · V(ω−1). This results in the following expression for the (r − 1)-variate coefficient

polynomial:

ge1 =

k−1∑
j=0

ω−e1j

k
· g
(
ωj , y2, . . . , yr

)

=
∑

a∈{0,1}m

k−1∑
j=0

ω−e1j

k
· h
(
ωj , y2, . . . , yr,a

) . (3.7)

To show that the inner summation has small size circuit, we encode the powers of root of unity using

the polynomial h̄ defined in Equation 3.6. All together, it gives the following compact expression:

ge1 =
∑

a∈{0,1}m

∑
j∈{0,1}wt(k)

1

k
· h̄(h̄(ω−1, ⟨e1⟩), j) · h

(
h̄(ω, j), y2, . . . , yr,a

)
(3.8)

=:
∑

a,j∈{0,1}ℓ
he1(y2, . . . , yr,a, j) ,

where ℓ := m+wt(k) ≤ O(s). Further, size(he1) ≤ s+ 2× size(h̄) ≤ O(s).

Size analysis. We analyse the size of the verifier-circuit of ce by unfolding the induction
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layers. Since ge1 is now a (r − 1)-variate polynomial, using induction hypothesis we get that there

is a polynomial te, that computes the relevant coefficient ce− as follows:

ce− =
∑

b∈{0,1}ℓ
te(b1, . . . , bℓ) ,

whence we define s(r) := size(te). Building on the insights from Equation 3.8, observe that in each

iteration of the interpolation, the verifier is only evaluated and multiplied by the polynomial h̄.

This stems from the nature of interpolation, which extracts the coefficients as a linear combination

of polynomial evaluations. So, we get a simple recurrence: s(r) ≤ s(r−1)+2 ·size(h̄), which implies

that the final verifier-circuit size s(r) ≤ O(rs). Analogously, the witness length increases by wt(k)

in each iteration, hence ℓ(r) ≤ m+ r ·wt(k) ≤ O(rs). That concludes the proof of Lemma 3.1.

3.2 Transfer algebraic complexity to boolean: Proof of Lemma 3.2

In this section, we will show that the hypercube-sum of the evaluations of a small-size circuit

can be transformed into a #P/poly function, which will prove Lemma 3.2. As described earlier,

the proof goes via booleanisation of the algebraic circuit. Recall that q = pa, and for a field

element b ∈ Fq, ⟨b⟩ ∈ {0, 1}s denotes the binary encoding of b. For a point b ∈ Fℓ
q, denote

⟨b⟩ := (⟨b1⟩ , . . . , ⟨bℓ⟩) ∈ {0, 1}ℓs.

Claim 3.9 (Booleanisation). Consider a polynomial t ∈ Fq[y1, . . . , yℓ] such that size(t) ≤ s. There

exists an equivalent (multi-output) boolean circuit T of bitsize ≤ s · poly(log q), such that for all

inputs b ∈ Fℓ
q we have T (⟨b⟩) = ⟨t(b)⟩.

Proof. Let C be an algebraic circuit of size at most s which computes the polynomial t. Without

loss of generality. we assume that the circuit has fan-in two. The idea is to build a Boolean circuit

from the Algebraic circuit by replacing each of its field operation gates with equivalent Boolean

gadgets. Following is a formal proof of it using induction on the depth of C.

In the base case, we have variables and constants at the input level. To construct the equivalent

Boolean circuit T , split every input variable yi into log q many gates which takes ⟨bi⟩ as input.

Similarly, every constant β in Fq can be split into log q many gates based on ⟨β⟩. Therefore

bitsize(T ) ≤ O(s · log q).
Let C1, C2 be sub-circuits of C, connected to an internal node C12. From the induction hy-

pothesis, there are equivalent Boolean circuits T1, T2 of bitsize at most s · poly(log q) such that for

all inputs b ∈ Fℓ
q we get Ti(⟨b⟩) = ⟨Ci(b)⟩, for i ∈ [2]. Arithmetic operations in a finite field, for

instance, addition and multiplication, can be efficiently simulated by Boolean circuits (that have

input and output as binary strings). In particular, there are poly(log q) size Boolean circuits T+

and T× such that for all b1, b2 ∈ Fq, ⟨b1 + b2⟩ = T+(⟨b1⟩ , ⟨b2⟩) and ⟨b1 × b2⟩ = T×(⟨b1⟩ , ⟨b2⟩)6. For
6The Boolean encoding and the output of Boolean circuit are compared coordinate-wise.
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a detailed discussion on computational complexity of finite field arithmetic refer [GS11, Section 2]

and [AB09, Section A.4].

Based on the gate C12, use either T+ or T× with T1 and T2 as inputs to obtain the circuit T12

such that for all inputs b ∈ Fℓ
q we have T12(⟨b⟩) = ⟨C12(b)⟩. Notice that bitsize(T12) = bitsize(T1)+

bitsize(T2)+max(bitsize(T+),bitsize(T×)). Proceeding this way in a level-by-level fashion, we obtain

the complete Boolean circuit T which computes ⟨t(b)⟩. Finally, for the bitsize claim we observe that

every gate is replaced by either T+ or T× and thus bitsize(T ) ≤ s ·max(bitsize(T+),bitsize(T×)) ≤
s · poly(log q).

We will use the above claim to convert the algebraic circuit in the hypercube sum of the

coefficient into an efficiently computable Boolean function. Recall the hypercube-sum expression

for coefficients from Lemma 3.2:

ce =
∑

b∈{0,1}ℓ
te(b1, . . . , bℓ)

where ℓ and size(te) are at most poly(s). Since ce and te(b) are elements of Fq, their binary

representation is an encoding of tuple of Fp elements. Refer the remark following Proposition 2.1.

Proof of Lemma 3.2. Consider the Fp-basis representation of Fq element te(b) =
∑

i<a te,iα
i, where

te,i ∈ Fp. Apply Claim 3.9 to the algebraic circuit that computes te to obtain a multi-output

equivalent Boolean circuit Te satisfying ⟨te(b)⟩ = Te(⟨b⟩), for all b ∈ {0, 1}ℓ. The Boolean circuit

Te computes the encoding of Fq element as a tuple (⟨te,0⟩ , . . . , ⟨te,a−1⟩). Let Te,i denote a sub-circuit
of Te computing the string ⟨te,i⟩.

We claim that Te,i is in the complexity class FP/poly (refer Appendix B for definitions). Define

a Turing Machine M that takes ⟨Te⟩ as advice, and evaluates Te at the input ⟨b⟩ in time poly(s),

for any b ∈ {0, 1}ℓ. The size of the advice string ⟨Te⟩ is independent of the input and depends

only on the input length ℓ ≤ poly(s). Finally, the Turing machine outputs the i-th block of the

evaluation. Clearly, the function computed by M is in FP, and hence Te,i is in FP/poly.

Let the Fp-basis representation of the coefficient be ce =
∑

i<a ce,iα
i, where ce,i ∈ Fp. To

design the coefficient function ϕg that computes the encoding of ce, it suffices to prove that there

is a function ϕg,i(⟨e⟩) in #P/poly that computes ⟨ce,i⟩, for all i < a (see Claim B.4 and remark of

Proposition 2.1). From Equation 3.3, we see that ce,i =
∑

b∈{0,1}ℓ te,i, where the sum is over Fp.

