
An Introduction to Elliptic and Hyperelliptic
Curve Cryptography and the NTRU

Cryptosystem

Jasper Scholten and Frederik Vercauteren

K.U. Leuven,
Dept. Elektrotechniek-ESAT/COSIC,

Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee,

Belgium.
Firstname.Lastname@esat.kuleuven.ac.be

Abstract. This paper provides a self-contained introduction to elliptic
and hyperelliptic curve cryptography and to the NTRU cryptosystem.
The goal is to introduce the necessary mathematical background, detail
various existing encryption and signature schemes and give an overview
of the known security weaknesses.

1 Introduction

In their seminal paper [6], Diffie and Hellman introduced the notion of public
key cryptography. They described how two entities can agree on a common
secret key by communicating over an insecure channel. This is known as the
Diffie-Hellman key agreement protocol. The security of the protocol is related to
the apparent difficulty of computing discrete logarithms modulo a large prime
number p, i.e. given two numbers (g mod p) and (gx mod p), it seems to be
infeasible to compute x for general large enough p. A few years later, Rivest,
Shamir and Adleman [37] proposed a public key encryption scheme and a digital
signature scheme, the security of which is related to factoring a large integer.

The papers [6] and [37] laid the foundations of public key cryptography. Since
their appearance, many other schemes have been proposed that are based on the
Integer Factorisation Problem and the Discrete Logarithm Problem (DLP), such
as the ElGamal encryption and signature scheme [7] and the Digital Signature
Algorithm (DSA) [8].

Instead of using the DLP modulo a large prime p as the basis of cryptographic
protocols, one can consider the DLP in an arbitrary group that admits an efficient
element representation and group law. Let G be such a group, then the DLP in
G is defined as follows: given two elements g and h = gx ∈ G, determine the
exponent x. The reason for considering other groups is that the most efficient
methods for solving the DLP in a general, i.e. black-box, group take O(

√
ord(g))

steps [43]. The DLP for the integers modulo a prime (or more generally, in the
multiplicative group of any finite field F∗q) can be solved in a far more efficient

way, requiring only O(exp(log(q)1/2 log(log(q))1/2)) steps. So if one uses a group
in which the DLP is as hard as for a general group, one can use much smaller
parameters and key sizes than when using the multiplicative group of finite fields
and still obtain the same level of security.

Miller [32] and Koblitz [26] proposed to use the group of points on an elliptic
curve E defined over a finite field. Later, Koblitz [27] suggested to use the group
of points on the Jacobian of a hyperelliptic curve C defined over a finite field.
If the curves are chosen carefully then, as far as one knows, the DLP in these
groups is as hard as for general groups.

Not only does this imply shorter key sizes, but also smaller footprints and
code size. Another cryptosystem with similar properties is the NTRU cryp-
tosystem proposed by Hoffstein, Pipher and Silverman at the rump session of
Crypto ’96 [22]. The security of the NTRU cryptosystem is based on polynomial
arithmetic in the ring Z[X]/(XN − 1) modulo two unrelated moduli.

2 Elliptic Curves

Let Fq denote a finite field of characteristic p, i.e. q = p` with p prime. Although
it is possible to define the notion of an elliptic curve over any field by giving a
general equation, we will make a distinction between the cases p = 2 and p > 2.
Our treatment will also fail to deal with some specific elliptic curves. We do this
in order to keep the exposition close to cryptographic practise, where one often
deals with either the case p = 2 or the case q = p.

If p = 2 then an elliptic curve E defined over Fq is given by an equation

y2 + xy = x3 + ax2 + b,

where a, b ∈ Fq and b 6= 0. For every field K containing Fq (so in particular for
K = Fq) one considers the set

E(K) := {(x, y) ∈ K ×K | y2 + xy = x3 + ax2 + b} ∪ {∞}.

With this definition, we left out some special elliptic curves, the so-called super-
singular curves, but we will not need these.

If p > 2 then an elliptic curve defined over Fq is given by an equation

y2 = x3 + ax + b,

where a, b ∈ Fq and 4a3 + 27b2 6= 0. For every field K containing Fq one now
considers the set

E(K) := {(x, y) ∈ K ×K | y2 = x3 + ax + b} ∪ {∞}.

With this definition we left out a few elliptic curves in characteristic 3, but again
we will not need these.

The set E(K) is called the set of K-rational points on E. The symbol ∞ is
called the point at infinity.

As is well known, one can endow E(K) with the structure of an Abelian
group. It is common practise to denote the group operations in an additive way
(i.e. using + and − symbols), as opposed to the multiplicative notation when
dealing with groups like F∗q . The group law is defined by the following general
rules: ∞ is the zero element, and any three points that lie on a line (i.e. that are
solutions of a linear equation in x and y) add up to zero. Working this out yields
the following explicit rules for adding two points P1 = (x1, y1) and P2 = (x2, y2).

The case p = 2. The opposite of the point P1 is −P1 = (x1, y1 + x1). The
addition law is given by the following formulae with P3 = P1 + P2:

1. P3 = ∞ if x1 = x2 and y1 6= y2,
2. Define λ = (x2

1 + y1)/x1 and ν = x2
1 if P1 = P2,

3. Define λ = (y2 + y1)/(x2 + x1) and ν = (y1x2 + y2x1)/(x2 + x1) if x1 6= x2.
4. If not in case 1, then x3 = λ2 + λ + x1 + x2 and y3 = (λ + 1)x3 + ν.