Therefore, we can express ⟨ce,i⟩ as a hypercube sum of ⟨te,i⟩ reduced modulo p, and thus, also as

a hypercube-sum of Te,i(⟨b⟩), modulo prime p.

Recall that FP ⊆ #P (Definition B.1). Now, invoke Lemma B.3(3) to obtain a #P/poly func-

tion that computes the hypercube-sum. Since modular arithmetic can be efficiently simulated by

poly(log p) size Boolean circuits, residue of the hypercube-sum modulo p can be computed easily

by a function in #P/poly [GS11]. Composition of the two together yields the desired function

ϕg,i(⟨e⟩), and the closure property discussed in Lemma B.3(4) proves that it is in #P/poly.
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3.3 Explicitness over rationals: A weaker presentable border (Theorem 3)

In the introduction, we deliberated that extending the proof to rationals necessitates a restriction

on coefficients of the polynomial as well as the computation model. To formalize the former,

we define weight of an integer a ∈ Z as wt(a) := 1 + ⌈log2 |a|⌉, to denote the number of bits

required in its (signed) binary representation. We can naturally extend it to rationals t ∈ Q as

wt(t) := mina,b∈Z {wt(a) + wt(b) : t = a/b}. Further, we define the weight of a polynomial g(y)

as the maximum weight of all its rational coefficients,

wt(g) := max
e

{wt(ce) : ce is the coefficient of ye in g} .

As for the restriction on the model, we consider the following constrained ‘presentable’ border

class, where the verifier circuit of the approximating polynomial has bounded weight and bitsize.

Refer to Definition 1.2 for comparison.

Definition 3.10 (Weak Presentable VNP). The presentable border class VNPwk, over F, is defined
as the set of polynomials f ∈ F[x1, . . . , xn] such that there is an approximating polynomial g ∈
F[ε][x1, . . . , xn] expressing

g(x, ε) = εMf(x) + εM+1Q(x, ε),

for some error Q ∈ F[ε][x1, . . . , xn] and order M ∈ N such that wt(g) is at most poly(n). Moreover,

there exists a verifier polynomial h ∈ F[x1, . . . , xn, y1, . . . , ym, ε] with m,degx,y(h), and bitsizeF(h)

all bounded by poly(n) satisfying a hypercube-sum expression∑
a∈{0,1}m

h(x,a, ε) = g(x, ε) .

We denote the tuple (m,bitsize(h),wt(h)) as size parameters for the VNPwk model. Since size(h)

is at most bitsize(h), it is immediate that VNPwk ⊆ VNPε. It is called ‘weak’ because it bounds the

weight of the computed polynomial f(x) by poly(n); otherwise, it could easily be exponential in n.

The following theorem shows that polynomials in VNPwk over Q are explicit.

Theorem 3 (Explicit over Q). Let f ∈ Q[x1, . . . , xn] be a polynomial in VNPwk. Then f is in

VNP.

In the rest of the section we give the proof of the theorem. Suppose g ∈ Q[ε, x1, . . . , xn] is

the polynomial approximating f as per Definition 3.10. Let the size parameters be (s, s, s), where

s := poly(n), thus, wt(g) ≤ s. Choose a prime p such that 2s < wt(p) ≤ 2s + 2. Existence of

a prime in this range is easily guaranteed by Bertrand’s postulate (refer to [AZ18, Chapter 2]).
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Recall that for an exponent vector e ∈ Nn, we denote ce =: a/b, for least a, b ∈ Z, as the coefficient

of εMxe in g. Let ϕp(⟨e⟩) be the reduced coefficient function defined as follows: ϕp(⟨e⟩) ≡ ⟨ce⟩
mod p.

By the choice of the prime we know that 0 < b < p, so, b ̸≡ 0 mod p. Hence in the above

equation, ϕp(⟨e⟩) outputs the integral coefficient of g reduced to Fp. From Lemma 3.2, and the fact

that p is a O(s)−bit number, we get that ϕp belongs in #P/poly. Moreover, the following lemma

extends it further, so as to recover the coefficients uniquely over Q using a #P/poly function.

Claim 3.11 (Rational coefficient function). There is a function ϕg in #P/ poly which computes

the encoding of a unique rational number ce = a/b, a, b ∈ Z, such that ⟨ce⟩ ≡ ϕp(⟨e⟩) mod p and

wt(a/b) is at most s.

Proof. For the uniqueness, let a ̸= â and b ̸= b̂ be s−bit integers such that a/b ≡ â/b̂ ≡ ϕp(⟨e⟩) mod

p. Comparing the ratios, we get ab̂− âb ≡ 0 mod p. Recall that p > 22s, so, ab̂− âb < p, therefore,

a/b = â/b̂ as absolute rationals.

Let ψp be a verifier function that takes binary inputs a and b, defined as follows: If gcd(a, b) is

non-zero, then output 0. Otherwise, output the pair (a, b) if a ≡ b·ϕp(⟨e⟩) mod p. Given the output

of ϕp, such a verification is possible in polynomial time. Since ϕp ∈ #P/poly, we get ψp ∈ #P/poly.

Using such a verifier function, define the required coefficient function ϕg as follows:

ϕg(⟨e⟩) =
∑

a,b∈{0,1}s
ψp (⟨e⟩ , a, b) .

We emphasize here that the coprimality condition in the definition of ψp, ensures a non-zero output

for a unique pair of inputs in the hypercube-sum above (we do not overcount the same rational

numbers again). Finally, from the discussion on closure properties of #P/poly in Lemma B.3(3),

we can conclude that ϕg ∈ #P/poly.

Proof of Theorem 3. From the preceding discussion we obtain a coefficient function ϕg for approx-

imating polynomial g . As before, it is helpful to think of ϕg returning a/b as a binary encoding

of the tuple (a, b) representing the rational coefficients. We observe, as in Equation 3.4, that if

f =
∑

e ce · xe, then ⟨ce⟩ = ϕg(⟨M, e1, . . . , en⟩). Using Valiant’s criterion in Proposition 2.1 we

conclude that f is in VNP.

Number field extensions. A number field Q(α) = Q[α] is a finite degree extension of Q, for

some algebraic number α ∈ C. If α is a root of a monic irreducible polynomial u over Q of degree

m, then

Q[α] =
{
r0 + r1α+ . . . rm−1α

m−1 : ri ∈ Q, ∀i ∈ [d]
}
,

where the representation is unique due to the Q-basis.
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The weight of the elements here is defined in the same way as that of the rational polynomial

r0 + r1α+ . . . rm−1α
m−1. So, we can talk about the VNPwk model over number fields as well.

We can prove the following theorem analogous to Theorem 3 over number fields. Note that our

theorem is unconditional for ‘small’ number fields like Q(
√
−1),Q(

√
2),Q( 3

√
2),Q(ζ13), etc.

Theorem 4 (Explicit over number fields). Let f ∈ Q[α][x1, . . . , xn] be a polynomial in VNPwk.

Assuming Generalized Riemann Hypothesis (GRH), f is in VNP.