The case p > 2. The opposite of the point P1 is −P1 = (x1,−y1). The addition
law is given by the following formulae with P3 = P1 + P2:

1. P3 = ∞ if x1 = x2 and y1 6= y2,
2. Define λ = (3x2

1 + a)/(2y1) and ν = (−x3
1 + ax1 + 2b)/(2y1) if P1 = P2,

3. Define λ = (y2 − y1)/(x2 − x1) and ν = (y1x2 − y2x1)/(x2 − x1) if x1 6= x2.
4. If not in case 1, then x3 = λ2 − x1 − x2 and y3 = −λx3 − ν.

It is important to know the size of the group E(Fq). This size determines
the security level of the cryptosystems based on it. The following theorem shows
that #E(Fq) is roughly equal to q.

Theorem 1 (Helmut Hasse). If E is an elliptic curve over a finite field Fq,
then

q + 1− 2
√

q ≤ #E(Fq) ≤ q + 1 + 2
√

q.

3 Hyperelliptic Curves

3.1 Definitions

A hyperelliptic curve C of genus g defined over a field Fq of characteristic p is
given by an equation of the form

y2 + h(x)y = f(x) (1)

where h(x) and f(x) are polynomials with coefficients in Fq, with deg h(x) ≤ g
and deg f(x) = 2g + 1. An additional requirement is that C is not a singular
curve. If h(x) = 0 and p > 2 this amounts to the requirement that f(x) is a
squarefree polynomial. In general, the condition is that there are no x and y
in the algebraic closure of Fq that satisfy the equation (1) and the two partial
derivatives 2y + h(x) = 0 and h′(x)y − f ′(x) = 0.

For any extension K of Fq consider the set

C(K) := {(x, y) ∈ K ×K | y2 + h(x)y = f(x)} ∪ {∞}.

It is called the set of K-rational points on C. The point ∞ is called the point
at infinity; the other points are called finite points. As opposed to the case of
elliptic curves, there is no natural way to provide C(K) with a group structure.
Instead, one can introduce a different object related to C, which to each field
extension K of Fq associates a group. This object is called the Jacobian of C.

First we introduce several other groups, consisting of so-called divisors. In
the remainder of this section, we denote the algebraic closure of Fq by L. A
divisor D of the curve C is a formal sum∑

P∈C(L)

cP [P]

with cP ∈ Z such that only finitely many cP are nonzero. The set of all divisors
is denoted by DivC(L). Given two divisors D =

∑
P cP [P] and D′ =

∑
P c′P [P],

we define the sum D + D′ as
∑

P (cP + c′P)[P]. This gives DivC(L) a group
structure.

Next, we define several subgroups of DivC(L). The degree of a divisor D =∑
P cP [P] is deg(D) =

∑
P cP . The group of degree zero divisors is

Div0
C(L) := {D ∈ DivC(L) | deg(D) = 0}.

To a point P ∈ C(L) one can associate a new point Pσ ∈ C(L). If P = ∞,
then Pσ := ∞ by definition. If P = (x, y) ∈ C(L) is a finite point then
Pσ := (xq, yq). From the assumption that the defining equation of C has co-
efficients in Fq, it easily follows that Pσ ∈ C(L). To a divisor D =

∑
P cP [P]

one associates the divisor Dσ =
∑

P cP [Pσ]. This allows us to define the follow-
ing two subgroups of DivC(L). If #K = qr then

DivC(K) := {D ∈ DivC(L) | Dσr

= D},
Div0

C(K) := {D ∈ Div0
C(L) | Dσr

= D}.

Before introducing some more subgroups of DivC(L) we have to say a few
words about rational functions on the curve C. Let K be a field, Fq ⊂ K ⊂ L,
and let F (x, y) ∈ K[x, y] be a polynomial with coefficients in K. At each finite
point P ∈ C(L) one can evaluate F . This yields a function F : C(L)\{∞} → L.
The order of vanishing of F at P , denoted by ordP (F), is an integer that is zero
if and only F (P) 6= 0, otherwise it is positive. A precise definition can be given as
follows: Let P = (x0, y0) and consider the ring L[[x−x0, y−y0]] of formal power
series in x− x0 and y− y0. The polynomial F (x, y) and the defining polynomial
y2 +h(x)y−f(x) of C can be considered as elements of this ring. These elements
generate an ideal. The quotient ring

L[[x− x0, y − y0]]/(F (x, y), y2 + h(x)y − f(x))

is a vector space over L that can be shown to be finite dimensional if F does not
represent the zero function on C(L). By definition, this dimension is ordP (F).
One should think of this as the smallest degree of the terms in a Taylor series
expansion of F .

More generally, let F and G be two polynomials in K[x, y] that do not rep-
resent the zero function on C(L), and consider the rational function F/G. For
finite P , define ordP (F/G) := ordP (F)− ordP (G). For P = ∞, define

ordP (F/G) = −
∑

P∈C(L)\{∞}

ordP (F/G).

This allows one to associate a divisor of degree zero to each rational function
that is not zero on C(L):

div(F/G) :=
∑

P∈C(L)

ordP (F/G)[P].

The divisors that arise as divisors of rational functions with coefficients in L are
called principal divisors. They form a subgroup of Div0

C(L), denoted by PC(L).
For any field K with Fq ⊂ K ⊂ L one defines PC(K) := PC(L) ∩Div0

C(K).
Finally we are able to introduce the group that we need for the cryptographic

application.