Proof Sketch. We will only sketch the proof, as it follows the same structure as before. Suppose

g ∈ Q[α][x1, . . . , xn] is a polynomial approximating f as per Definition 3.10. As earlier, we chose

a prime p in the range 2s < wt(p) ≤ O(s), so that u0 :≡ u mod p remains irreducible, and

of the same degree m. The existence of such a prime is guaranteed by the famous Chebotarev’s

Density Theorem, with an explicit version assuming Generalized Riemann Hypothesis (GRH), refer

to [LO77, Theorem 1.1]. Moreover, the GRH assumption is not required if the degreem is constant,

see [LO77, Theorem 1.4].

Once again we can associate all the coefficients of g as ϕp(e) ≡ ce mod u0. Basically, ϕp(e)

outputs the coefficient of g over Fq, where q := pm. So, we have reduced to the finite field case

again. From Lemma 3.2 and weight upper bound on p, we get that ϕp is in #P/poly.

Almost the same argument as in Claim 3.11 will prove that there exists a function ϕg in #P/poly

that uniquely recovers the number field coefficients. Finally, we can use Valiant’s criterion (Propo-

sition 2.1) to finish the proof.

3.4 An application to deborder factors: Proof of Corollary 1.3

Motivated from the discussion in Section 1.2, we formally define the presentable class VPε below.

Definition 3.12 (Presentable VP). The presentable border class VPε is defined as the set of poly-

nomials f ∈ F[x1, . . . , xn] such that there is an approximating polynomial g ∈ F[ε][x1, . . . , xn]
satisfying

g(x, ε) = εMf(x) + εM+1Q(x, ε),

for some Q ∈ F[ε][x1, . . . , xn] and M ∈ N. Moreover, sizeF(g) and degx(g) is bounded by poly(n).

Although, g has a small size circuit, we emphasise that the degree of ε-polynomials in g is unre-

stricted. Further, it is apparent from the definitions that VP ⊆ VPε ⊆ VNPε. Bürgisser in [Bü04,

Theorem 1.3] proved that the class VPε contains all the low-degree separable factors7 of circuits of

small size.

Lemma 3.13. Let q := pa and e be a positive integer coprime to p. Consider a polynomial (family)

f ∈ Fq[x1, . . . , xn] satisfying f = uev, where u is irreducible and coprime to v, such that size(f)

7i.e. factor u which is irreducible and has multiplicity coprime to the characteristic p. This isn’t an issue in
characteristic zero fields.
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and deg(u) is at most s := poly(n, log q). Then we have u in VPε.

Remark. We make a few observations.

1. In case f = ue, Kaltofen [Kal87] showed that u is VP.

2. Bürgisser [Bü04] proved that u (in the lemma above) is in VP. Moreover, he remarked that, in

his proof, the required polynomials in F[ε] do have small circuit-complexity (refer the remark

following [Bü04, Definition 2.1]). For the sake of completeness, we will sketch the proof for

u ∈ VPε in the appendix.

3. Over rationals, additionally assuming that bitsize(f) + wt(f) is bounded by poly(n) proves

that u is in VPwk, with no need to put conditions on e anymore. The problem to prove

explicitness over rationals without the weight restriction remains open.

As an application of the debordering result over finite fields in Theorem 1, we prove that the

low-degree separable factors of small size circuits are explicit.

Corollary 1.3 (Formally restated). Let q := pa and e be a positive integer coprime to p.

Consider a polynomial (family) f ∈ Fq[x1, . . . , xn] and its irreducible factor u satisfying f = uev,

u coprime to v, such that size(f) and deg(u) is poly(n, log q). Then, the polynomial (family) u is

in VNP.

Over rationals, consider f ∈ Q[x1, . . . , xn] and its factor u such that bitsize(f),wt(f), deg(u) ≤
poly(n). Then, u is in VNP.

Proof. We learn from Lemma 3.13 that the polynomial family u ∈ VPε. Moreover, VPε is contained

in VNPε by definition. As over Fq, Theorem 1 proves VNPε = VNP, hence u ∈ VNP.

Over rationals, once again we use Lemma 3.13 (Remark 3) to learn that the polynomial family

u ∈ VPwk. The class VPwk is contained in VNPwk and using Theorem 3 we prove that u ∈ VNP.

4 VNP is factor closed: Proof of Theorem 2

In a pioneering work, Valiant [Val79], defined VNP as a class of polynomials which can be expressed

as hypercube sum of a VP circuit (Definition 1.1). In a subsequent work, [Val82] showed that VNP

agrees with many fundamental closure properties, making it the commonly accepted definition

of explicit polynomials in Algebraic Complexity Theory. Some of these properties are crucially

required in our proofs and discussed in the following lemma.

Lemma 4.1 (VNP closure properties). For all i ∈ [t], let fi ∈ F[x1, . . . , xn, y1, . . . , ym] be polyno-

mials in VNP over F, where t is at most poly(n,m). Then the following closure properties hold:

1. Addition and Multiplication: Let f+ :=
∑

i∈[t] fi, and f× :=
∏

i∈[t] fi. Then f+ and f× are

in VNP.
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2. Coefficient Extraction: For all i ∈ [t], let fi =
∑

e ce(x) · ye. Then for all exponent vectors

e, the coefficient ce is also a polynomial in VNP.

3. Composition: Let g be a t-variate polynomial in VNP. Then g(f1, . . . , ft) is in VNP.

The proof of the lemma is given in Appendix A. Meanwhile we state the three technical lemmas

that help us prove Theorem 2, specifically for the case of polynomial factoring in small characteristic

fields. The first lemma is our main contribution that handles the ‘pure’ inseparable case of factoring.

Lemma 4.2 (Prime power). Let f ∈ Fq[x1, . . . , xn] be a polynomial in VNP. If there is a polynomial

u and a positive integer i such that f = up
i
, then the factor u is in VNP.

Lemma 4.3 (Coprime factors). Let f ∈ Fq[x1, . . . , xn] be a polynomial in VNP. If there are co-

prime polynomials u and v such that f = u · v, then the factor u is in VNP.

We defer the proof of the above fundamental lemmas to the subsequent two sub-sections. For

now, we use them to prove an essential lemma that deals with the ‘radical’ computation in VNP.

Lemma 4.4 (Any power). Let f ∈ Fq[x1, . . . , xn] be a polynomial in VNP. If there is a polynomial

u and an arbitrary positive integer e such that f = ue, then the factor u is in VNP.

Proof. Let e := pi · ê, and u1 := up
i
, such that p does not divide ê. Note that, when ê = 1 then

Lemma 4.2 finishes the proof. When ê > 1, we associate a polynomial f̂ with a new variable z as

follows:

f̂ := zê − f = zê − uê1

= (z − u1) ·
(
zê−1 + zê−2u1 + · · ·+ uê−1

1

)
=: u2(z) · u3(z) .

For contradiction sake, assume that u2 and u3 share a factor, and hence are not co-prime. This

implies that u1 must be a root of u3, which gives u3(u1) = ê · uê−1
1 = 0. However, since ê > 1 and

u1 is non-zero, it follows that the characteristic p divides ê, which contradicts our choice of ê.

Observe that zê is trivially in VNP, hence we obtain that f̂ is in VNP. Since u2 and u3 are

co-prime, we invoke Lemma 4.3 to shows that u2 is in VNP, and therefore u1 is in VNP. We finish

the proof by using Lemma 4.2 on u1 to finally prove that u is in VNP.

With all the essential ingredients in place, we are now ready to prove the second main result of

our paper. We will restate Theorem 2 formally, which proves the closure of VNP under factoring

over all fields.

Theorem 2 (Formally restated). Let F be a field of any characteristic. Consider a polynomial

f ∈ F[x1, . . . , xn] in the class VNP and let u be its arbitrary factor. Then, we have u in VNP.

Proof. Over fields of characteristic zero, [CKS19b, Theorem 2.8] proved that u is in VNP. Here

we consider the hitherto unsolved case of small prime characteristic. In particular, when F = Fq,
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where q =: pa for some prime p < deg(f).

Pick the largest integer e ≥ 1 and the polynomial v ∈ Fq[x1, . . . , xn] satisfying f =: uev. If

v = 1, then Lemma 4.4 proves that u is in VNP.

If u and v are coprime, then we conclude the proof using Lemma 4.3 and Lemma 4.4.

In the last case, there exists an irreducible polynomial w ∈ Fq[x1, . . . , xn] that divides both u

and v. Consider u1 := we′ and v1 := (f/u1) such that u1, v1 are coprime factors of f . Again, using

Lemma 4.3 and Lemma 4.4 we get that w is in VNP. Repeat this for all the irreducible factors of

u, and use the fact that VNP is closed under multiplication (Lemma 4.1); this concludes the proof

of u being in VNP.

4.1 Factoring prime powers or Valiant’s converse: Proof of Lemma 4.2

To prove Lemma 4.2, we show that the coefficients of the factor polynomial u can be computed

effectively, and thus use Valiant’s criterion to prove the claim. We will argue that coefficients of u

can be obtained from the coefficient function of f . Therefore, it would suffice to design an effectively

computable coefficient function for f , give that it is in VNP. To that effect, we prove the converse

of Valiant’s criterion, over finite fields.

Lemma 4.5 (Converse of Valiant’s criterion). Let f =
∑

e ce ·xe be a polynomial in VNP over Fq.

Then, there exists a function ϕf in #P/poly such that for all e, ϕf (⟨e⟩) = ⟨ce⟩.

Proof. Let D := deg(f) and the VNP size parameters of f be (s, s) where s := poly(n, log q). Using

the exponential-interpolation in Lemma 3.1, with D = poly(s), we can prove that each coefficient

ce of f is a hypercube-sum of small-circuit evaluations, with parameters (poly(s), poly(s)) 8. That

is, there is a polynomial te over a finite field extension Fq′ , q
′ ≤ poly(s), such that

ce =
∑

b∈{0,1}ℓ
te(b1, . . . , bℓ),

where ℓ and size(te) are at most poly(s). Next, moving to the boolean world, Lemma 3.2 shows that

such an algebraic representation can be transformed to obtain the coefficient function ϕf ∈ #P/poly

such that ϕf (e) = ⟨ce⟩.

As mentioned earlier, with the coefficient function of f in place, we need a way to map the

coefficients of f to u. Following is a well-known claim from Algebra, that will help us map the

coefficients.

Claim 4.6 (Frobenius Homomorphism). Let R be a commutative ring of characteristic p. Define

a map ρ : R → R as ρ(u) = up
i
. Then, ρ is a ring homomorphism. Moreover, when R is a finite

field Fq, then ρ is an automorphism that fixes Fpi.

8The same conclusion can be made from VNP closure properties stated in Lemma 4.1.
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We now have all the necessary tools needed to prove the lemma.

Proof of Lemma 4.2. Given that f = up
i
, let u =:

∑
a∈L cax

a, where the support L represents the

set of exponent vectors associated to u. Essentially, Claim 4.6 allows us to distribute the prime

power over addition as follows:

f = up
i
=

(∑
a∈L

ca · xa

)pi

=
∑
a∈L

(ca)
pi xpi·a .

The last expression above clearly associates the coefficients of xpi·a in f to coefficients of xa in u.

Since f is in VNP, Lemma 4.5 guarantees a #P/poly function ϕf such that the following congruence,

in the finite field Fq, is true for all a ∈ L:

(
ϕf
(
pi · a

))1/pi
= ϕf (p

i · a)q/pi = ϕf (p
i · a)pa−i

=: ϕu(a) = ⟨ca⟩ .

In Lemma B.3 it was proved that #P/poly functions are closed under repeated-squaring, hence we

conclude that ϕu ∈ #P/poly. Invoking Proposition 2.1 on ϕu proves that the factor u ∈ VNP.

4.2 Factoring co-prime factors: Proof of Lemma 4.3

The proof of Lemma 4.3 adheres to the conventional template of factoring, pioneered by Kaltofen,

using Hensel’s lifting lemma. We will follow the presentation of [KSS15, ST21, Sud98]. It com-

mences with a series of preprocessing procedures that brings the polynomial in the right setup to

invoke the lifting lemma, which uniquely gives the factor. We will elucidate all the steps, and along

the way analyse the VNP size parameters to ultimately conclude the proof.

Transformation to monic polynomial. Let α := (α1, . . . , αn) ∈ Fn
q . Define a homogeneous

shift map τα : Fq[x1, . . . , xn] → Fq[x, x1, . . . , xn] such that for all i ∈ [n], it maps xi 7→ xi + αi · x.
Let fα := τα(f) and observe that deg(fα) = deg(f) =: d. Isolating the coefficient ce of the leading

term xd of fα gives

ce =:
∑
|e|=d

ĉe · αe1
1 . . . αen

n .

PIT lemma guarantees that with high probability, a random choice of α ensures ce is a non-zero

field element (refer to [SY10, Lemma 4.2]). Then, fα/ce is a monic polynomial in x. Further, if

(s, s) is the VNP size parameters of f , then the parameters for fα are (s, s + O(n)). When the

field is too small, to pick the right α, we can obtain it from a field extension K of degree at most

poly(deg(f)). Since arithmetic operations over K can be efficiently simulated in F (refer to [Bü00,

Proposition 4.1]), we will assume K = Fq without loss of generality.

Multivariate to bi-variate factoring. We can reduce the problem of multivariate factoring to

the bi-variate case. For notational convenience, we redefine fα/ce as fα and associate a polynomial
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f̄ ∈ Fq[x1, . . . , xn][x, y] as follows: f̄(x, y) := fα(x, yx1 + a1, yx2 + a2, . . . , yxn + an), where a ∈ Fn
q

is a point.

If fα is monic and uα is its monic irreducible factor, then ū := u(x, yx1 + a1, . . . , yxn + an) is a

monic irreducible factor of f̄ , see [ST21, Lemma 3.10]. In addition to this bi-variate transformation,

the scaling and shifting of variables sets up the starting point for the lifting lemma. Refer to [DDS21,

Section 2.2] and [ST21, Section 3.5].

Claim 4.7 (Initialize Hensel lifting). Let f = u ·v be such that u, v are co-prime polynomials. Then

the associated univariate factors ū(x, 0) and v̄(x, 0) of f̄(x, 0) are co-prime.