Definition 1. For a field K, with Fq ⊂ K ⊂ L, the group of K-rational points
of the Jacobian of C is Div0

C(K)/PC(K). It is denoted by JC(K).

The definition of the groups JC(K) is quite involved. However, it can be
considered as a natural generalisation of the group of points on elliptic curves
as explained in Section 2. Let E be an elliptic curve. Consider the map φ :
E(K) → JE(K) that maps a point P to the class of the degree-zero-divisor
[P]− [∞]. This map can be shown to be a group isomorphism. The fact that it
is a homomorphism can be shown as follows: Let P , Q and R be three points of
E(K) that add up to zero. So they lie on a line, say with equation F (x, y) = 0
for some linear F ∈ K[x, y]. Then

φ(P) + φ(Q) + φ(R) = [P] + [Q] + [R]− 3[∞] ∈ Div0
C(K)

represents the zero element of JC(K) since it is the divisor of the rational func-
tion F .

Just as in the elliptic case, it is important to know how big the group JC(Fq)
is. It has roughly qg elements, as follows from the following theorem.

Theorem 2 (André Weil). If C is a hyperelliptic curve over Fq of genus g,
then

(
√

q − 1)2g ≤ #JC(K) ≤ (
√

q + 1)2g.

3.2 Explicit group law

In order to be able to explicitly compute with elements of the Jacobian JC(K)
we have to choose a way to represent these elements. The standard way of doing
this is by using the so called Mumford representation, which we will explain in
this section.

Definition 2. A divisor D on a hyperelliptic curve C of genus g is called semi-
reduced if it has the form

D =
∑

P∈C(L)\{∞}

cP ([P]− [∞])

such that

(a) For P = (x, y) with 2y + h(x) = 0 one has cP ∈ {0, 1}, and
(b) for P = (x, y) and P ′ = (x,−y − h(x)) with P 6= P ′ one has that either

cP = 0 or cP ′ = 0 (or both).

If moreover
∑

cP ≤ g then D is called reduced.

The interest of reduced divisors lies in the following proposition.

Proposition 1. Every element of JC(K) is represented by exactly one reduced
divisor in Div0

C(K).

A convenient way of storing reduced divisors is via their Mumford represen-
tation.

Definition 3. A divisor D in Mumford representation is a pair [u(x), v(x)] of
polynomials in K[x] such that

(a) u(x) is monic,
(b) u(x) divides f(x)− h(x)v(x)− v(x)2,
(c) deg(v(x)) < deg(u(x)) ≤ g.

The relation between reduced divisors and divisors in Mumford representation is
the following. Consider the factorisation u(x) =

∏d
i=1(x− xi) over the algebraic

closure L of K. Then condition (b) above ensures that the points (xi, v(xi))
lie on the curve. The divisor

∑d
i=1([(xi, v(xi))] − [∞]) is a reduced divisor in

Div0
C(K). This yields a 1–1 correspondence between reduced divisors and divisors

in Mumford representation.
If in Definition 3 one would not require that deg(u(x)) ≤ g then a divisor in

Mumford representation would correspond to a semi-reduced divisor.
Note that the zero element of JC(K) is represented by a reduced divisor

consisting of the empty sum of points, i.e.
∑

P∈C(L)\{∞} cP [P] with all cP equal
to 0. The corresponding Mumford representation is [1, 0].

3.3 Explicit group law

In this subsection we describe the group law on JC(K) explicitly in terms of the
Mumford representation.

Negation.
Input: A divisor D = [u, v].
Output: A divisor D′ representing minus the class of D in JC(K).

1. Set v′ := −v − h.
2. Output D′ := [u, v′].

The most general algorithm for adding divisor classes is Cantor’s algorithm.
This algorithm was developed by Cantor [3] for the case that h = 0 and 2 - q.
The general case was worked out by Koblitz in [27].

Addition (Cantor).
Input: Divisors D1 = [u1, v1] and D2 = [u2, v2].
Output: A divisor D representing the sum D1 + D2 in JC(K).

1. d1 = gcd(u1, u2) = e1u1 + e2u2

2. d = gcd(d1, v1 + v2 + h) = c1d1 + c2(v1 + v2 + h)
3. s1 = c1e1, s2 = c1e2, s3 = c2

4. u = (u1u2)/d2, v = (s1u1v2 + s2u2v1 + s3(v1v2 + f)/d mod u
5. u′ = (f − vh− v2)/u, v′ = (−h− v) mod u′

6. if deg(u′) > g then u = u′, v = v′, goto 5
7. make u′ monic by dividing it by its leading coefficient.
8. Output D = [u′, v′].

As presented here, the addition algorithm is not very efficient, and requires an
extended Euclidean algorithm in steps 1 and 2. However if one fixes the genus g,
one can work out specific algorithms dedicated to the various possible values
of deg(u1) and deg(u2). This way one can formulate algorithms that are much
more efficient, and that avoid high-level operations like Euclidean algorithms.
Efficient formulae for curves of genus 2 are worked out in [28].

4 Security requirements

Suppose G is a Abelian group. Using additive notation, the Discrete Logarithm
Problem (DLP) on G is the following problem: Given two elements R and aR of
G, determine the integer a. Groups for which the DLP is a difficult mathematical
problem and for which the group law can be performed efficiently are possible
candidates for cryptographic applications.