Note that, the factor u can be recovered easily from ū by performing an inverse linear-transformation

of the coordinate shift. Further, the polynomial f̄(x, y) remains monic in x and is in VNP with size

parameters (s, s+O(n)).

Hensel’s Lifting. Let us re-assign f = f̄ for notational simplicity. Recall that f(x, y) is monic

in x, therefore f0 := f(x, 0) ∈ Fq[x] is a univariate polynomial of degree d. Since f0 can have at

most d factors, u0 := u(x, 0) and v0 := v(x, 0) are in VNP with parameters (1, O(d)). We will use

the following ever-famous Hensel’s Lifting lemma from number theory to lift the roots uniquely

(mod y). For a detailed discussion on the specific monic version of the Lifting lemma required for

our proof, we encourage the readers to refer [KSS15, Lemma 3.4]. For the rest of the section we

assume K := Fq[x1, . . . , xn] as the base ring of the bivariate polynomials in x, y.

Lemma 4.8 (Monic Hensel’s Lifting). Let f = u · v ∈ K[x, y] be such that u, v are co-prime,

and u is monic in x. Additionally, we are given u0 ≡ u mod y and vo ≡ v mod y such that

a0u0 + b0v0 ≡ 1 mod y. Then for all natural numbers k ≥ 1 there exist uk, vk, ak, bk ∈ K[x, y]

satisfying the following:

1. uk ≡ uk−1 mod y2
k−1

and vk ≡ vk−1 mod y2
k−1

.

2. f ≡ uk · vk mod y2
k
such that akuk + bkvk ≡ 1 mod y2

k
and uk is monic in x.

3. uk ≡ u mod y2
k
and vk ≡ v mod y2

k
.

Moreover, for every k, the lifted factors uk and vk are unique polynomials mody2
k
.

Hensel’s Lifting is a technical, but a very powerful, tool which gives explicit formulas for the lifted

factors. Its basic idea is to take the error of the previous step and feed it back to the next step.

Consider the difference polynomialmk := f−uk−1vk−1. Then the polynomials ūk := uk−1+bk−1mk

and v̄k := vk−1 + ak−1mk are valid lifts of the factors u and v. However, to obtain monic, and

therefore unique lifts, we need some correction. Let qk, rk ∈ K[x, y] be such that

(ūk − uk−1) =: y2
k−1 · (qkuk−1 + rk) ,

where degx(rk) ≤ degx(uk−1). The existence of these polynomials is guaranteed by Euclid’s division
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algorithm. Then the unique, and monic, lifts are defined as follows:

uk := uk−1 + y2
k−1

rk (4.9)

vk := v̄k

(
1 + y2

k−1
qk

)
. (4.10)

It is easy to verify that they are the valid lifts as per Lemma 4.8. Refer [KSS15, Lemma 3.4]

for rigorous calculations. In addition, let wk := ak−1uk + bk−1vk, then the lifted factors remain

(pseudo-)co-prime (mod y2
k
) with Bézout identity holding using the following polynomials:

ak := ak−1(1− wk)

bk := bk−1(1− wk) .

Size analysis. We choose an integer t ≥ log(degy(u)) + 1 and repeatedly use the Lifting lemma t

times to obtain the factor ut ≡ u mod y2
t
. Since the lifted factors are unique, u can be obtained

from ut by truncating it to degy(u). Given that f ∈ VNP, the factor u ∈ VNP can be proved using

the following technical lemma. It proves that given the coefficients of polynomial f in variables

x1, . . . , xn, there is a small circuit which computes the lifted factor u.

Lemma 4.11 (Hensel in circuits). Let f = u · v ∈ K[x, y] be a degree d polynomial such that u, v

are co-prime and u is monic in x. The polynomials u0, v0, a0, b0 are defined as before. Let L be the

set of exponent vectors of f such that f =:
∑

ei∈L cei(x1, . . . , xn) · x
ei1yei2 .

Given the coefficients ce1 , . . . , ce|L| as input, there exists a circuit C
(t)
u over Fq which computes

Hom≤d(ut)
9. Further, there is a constant β ≥ 2 such that the size of the circuit C

(t)
u is at most

poly(d, βt), and intermediate degrees at most (dβt).

Proof. Given all the coefficients of the polynomial f , observe that we can construct a sub-circuit

Cf of size sf := poly(d) that computes f . Then, the proof is an easy consequence of the following

inductive analysis on t.

The base case is easy to analyse. Let C
(t−1)
u , C

(t−1)
v , C

(t−1)
a , and C

(t−1)
b be the circuits that

compute ut−1, vt−1, at−1 and bt−1 respectively, as described in Hensel’s lifting Lemma 4.8. Let the

size of all the circuits be at most st−1 := poly(d, βt−1). Together with Cf , the difference polynomial

mk can be easily computed in size sf+O(st−1)
10. Then observe that size(ūt) and size(v̄t) is at most

sf + O(st−1). To facilitate the lifting process, the quotient qk and remainder rk can be computed

with additional poly(d) size (refer [KSS15, Lemma 2.8] and [vzGG13, Lemma 9.6]). Using these

as sub-circuits, we obtain Ct
u and Ct

v with additional constant number of gates from Equations 4.9

and 4.10. Overall, the size of the lifted polynomials grows by a constant factor and, hence, the

overall size of both the circuits is at most st := sf +O(st−1)+poly(d)+O(β) ≤ poly(d, βt). Almost

the same argument works for circuits C
(t)
a and C

(t)
b computing at and bt.

9This is the sum of the homogeneous parts of ut up to degree d.
10For notations, refer to the discussion proceeding Lemma 4.8.
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Lastly, we homogenize Ct
u using Lemma A.1, to obtain the desired circuit which computes

Hom≤d(ut). The degree with respect to the lifting variable y is at most βt due to constant growth

in each iteration, moreover, with respect to x it is at most d due to the homogenization. Hence,

the degree claim follows.

We are now ready to give the complete proof of the following Lemma 4.3.

Lemma 4.3 (restated). Let f ∈ Fq[x1, . . . , xn] be a polynomial in VNP. If there are co-prime

polynomials u and v such that f = u · v, then the factor u is in VNP.

Proof of Lemma 4.3. Assume that f ∈ K[x, y] after all the necessary invertible transformations

discussed earlier in the section to apply Lemma 4.8. Let support L be the set of exponent vectors

of f such that f =:
∑

ei∈L cei(x1, . . . , xn) · x
ei1yei2 .

Using Lemma 4.11 with t ≥ log(deg(f))+1 gives a circuit C
(t)
u that take the coefficients of f as

input and outputs a circuit for the factor u. Moreover, the size of the circuit is at most poly(deg(f))

and degree is at most O(deg(f)).

Since f ∈ VNP, Lemma 4.1(2) shows that the coefficients cei ∈ VNP. Moreover, Lemma 4.1(3)

will prove that C
(t)
u composed with VNP polynomials, remains in VNP. Therefore, the factor u is

in VNP.

5 Conclusion

Motivated by the need of an expressive model of approximation, in this work, we defined presentable

border classes VPε and VNPε. We proved that VNPε is contained in VNP, over finite fields. Ad-

ditionally, over rationals, we proved that a weaker class VNPwk is explicit. The question whether

VNPε is contained in VNP, remains open over Q; due to the possibility of doubly-exponentially large

integers appearing.