The first type of group used for this purpose was the multiplicative group of
the integers modulo a prime number, or more generally, the multiplicative group
of a finite field. In this case, the DLP appears to be a difficult problem if the
size of the finite field is big enough. However, there is an attack, known as index

calculus that is fairly efficient. It has a running time that is sub-exponential in
log q. In practise, this means that one should take q of at least 1024 bits in order
to have the DLP unfeasible to solve.

In the previous sections we have introduced two types of groups: the group of
points on elliptic curves, and the group of points on the Jacobian of hyperelliptic
curves. The main advantage of these groups, compared to the multiplicative
groups of finite fields, is that under certain conditions, there is no method like
index calculus known to solve the DLP. If the groups are chosen with care, then
the most efficient way to solve the DLP is by means of Pollard’s rho method [36].
For this method, one has to perform roughly

√
#G group operations. This means

that its running time is exponential in log #G, and one can use smaller groups
for achieving the same level of security. With today’s computers it is reasonable
to assume that it is unfeasible to perform 280 operations in a reasonable amount
of time. Under this assumption, it follows that cryptosystems based on elliptic
or hyperelliptic curves are secure if #G ≈ 2160. As a consequence, these systems
are more efficient, and allow shorter key sizes than their multiplicative group-
counterparts.

However, certain elliptic curves or hyperelliptic curves should be avoided since
the DLP on them is relatively easy to solve. Here we list the curves that admit
an attack that is faster than the Pollard rho method. The impact of these attacks
varies from a slight security decrease to a completely insecure cryptosystem.

Index calculus for higher genus curves. There is an index calculus attack
on JC(Fq) that is more efficient than Pollard’s rho method if the genus g of C
is not small enough. Initially, this attack was developed for high genus curves
by Adleman, Demarrais and Huang ([1]). In [11], Gaudry developed a version
of index calculus that could beat Pollard’s rho method if g > 3. More recent
developments even indicate that for g = 3 index calculus attacks lead to a
security decrease, see [46], [13] and [33]. So it is recommended to only use elliptic
curves and hyperelliptic curves of genus 2.

Pohlig-Hellman . If the group order #G of G factors as
∏

rei
i then it is possible

to reduce the DLP in G to a DLP in subgroups of order ri, see [35]. So if r is
the largest prime divisor of #G, then the DLP in G is as hard as the DLP in
the subgroup of order r. For this reason it is important to choose G such that its
order is almost prime, i.e. such that #G/r is small. A typical choice is to require
that this quotient is ≤ 4. Ideally, one would like #G to be prime, but it is not
always possible to achieve that. For example, an elliptic curve, or hyperelliptic
curve of genus 2 over a field F2` that is not supersingular always yields a group
of even order.

MOV and Frey-Rück Attacks. Let r be the largest prime divisor of the
group G. Let k be the smallest positive integer such that r|qk − 1. Then there
is a computable injective group homomorphism from the order-r subgroup of G

to F∗qk , see [9] and [31]. If k is too small, then one can solve the DLP in G by
first mapping it to F∗qk , and use index calculus there. So one should avoid groups
for which k is small. Typically, k > 20 is a safe choice. A random curve is very
unlikely to yield a group for which k is small. There is however a special class of
curves, supersingular curves, for which k is always small.

Anomalous curves. If the largest prime divisor r of #G is equal to the charac-
teristic of Fq, then one can transform the DLP to a DLP in the additive group of
Fq, where it is trivial to solve. See [42] and [38]. So this case should be avoided.

Weil restriction and cover attacks. Let C be an elliptic curve or hyperelliptic
curve of genus g defined over an extension field Fqe . Let G be the group C(Fq) if
C is elliptic, or JC(Fq) if C is hyperelliptic. Then sometimes it is possible to find
a curve X defined over Fq such that there is a homomorphism from G to JX(Fq)
that transfers the DLP from G to JX(Fq). If the genus of such an X is not
much bigger than eg, then index calculus methods on X enables one to compute
the DLP faster than with Pollard’s rho method. The original idea behind this
construction goes back to Frey, and it has been applied successfully to attack
several curves, for the first time in [10]. Although one does not have a precise
criterion to determine which curves are subject to this attack, the number of
curves that are weakened is still growing. At the moment it seems wise to avoid
all curves over small extension degrees, and to only use curves defined over F2`

with ` prime, or over prime fields Fp.

Good Curves. To summarise which curves are safe use, we list the required
properties. Let q be either a prime, or q = 2`, with ` prime. Let C be an elliptic
curve or a hyperelliptic curve of genus 2 over Fq. Let G be the associated group,
i.e. G = C(Fq) or G = JC(Fq). Let r be the largest prime divisor of #G. Then
we require

– r does not divide q,
– If k > 0 id the smallest integer such that r|qk − 1 then k > 20.
– r > 2160.
– #G/r ≤ 4.

In order to check these requirements, one needs to be able to determine #G.
For the case that C is elliptic this can always be done. The first point counting
algorithm that runs in polynomial time in log(q) was found by Schoof [40] in
1985. It was later improved by Elkies and Atkins [41]. The resulting algorithm
is called the SEA algorithm. It has a running time of O((log q)4+ε). In 1999,
Satoh [39] found a faster method that only works for fields of small characteristic.
Improvements by various people finally led to an algorithm of Harley [16] that
runs in time O(`2+ε) for q = p` and fixed p.