As an application of our debordering result, we advance partially towards proving the factor

conjecture [Bü00, Conjecture 8.3], by showing that low-degree ‘non-singular’ factors of small size

circuits are explicit. This still does not rule out the possibility: Could the Permanent polynomial

be a factor of a small circuit of exponential degree?

Our debordering technique, of exponential interpolation, further proved that over all charac-

teristics, VNP is closed under factoring, and thus resolves Bürgisser’s conjecture [Bü00, Conjecture

2.1].

Whitebox PIT. Our newly introduced presentable border classes open up a new avenue of

studying Polynomial Identity Testing (PIT) in the whitebox setting. PIT is a fundamental problem

in complexity theory, that decides the zeroness of the given polynomial (refer [Sax09, Sax14] and

also [SY10, Chapter 4]). It is studied under two well known settings: Blackbox and Whitebox.

The former allows only evaluations, while the latter allows to look at the inner structure of the

model. PIT on border classes, naturally extends to testing the zeroness of a polynomial, given
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its approximating polynomial. Concretely, let g approximate a non-zero polynomial f ∈ VP, then

there exists an evaluation point α such that g(α, ε) is not a multiple of ε. We emphasise that mere

non-zeroness of g(α, ε) does not guarantee non-zeroness of f . For a comprehensive discussion and

motivations of blackbox border PIT, refer [FS18, DDS21].

The arbitrarily large complexity of ε-polynomial in g, makes the whitebox testing in border

classes a meaningless problem; as the input cannot be presented. But now the presentable border

classes such as VPε constrain the ε-polynomials, and therefore we make the whitebox setting in-

teresting. It is worthwhile to investigate whitebox PIT on presentable border classes; for instance,

study constant depth circuits to begin with.
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A Structural results

Throughout the paper, we refer and use well-known structural results of Algebraic Complexity

Theory. In this section we will formally state them, prove some of them for completeness, and

provide relevant references to comprehensive discussion for others.

Homogenisation. For a degree-d polynomial f , we denote its degree-k homogeneous com-

ponents by Homk(f). Similarly, we define Hom≤k(f) equal to
∑

i∈[k]Homk(f). The following

well-known structural result proves that given a blackbox access to a circuit computing the poly-

nomial f , we can construct a circuit that computes all its homogeneous components. Refer [SY10,

Theorem 2.2] for the proof.

Lemma A.1 (Homogenisation). Consider an n-variate polynomial f :=
∑

i∈[d] ci(y)x
i computable

by a circuit of size s over F. Then size(ci) is at most poly(s, n, d), for all i ∈ [d]. Moreover,

size(Hom≤d(f)) is at most poly(s, n, d).

We will invoke the lemma to homogenise the Hensel lifting circuit, constructed in the proof of

Lemma 4.11. A straight-forward application of the homogenisation lemma is the elimination of

division gates and computing derivatives. Refer [SY10, Theorem 2.11].

Lemma A.2 (Division Elimination). Consider an n-variate polynomial f ∈ F[x1, . . . , xn] com-

putable by a circuit of size s over F. Then f mod ⟨x⟩d+1 can be computed by a circuit of size

poly(s, d).

Lemma A.3 (Derivatives). Consider an n-variate polynomial f ∈ F[y, x1, . . . , xn] computable by a

circuit of size s over F. Then for any k, ∂kyf can be computed by a circuit of size poly(s, k).

Hypercube-sum of Formulas. An algebraic circuit is called a formula, if the underlying

graph is a tree. In Section 1 we defined the class VNP as hypercube-sum of small size circuits.

Valiant proved in [Val82] that these polynomials can be equivalently computed by a hypercube-

sum of small size formulas. Refer [Bü00, Theorem 2.13] and [MP08, Theorem 2] for the proof.

A direct consequence of the equivalence is the following structural lemma, that helps in proving

closure properties of VNP.

Lemma A.4 (Verifier formula). Consider an n-variate polynomial f of degree d computable by a

circuit of size s over F. Then, there is a verifier polynomial h, with m and the formula size of h

both bounded by poly(s, n, d), satisfying the hypercube-sum expression∑
a∈{0,1}ℓ

h(x1, . . . , xn, a1, . . . , aℓ) = f.

Closure properties of VNP. In Section 4 we discussed various closure properties of polyno-

mials in the class VNP. We invoke these closure properties to proof Theorem 2. The Composition

property is particularly crucial in the proof of Lemma 4.3.

Proof of Lemma 4.1. The statements can be proved directly from the Definition of VNP Defini-
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tion 1.1. For all i ∈ [t], let (mi, size(hi)) be the size parameters for fi in VNP over F, where both the

parameters and deg(fi) are bounded by poly(n,m). Then the properties can be proved as follows.

Addition and Multiplication: Observe that

f+ =
∑
i∈[t]

fi =
∑
i∈[t]

 ∑
ai∈{0,1}mi

hi(x,ai)


=

∑
(a1,...,at)∈{0,1}ℓ+

h+(x,a1, . . . ,at),

where ℓ+ :=
∑

i∈[t]mi and h+ :=
∑

i∈[t] hi(x,ai). Since both t and mi, are bounded by poly(n,m),

the length of the witness ℓ+ is atmost poly(n,m). Moreover, size(h+) = 3 + t +
∑

i∈[t] size(hi) ≤
poly(n,m). Similarly for multiplication we have

f× =
∏
i∈[t]

fi =
∏
i∈[t]

 ∑
ai∈{0,1}mi

hi(x,ai)


=

∑
(a1,...,at)∈{0,1}ℓ×

h×(x,a1, . . . ,at).

A similar analysis reveals that VNP size parameters (ℓ×, size(h×)) of f× are bounded by poly(n,m).

Coefficient Extraction: The proof runs the same as the proof of Lemma 3.1, with both s

and D at most poly(n,m). Note that standard interpolation using random evaluation points would

suffice only for fields of large characteristics.

Composition: We will follow the proof sketch of [CKS19b, Claim 8.4]. Suppose that g is

hypercube sum of verifier polynomials v. It is enough to prove the statement for v ∈ VP. Invoke

Lemma A.4 on the circuit C for the verifier polynomial v to obtain a polynomial h and ℓ ≤ poly(t, d)

satisfying

C =
∑

a∈{0,1}ℓ
h(z1, . . . , zt, a1, . . . , aℓ).

Let T be the formula computing h of size poly(t, d). Composing with the VNP polynomials gives

C(f1, . . . , ft) =
∑

a∈{0,1}ℓ
h(f1, . . . , ft, a1, . . . , aℓ).

We claim that feeding the verifier circuits hi of the VNP polynomials fi, into the formula T gives

the required hypercube-sum representation.

C(f1, . . . , ft) =
∑

a,ai∈{0,1}ℓ
′

T (h1(x,ai), . . . , ht(x,at),a),

where ℓ′ = ℓ +
∑

imi ≤ poly(t, d, n,m). Moreover, the size of the circuit computing T composed
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with h1, . . . , ht is at most O(size(T )+
∑

i size(hi)) ≤ poly(t, d, n,m). The correctness of the expres-

sion above, follows from an easy induction on the depth of the formula T . Along the layers, from

bottom to the top, we repeatedly invoke the additive and multiplicative closure properties which

were discussed earlier. Since T is a formula, the verifier circuits for each of the hi’s receive their

unique copy of the witnesses and this is preserved throughout the computation. The last part is

crucial for the correctness because simply plugging in the hi’s to the circuit C could result in the

same witnesses being reused and it may not be the intended computation 11.