For groups G = JC(Fq) associated to genus 2 curves there exists a gener-
alisation of the SEA algorithm to count the number of elements, optimised by

Gaudry and Schost [12]. Although this algorithm is able to compute the number
of points for cryptographically relevant field sizes, it is still quite slow. In order
to quickly obtain a safe genus 2 curve over Fq in the case that q is prime, one
should use the Complex Multiplication method. This method cannot determine
the group size for any given curve, but it constructs special types of curves for
which the group size is known in advance.

When Fq has small characteristic, there are fast p-adic methods to determine
#G for arbitrary hyperelliptic curves. The first such algorithm was found by
Kedlaya [24] in 2000. Since then, various improvements and other algorithms
were found by various people, see [25] for an overview.

For the employment of a cryptographic system, one only has to find one good
curve. So the point counting only needs to be done in the initial set-up of the
system. Once one has a safe curve, it can be used as long as no attack is known
on that specific curve. The curve, and the size of the group are not part of the
keys of the cryptosystem, so even if a number of secret keys are revealed, it
does not jeopardise other secret keys. Therefore, one can use standard curves,
for which the cardinality of G has already been determined.

5 Schemes

We will describe three types of schemes can are based on elliptic and hyperelliptic
curves. These are signature schemes, encryption schemes and key agreement
schemes.

5.1 Key Agreement

The Diffie-Hellman key agreement scheme was the first example of public key
cryptography. Originally, it was formulated for the multiplicative group of num-
bers modulo a prime, but it can easily be adjusted to general groups.

Let G be a group whose elements can be represented in an efficient way, and
in which the group operations can be evaluated efficiently as well. Suppose that
the discrete logarithm problem is a hard problem for the group G. The groups
we have in mind for this paper are of course the group of points on elliptic curves
and Jacobians of hyperelliptic curves that satisfy the security requirements that
were discussed in the previous section.

Diffie-Hellman Key Agreement Scheme. Two parties Alice and Bob wish
to agree on a common secret by communicating over a public channel. An eaves-
dropper Eve, who can listen to all communication between Alice and Bob, should
not be able to derive this common secret.

First, we assume that there are the following publicly known system param-
eters:

– The group G.
– An element R ∈ G of large prime order r.

The steps that Alice performs are the following:

1. Choose a random integer a ∈ [1, r − 1].
2. Compute P = aR in the group G, and send it to Bob.
3. Receive the element Q ∈ G from Bob.
4. Compute S = aQ as common secret.

The steps that Bob performs are:

1. Choose a random integer b ∈ [1, r − 1].
2. Compute Q = bR in the group G, and send it to Alice.
3. Receive the element P ∈ G from Alice.
4. Compute S = bP as common secret.

Note that both Alice and Bob have computed the same values S, as

S = a(bR) = (ab)R = b(aR).

It is not known how Eve, knowing only P , Q and R, can compute S within
reasonable time. If she could solve the discrete logarithm problem in G, then
she could compute a from P and R, and then compute S = aQ. The problem of
computing S from P , Q and R is known as the Diffie-Hellman problem.

The pair (a, P) is called Alice’s key pair consisting of her private key a and
public key P . Likewise, Bob’s key pair is (b, Q), with private key b and public
key Q.

It is important to realise that the scheme that is described here should be
used with additional forms of authentication of the public keys. Otherwise an
eavesdropper Eve who is able to intercept and change information that is sent
is able to agree on keys separately with Alice and Bob. This is known as a man
in the middle attack. Although we will not go into details, we just mention one
method of adding this additional authentication. In the MQV protocol, by Law,
Menezes, Qu, Vanstone and Solinas, [29], Alice and Bob both have long term
key pairs, of which the public keys are assumed to be authenticated. During
the key agreement, they create ephemeral key pairs, and use both the long
term and ephemeral keys to deduce the common secret. A ‘man’ in the middle
can only intercept and change the ephemeral keys. Although this will hinder
communication between Alice and Bob, she will not be able to let Alice and Bob
believe that they share a common secret if they only both share a secret with
Eve.

5.2 Encryption

The ElGamal Encryption Scheme. The first encryption scheme that was
based on the discrete logarithm problem was the ElGamal encryption scheme.
We will describe it here, again for a general group G.

Suppose that one has the following publicly known system parameters:

– The group G.

– An element R ∈ G of large prime order.

Suppose Bob has a private key b ∈ [1, r − 1] and public key Q = bR. Alice
wants to send Bob a message M , which we assume to be encoded as an element
of the group G. She wants to encrypt M using Bob’s public key Q, such that
only Bob can decrypt the message again, using his secret key b.

To encrypt M , Alice does the following:

1. Obtain Bob’s public key Q.
2. Choose a secret number a ∈ [1, r − 1].
3. Compute C1 = aR.
4. Compute C2 = M + aQ.
5. Send (C1, C2) to Bob.

Bob can decrypt the encrypted message by doing the following:

1. Obtain the encrypted message (C1, C2) from Alice.
2. Compute M = C2 − bC1.

Note that the first part of ElGamal can be considered as a Diffie-Hellman
key agreement scheme using Bob’s key and an ephemeral key created by Alice.
In step 4, the message M is encrypted by adding the common secret aQ derived
from this Diffie-Hellman scheme. Instead of encrypting M by adding aQ, one
could also use use a symmetric encryption scheme, using a key derived from aQ.
This idea lies at the basis of the next encryption scheme we describe.

The (Hyper-)Elliptic Curve Integrated Encryption Scheme. This en-
cryption scheme uses the Diffie-Hellman scheme to derive a secret key, and com-
bines it with tools from symmetric key cryptography to provide better provable
security. It can be proved to be secure against adaptive chosen ciphertext attacks.

We again formulate the scheme for any group G and R ∈ G with large prime
order r. The symmetric tools that are used in the scheme are:

– A key derivation function. This is a function KD(P) that takes as input a
key P , in our case this is an element of G, and outputs keying data of any
required length.

– A symmetric encryption scheme consisting of a function Enck that encrypts
the message M to a ciphertext C = Enck(M) using a key k, and a function
Deck that decrypts C to the message M = Deck(C).

– A Message Authentication Code MACk. One can think of this as a keyed
hash function. It is a function that takes as input a ciphertext C and a
key k. It computes a string MACk(C) that satisfies the following property:
Given a number of pairs (Ci,MACk(Ci)), it is computationally infeasible to
determine a pair (C,MACk(C)), with C different from the Ci if one does
not know k.

1. Obtain Bob’s public key Q.
2. Choose a secret number a ∈ [1, r − 1].

3. Compute C1 = aR.
4. Compute C2 = aQ.
5. Compute two keys k1 and k2 from KD(C2), i.e. (k1||k2) = KD(C2).
6. Encrypt the message, C = Enck1(M).
7. Compute mac = MACK2(C).
8. Send (C1, C,mac).

To decrypt, Bob does the following:

1. Obtain the encrypted message (C1, C, mac) from Alice.
2. Compute C2 = bC1.
3. Compute the keys k1 and k2 from KD(C2).
4. Check whether mac equals MACk2(C). If not, reject the message and stop.
5. Decrypt the message M = Deck1(C).

5.3 Signatures

The Digital Signature Algorithm (DSA) is the basis of the digital NIST signa-
ture standard, described in [8]. This algorithm can be adapted for elliptic and
hyperelliptic curves. More generally, one can use it for any group G where the
DLP is difficult, provided that one has a computable map G → Z with large
enough image, and few inverses for each element in the image. The elliptic curve
version, known as ECDSA, can be found in various standards. The hyperelliptic
curve version seems not to have appeared a lot in existing literature.

We describe the scheme for a general group with a map φ : G → Z as
described above. In the elliptic curve case, one takes for φ the map that associates
to a point (x, y) the integer whose binary expansion is the bit string representing
the x-coordinate x. If we are working with an elliptic curve E over a prime field
Fp, this is just the integer φ(x) ∈ [0, p − 1] that reduces to x modulo p. If E is
defined over F2` , and x is represented by a polynomial

∑`−1
i=0 ciX

i ∈ F2[X], then
φ(x) =

∑`−1
i=0 c̃i2i, where c̃i ∈ {0, 1} ⊂ Z such that c̃i ≡ ci mod 2.

In the hyperelliptic curve case, one can take for φ the following map. Let D =
[u(x), v(x)] be a divisor in Mumford representation. Let u(x) =

∑deg(u(x))
i=0 uix

i

with ui ∈ Fq. Define φ(D) to be the integer whose binary expansion is the
concatenation of the bit strings representing the ui, i ∈ [0,deg(u(x)) − 1], as
explained above.

Assume the following system parameters are publicly known:

– A group G and a map φ → Z as above,
– an element R ∈ G with large prime order r,
– a hash function H that maps messages m to 160-bit integers.

To create a key pair, Alice chooses a secret integer a ∈ Z, and computes
P = aR. The number a is Alice’s secret key, and P is her public key.

If Alice wants to sign a message m, she has to do the following:

1. Choose a random integer k ∈ [1, r − 1], and compute Q = kR.

2. Compute s ≡ k−1(H(m) + aφ(Q)) mod r.

The signature is
(m,Q, s).

To verify this signature, a verifier Bob has to do the following:

1. Compute v1 ≡ s−1H(m) mod r and v2 ≡ s−1φ(Q) mod r.
2. Compute V = v1R + v2P .
3. Accept the signature if V = Q. Otherwise, reject it.

6 Description of the NTRU Encryption Scheme

The NTRU cryptosystem was introduced at the rump session of Crypto’96 [22]
and was later published in the proceedings of the ANTS-III conference [17].
NTRU is a ring based public key cryptosystem and is therefore quite different
from the group based cryptosystems whose security relies on the integer factori-
sation problem or the discrete logarithm problem. This extra structure can be
exploited to obtain a very fast cryptosystem: to encrypt/decrypt a message block
of length N , NTRU only requires O(N2) time, whereas the group based schemes
require O(N3) time. Furthermore, NTRU also has a very short key size of O(N)
and very low memory requirements, which makes it ideal for constrained devices
such as smart cards.

6.1 Definitions and Notation

Denote by Z the ring of integers and by P the quotient ring of polynomials
Z[X]/(XN − 1). The ring P can be identified in a natural way with the set ZN

by

e = (e0, e1, . . . , eN−1) =
N−1∑
i=0

eiX
i . (2)

Addition of two elements f, g ∈ P is defined as pairwise addition of coefficients of
the same degree and multiplication is defined by the cyclic convolution product,
denoted by ? . Let h = f ? g, then the k-th coefficient hk of h is given by

hk =
∑

i+j≡k mod N

fi · gj (0 ≤ k < N) . (3)

The NTRU cryptosystem works with two relatively prime moduli p, q ∈ P.
The modulus q is typically chosen to be the 2l with l = blog2(N)c and p is either
3 or the polynomial 2+X. In the remainder of this section, we will assume that
p = 2 + X, since p = 3 is no longer recommended by the NTRU standard [4].