B Counting and functional complexity classes

We will review some of the computational complexity classes used in our proofs and discuss some

standard closure results. For details refer to [Bü04, Section 4.3] and [KP11, Section 2.2]. For a

more comprehensive discussion refer to [Pap94]. For a natural number r, ⟨r⟩ ∈ {0, 1}∗ denotes the

binary encoding of r.

Definition B.1 (#P and FP). The complexity class #P is defined as the set of string functions

ψ : {0, 1}∗ → {0, 1}∗ such that there is a language χ ∈ P satisfying ψ(x) = ⟨|S|⟩ where

S =
{
y ∈ {0, 1}poly(|x|) : (x,y) ∈ χ

}
.

Further, a function ψ is in FP if there exists a Turing machine that computes ψ(x), for all inputs

x ∈ {0, 1}∗, in time poly(|x|).

It is easy to show that FP is contained in #P (refer [SK12, Lemma 8]).

Any counting class can be extended to its corresponding non-uniform version where the functions

accept an advice string, in addition to the input string, for computation.

Definition B.2 (Non-uniform complexity classes). The complexity class C/poly is defined as the

set of functions ϕ : {0, 1}∗ → {0, 1}∗ such that there exists a ψ in class C and a polynomial length

advice function α : N → {0, 1}∗ satisfying ϕ(x) = ψ(x, α(|x|)).

We remark that the advice function α in the definition above only depends on the length of the

input. Moreover, for all n ∈ N, |α(n)| ≤ poly(n). The following lemma shows that the complexity

classes of our interest are closed under usual operations.

Lemma B.3 (Closure Properties). For a positive integer r, consider a set of functions ϕ1, . . . , ϕr

in #P/poly. Consider an input string x ∈ {0, 1}∗. Then the following closure properties can be

shown:

1. Addition and Multiplication: Let ϕ+(x) :=
∑

i∈[r] ϕi(x) and ϕ× :=
∏

i∈[r] ϕi(x). Then, ϕ+

and ϕ× are also in #P/poly for r ≤ poly(|x|).
11Consider a pedagogical example, C(z) = z2 from [CKS19b, Footnote 9].
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2. Repeated Squaring: For all i ∈ [r], ϕi(x)
t is in #P/poly for t ≤ 2poly(|x|).

3. Projection: Let Φi(x) :=
∑

b∈{0,1}ℓ ϕi(x, b), where ℓ ≤ poly(|x|). Then Φi is in #P/poly.

4. Composition: For all i, j ∈ [r], ϕi (ϕj(x)) is in #P/poly

Proof. For every #P/poly function ϕi, let αi be its advice function and χi be its associated language

in P defining the counting set Si, see Definition B.1.

1. Addition and Multiplication: Define an advice function α(|x|, ⟨i⟩) = αi(|x|), and two sets as

follows:

S+ :=
{
(i,y) ∈ {0, 1}poly(|x|)+log r : (x, α(|x|, i),y) ∈ χi

}
, and

S× :=
{
(y1, . . . ,yr) ∈ {0, 1}r poly(|x|) : ∀i ∈ [r], (x, α(|x|, ⟨i⟩),yi) ∈ χi

}
.

For input x ∈ {0, 1}∗, let ᾱ(|x|) = (α(|x|, ⟨1⟩), . . . , α(|x|, ⟨r⟩)) be the advice function. Then,

it is easy to verify that

ϕ+(x) = ψ+(x, ᾱ(|x|)) := ⟨|S+|⟩ , and

ϕ×(x) = ψ×(x, ᾱ(|x|)) := ⟨|S×|⟩ .

Due to the upper bound on r, the length of the advice string ᾱ is bounded by poly(|x|).
Moreover, ψ+ and ψ× are in #P by definition. Hence, ϕ+ and ϕ× are in #P/poly.

2. Repeated Squaring: Note that ϕi(x)
2 is in #P/poly from the discussion on multiplication

above. Then the claim follows by repeatedly multiplying #P/poly function, log r many times.

3. The proof is in the same line as addition, which was discussed earlier. Since the advice function

depends solely on the length of the input x, it will be same throughout the hypercube-sum.

This essentially, lets us add exponentially many #P/poly function. Let Ψi(x, αi(|x|)) = ⟨|SP|⟩
where

SP :=
{
(b,y) ∈ {0, 1}poly(|x|)+ℓ : (x, αi(|x|), b,y) ∈ χi

}
.

Given the advice string αi(|x|) as input, clearly Ψi is in #P. Observe that Φi(x) = Ψi(x, αi(|x|)),
hence Φi belongs to #P/poly.

4. Composition: Let ᾱ(|x|) = (αi(|x|), αj(|x|)) be the advice function. Define Ψ(x, ᾱ(|x|)) =

⟨|SC|⟩ where

SC :=
{
(y, z) ∈ {0, 1}poly(|x|) : (x, αj(|x|),y) ∈ χj and (ϕj(x), αi(|x|), z) ∈ χi

}
.

Clearly, ϕi(ϕj(x)) = Ψ(x, ᾱ(|x|)). Moreover, given that χi, χj ∈ P, the conjugation in the set

SC can be verified in P. Hence, the composed functions are in #P/poly.
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In the proof of Lemma 3.2, we claimed that string function in #P/poly are closed under con-

catenation. In the following claim we formalise it. For binary string a, b ∈ {0, 1}∗, we use ⟨a, b⟩ to
denote string concatenation.

Claim B.4. For a positive integer r, consider a set of functions ϕi : {0, 1}∗ → {0, 1}ℓ in #P/poly.

Define a map Φ : {0, 1}∗ → {0, 1}rℓ such that Φ(x) = ⟨ϕ1(x), . . . , ϕr(x)⟩, for all x ∈ {0, 1}∗. Then,

Φ is in #P/poly for r, ℓ ≤ poly(|x|).

Proof. There is a trivial function Ψ in FP that takes output of ϕi(x) as input and outputs

⟨ϕ1(x), . . . , ϕr(x)⟩ as a concatenated string. Clearly, Φ = Ψ(ϕ1(x), . . . , ϕr(x)). Recall that FP ⊆
#P, then Lemma B.3(4) proves that the composition of the functions is in #P/poly.

C Low degree factors are easy to approximate

In this section we will sketch the proof of Lemma 3.13. Consider a polynomial f ∈ Fq[x1, . . . , xn]

of degree df from the lemma statement. For all i ∈ [n], randomly pick field elements αi, βi ∈r Fq

and define a map τ : xi 7→ xi+αiy+βi, where y is a new variable. Under such a random invertible

transformation, the polynomial completely splits over power series ring, see [DSS22, Theorem 17].

In particular, there exists k ∈ F∗
q , γi > 0 and hi ∈ K[[x1, . . . , xn]] satisfying

τ(f) = k ·
∏

i∈ [df ]

(y − hi)
γi ,

where K is a field extension of Fq of degree at most df . Refer [DDS21, Section 3 and 6.2] for details.

Further, µi := hi
(
0
)
are all distinct nonzero field elements. We assume K = Fq without loss of

generality (refer [Bü00, Proposition 4.1]). An immediate corollary of such a power series split is

the following lemma (refer [DSS22, Corollary 18])

Lemma C.1. Let u be a factor of f of degree du, and τ(f) splits as before. Since τ(u) divides

τ(f), we deduce that

τ(u) = k′ ·
∏

i∈ [du]

(y − hi)
ci ,

where 0 ≤ ci ≤ γi, k
′ ∈ F∗

q, and hi ∈ Fq[[x1, . . . , xn]].

Recall the definition of Hom≤du(hi) from Appendix A. Observe that

τ(u) ≡ k′ ·
∏

i∈ [du]

(y −Hom≤du(hi))
ci mod ⟨x1, . . . , xn⟩du+1 .

Later we will show that due to the expression above it would suffice to give a complexity bound of

the power series roots of τ(f) to uniquely recover the factor τ(u). The following proposition proves
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that all the power series roots can be easily approximated, see [Bü04, Proposition 3.4].

Proposition C.2. For all i ∈ [df ], there is an approximating polynomial gi ∈ Fq[ε][x1, . . . , xn]

satisfying gi = εM Hom≤du(hi) + εM+1Qi(x, ε), for some error Qi ∈ F[ε][x1, . . . , xn] and order

M ∈ N. Moreover degx(gi) ≤ du and sizeF(gi) ≤ poly(du, size(f)).

Proof Sketch. Let f̃ := τ(f) ∈ Fq[x, y] and µi := hi( 0 ) . Define a perturbed polynomial F :=

f̃(x, y + µi + ε) − f̃(0, µi + ε) over the ring Fq[ε]. Since e is coprime to p, with appropriate

coordinate shift it can be ensured that F |ε=0 = f̃ , F ( 0, 0 ) = 0, but ∂yF ( 0, 0 ) ̸= 0, see [Bü04,

Equation 5]. Then the power series root Hj of the perturbed polynomial F can be obtained by

classical Newton Iteration (refer [DSS22, Lemma 15]) as follows:

y0 = 0, yt+1 := yt −
F (x, yt)

∂yF (x, yt)
(C.3)

where yt ≡ Hj mod ⟨x⟩2
t

. The quadratic convergence of degree in Newton iteration implies that it

suffices to assume t ≤ log du + 1. An easy induction on t proves that yt, and therefore Hj , is well

defined over Fq[[ε]]. Hence, Hj |ε=0 = hi, moreover Hom≤du(Hj)|ε=0 = Hom≤du(hi).

Let R be the subring of F(ε) consisting of rational functions defined at ε = 0. The preceding

discussion then proves that an approximating polynomial g̃i ∈ R[x] computes At/Bt ≡ yt mod ⟨x⟩2
t

and satisfies the following:

g̃i = Hom≤du(hi) + ε Q̃i(ε,x, y),

for some error Q̃i ∈ R[x1, . . . , xn]. Bürgisser proved in [Bü04, Lemma 5.6] that equivalently there

exists an approximating polynomial gi ∈ F[ε][x1, . . . , xn], order M ∈ N, and error Qi, such that

gi = εM Hom≤du(hi) + εM+1Qi(ε,x, y). Moreover, gi = εM g̃i. Therefore, the proposition follows

easily by proving sizeF(g̃i) ≤ poly(du, size(f̃)), and M ≤ 2poly(du). In case, degx(gi) is greater than

du, homogenise and truncate the higher degree terms ([Bü04, Proposition 3.1]).

Size analysis. The circuit computing At/Bt is build iteratively using division gates follow-

ing Equation C.3. Treating ε as a variable, observe that sizeF(F ) ≤ s0 := size(f̃) + 2. Ho-

mogenise the circuit computing F using Lemma A.1 with respect to y to obtain Hom≤du(F )

of size poly(du, s0). Use this homogenised circuit to obatin the circuit computing ∂yF of size

poly(du, s0). Using division and subtraction gates, compute A1/B1 and let its size be s1 :=

max(sizeF(A1), sizeF(B1)) ≤ poly(du, s0). Let t = log du + 1, then Newton iteration gives an easy

recurrence on the size st ≤ c + st−1 + poly(du, s0), where c is a small constant. Solving the re-

currence gives st ≤ poly(du, s0) ≤ poly(du, size(f̃)). Finally, eliminate the division with respect to

x, y variables using Lemma A.2 to obtain the circuit computing g̃i of size at most poly(du, size(f̃)).

The upper bound is preserved after the inverse transformation τ−1.

Order analysis. Let the ε degree in A1/B1 be denoted by d1 := max(degε(A1), degε(B1)).

Observe that in each iteration the degree blows-up by a factor of du because of homogenisation in

preprocessing. Thus, we get the recurrence dt ≤ du · dt−1, solving which gives dt ≤ (du)
log du ≤
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2poly(du). Then to obtain gi, set M = dt ≤ 2poly(du).

We are now ready to prove Lemma 3.13. For two arbitrary polynomials u and h, let size(u |h)
denote the size of the circuit that computes u given h for free. The definition can be extended to

size(u |h) naturally.
Lemma 3.13 (restated). Let q := pa and e be a positive integer coprime to p. Consider a

polynomial f ∈ Fq[x1, . . . , xn] satisfying f = uev, where u is irreducible and coprime to v, such that

size(f) and deg(u) is at most s := poly(n, log q). Then we have u in VPε.

Proof. Using the map τ defined earlier, Lemma C.1 proves that τ(u) = k′ ·
∏

i∈ [du]
(y − hi)

ci where

hi ∈ Fq[[x1, . . . , xn]] and du := deg(u). Suppose

H := k′ ·
∏

i∈ [du]

(y −Hom≤du(hi))
ci ,

then observe that τ(u) ≡ H mod ⟨x⟩du+1. The idea is to show that H can be easily approximated,

hence the factor can be obtained accurately by eliminating division.

It is easy to verify that

size(H) ≤ size (H | Hom≤du(hi)) + size (Hom≤du(hi)) ,

see [Bü04, Lemma 2.3(3)]. Since du ≤ s, Proposition C.2 proves that size (Hom≤du(hi)) is at most

poly(s). Then, clearly size(H) ≤ poly(s). SupposeG approximatesH, in the usual sense. Eliminate

division in G mod ⟨x⟩du+1 using Lemma A.2 to obtain the approximation of τ(u), moreover almost

immediately we get that size(τ(u)) ≤ poly(s, du). Since shifting and scaling do not change the size

complexity, apply the inverse transformation to conclude that u ∈ VPε.

Extension. In Lemma 3.13 we remarked that over rationals, low-degree factor u belongs to

a weaker presentable class VPwk (refer Definition 3.10), provided bitsize(f) + wt(f) is bounded by

poly(n). The proof is essentially the same as the finite fields case discussed above. The blow-

up of field constants are controlled due to homogenisation done as pre-processing in the proof of

Proposition C.2. The growth of constants can be analysed like blowup of ε-degree discussed in the

order analysis.
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