Denote by Zq the ring of integers modulo q, which will be represented by
the symmetric interval [−q/2, q/2). Let Pq = Zq[X]/(XN − 1) be the ring of
polynomials obtained from P by reduction modulo q and πq : P → Pq the
corresponding homomorphism. Note that if f, g ∈ Pq have small coefficients

in absolute value, the product f ? g will also have fairly small coefficients. An
element f ∈ P is called invertible modulo q, if fq = πq(f) is invertible in Pq,
i.e. there exists a polynomial gq ∈ Pq such that fq ? gq = 1 in Pq. The inverse
polynomial gq will be denoted by f−1

q .
In a similar way, we can define the ring Pp = Z[X]/(XN − 1, p), obtained

from P by reduction modulo p and denote with πp : P → Pp the corresponding
homomorphism. For p = 2+X, this ring can be identified with Z2[X]/(XN −1),
by replacing every multiple of 2 by −X. To illustrate this procedure, consider
the following example:

X4 + 3X + 4 ≡ X4 + (−X + 1)X + 2(−X) (mod 2 + X)

≡ X4 −X2 −X (mod 2 + X)

≡ X4 + (1− 2)X2 + (1− 2)X (mod 2 + X)

≡ X4 + X3 + 2X2 + X (mod 2 + X)

≡ X4 + X3 + (−X)X2 + X (mod 2 + X)

≡ X4 + X (mod 2 + X)

6.2 The NTRU Primitive

The NTRU encryption primitive uses the following parameter set S:

– a prime N ∈ N.
– a modulus q ∈ N; typically q = 2l with l = blog2(N)c.
– an element p ∈ Z[X] of degree at most one, with small coefficients and

invertible modulo q; typically p = 2 + X.
– three integers df , dg, dr ∈ N. The three integers df , dg, dr determine three

sets of polynomials Lf ,Lg,Lr. Let Bk denote the set of binary polynomials
in P with exactly k ones, then the most popular construction is as follows:

Lf = {1 + p ? f1 : f1 ∈ Bdf
}, Lg = Bdg

, Lr = Bdr
. (4)

Recommended parameter sets can be found in the NTRU standard [4].
As all public key encryption schemes, the basic NTRU encryption primitive

consists of three algorithms: key generation, encryption and decryption.

Key Generation The generation of a key pair proceeds as follows:

1. Generate random polynomials f ∈ Lf and g ∈ Lg, such that f is invertible
modulo q and modulo p.

2. Compute f−1
q ∈ Pq and f−1

p ∈ Pp.
3. Compute the polynomial h ∈ Pq as

h ≡ p ? g ? f−1
q mod q . (5)

4. The public key consists of the set S and the polynomial h.
5. The private key consists of the set S and the polynomials h, f and f−1

p .

Note that for the choice of f given in Equation (4), we have f−1
p = 1, so we do

not need to compute this value.

Encryption The encryption function of the basic NTRU primitive is probabilis-
tic in that encrypting the same message twice will result in different ciphertexts.
The message space of NTRU is the ring Pp, so we assume that the plaintext m
is given as an element of Pp. Encryption then consists of the following steps:

1. Generate random polynomial r ∈ Lr.
2. Compute the ciphertext e = h ? r + m mod q as an element of Pq.

Decryption Given a ciphertext e ∈ Pq, the private key f and its inverse f−1
p

modulo p, decryption proceeds as follows:

1. In the first step we need to recover p ? r ? g + m ? f as an element of P and
not just as an element in Pq. To this end we compute

a ≡ e ? f (mod q)

≡ r ? p ? f−1
q ? g ? f + m ? f (mod q)

≡ p ? r ? g + m ? f (mod q) .

(6)

2. Assuming that a = p ? r ? g + m ? f in the ring P, we can recover m by
working modulo p as

a ? f−1
p ≡ m ? f ? f−1

p ≡ m (mod p) . (7)

For the chosen parameter set, we have f−1
p = 1 and thus this simplifies to a ≡ m

(mod p).
Note that the plaintext space is Pp, whereas the ciphertext space is Pq;

encrypting a message block of l log2 p bits, thus results in a ciphertext of l log2 q
bits. This phenomenon is called message expansion and for the NTRU primitive
the expansion factor simply is logp q, which is around 7 or 8 for typical NTRU
parameters.

The above description is the textbook version of the NTRU primitive and
as it stands should not be used in practise, since like textbook RSA [37] or
ElGamal [7] it is insecure. To turn this primitive into a provably secure scheme,
a padding scheme like NAEP [20] should be used.

6.3 Analysis of the Decryption Step

The correctness of the NTRU decryption relies on the fact that a is equal to
p ? r ? g + m ? f as an element of P and not just as an element of Pq. Suppose
this is not the case, then there exists a non-zero ε ∈ P such that

a = (p ? r ? g + m ? f) + q · ε . (8)

Since p and q are relatively prime, the error term q · ε will be non-zero modulo p
with very high probability. So instead of recovering m, we would recover

m + q · ε ? f−1
p (mod p) . (9)

Furthermore, note that the sender cannot test if the decryption will fail or not,
since the private key f is required.

To devise a criterion for correct decryption we introduce the following norms
on P. For f ∈ P, define the width |f |∞ of f as

|f |∞ = max
0≤i<N

fi − min
0≤i<N

fi .

Note that this can be interpreted as some sort of L∞ norm on P. Similarly, we
introduce the centred L2 norm on P by

|f |2 =

(
N−1∑
i=0

(fi − f̄)2
)1/2

, with f̄ =
1
N

N−1∑
i=0

fi .

Note that the centred L2 norm | · |2 is related to the standard L2 norm || · || by
the following relation: |f |22 = ||f ||2 −Nf̄2.

The following proposition due to Don Coppersmith, indicates that decryption
will succeed with very high probability.

Proposition 1 For any ε > 0 the are constants γ1, γ2 > 0 depending on ε and
N , such that for randomly chosen polynomials f, g ∈ P, the probability is greater
than 1− ε that they satisfy

γ1 |f |2 |g|2 ≤ |f ? g|∞ ≤ γ2 |f |2 |g|2.

In order to recover the correct message m after decryption, it is necessary
that |p? r ? g +m?f |∞ ≤ q. This turns out to be almost always true if one takes

|p ? r ? g|∞ ≤ q/4 and |f ? m|∞ ≤ q/4 . (10)

Following Proposition 1, the authors of NTRU suggest to take

|f |2|m|2 '
q

4γ2
and |r|2|g|2 '

q

4γ2|p|2
,

for a γ2 corresponding to a small enough value for ε.
Let b = p?r?g+m?f be an element of P, i.e. the coefficients are not reduced

modulo q, then we know that decryption fails exactly if and only if b 6= a with
a ≡ p ? r ? g + m ? f (mod q). Silverman [45] defines two types of decryption
failures:

– Gap failure occurs if |b|∞ ≥ q.
– Wrap failure occurs if min0≤i<N bi ≤ −q/2 or max0≤i<N bi > q/2.

Clearly, if a gap failure occurs, we can never recover the correct value of m.
However, if only a wrap failure occurs, the correct value of b can be determined
by changing the range into which the coefficients are reduced to [A,A + q),
for some value A 6= −q/2. To calculate A, note that (f ? g)(1) = f(1) · g(1),
with f(1) and g(1) the sum of the coefficients of f and g respectively. Note

that the average value of a coefficient of b = p ? r ? g + m ? f is given by
(p(1) · r(1) · g(1) + m(1) · f(1))/N . Since the decryptor knows h(1) from the
public key and r(1) from the definition of Lr, he can compute I ≡ m(1) ≡
e(1)− r(1) ·h(1) mod q. Assuming m(1) lies in the range [N/2− q/2, N/2+ q/2],
we can calculate the average value of a coefficient of b and take

A =
⌊

p(1) · r(1) · g(1) + f(1) · I
N

⌉
− q

2
. (11)

Having computed A, the coefficients of a are reduced in the interval [A,A+q). If
decryption still fails, then one can try to decrypt using the values A±1, A±2, . . .
until successful. Since wrap failures are more common than gap failures, using
the range [A,A + q) is a partial solution to decryption failures. However, if the
value of A given in Equation (11) leads to a decryption failure, the wrap failure
could still be detected using a timing analysis. The existence of validly created
ciphertexts, which cause a decryption failure is a feature unique to NTRU since in
a classical public key cryptosystem, the decryption of a validly created ciphertext
never fails. This property will turn out to be crucial in the security analysis of
NTRU.

7 Security Analysis

In this section, we will highlight two types of attacks on the NTRU cryptosys-
tem: lattice attacks and chosen ciphertext attacks. An exhaustive list of papers
analysing the security of NTRU can be found in [34].

7.1 Lattice attacks

Shortly after NTRU was introduced to the cryptographic community, Copper-
smith and Shamir [5] devised a lattice attack that recovers the private key for
small N . Recall that the private keys f, g and the public key are related by

f ? h ≡ p ? g (mod q) (12)

and that f and g have very small L2 norm.
Consider the following subset of pairs of polynomials

L = {(u, v) ∈ P × P | u ? H ≡ v (mod q)} ,

with H = p−1 ? h (mod q), then it is clear that (f, g) ∈ L. After identification
of P with ZN , we obtain a subset of pairs of vectors in ZN × ZN . Clearly, if
(u1, v1) ∈ L and (u2, v2) ∈ L, then any Z-linear combination of these pairs of
vectors will also be in L. This shows that L is in fact a subgroup of Z2N and
thus, by definition, a lattice in R2N .

Any lattice admits a basis, i.e. a set B of d linearly independent vectors such
that every element of the lattice L can be expressed as a Z-linear combination

of the elements in B. The integer d is called the dimension of the lattice and
does not depend on the chosen basis. Let U be an integral d × d matrix with
determinant ±1, then UB also is a basis for L and all bases can be obtained in
this way. The volume v(L) of a lattice L is the absolute value of the determinant
of any lattice basis. Since all bases are related by a unimodular transformation,
the volume of a lattice does not depend on the basis chosen.

Let IN denote the N × N identity matrix and let MH denote the circulant
matrix whose columns are circularly shifted versions of H, then it is not difficult
to see that the columns of the matrix

M =
(

IN 0
MH qIN

)
(13)

are a basis of the lattice L. To see this, let (u, v) ∈ L, then there exists a vector
w ∈ ZN such that u ? H = v + qw. Multiplying the matrix M by the transpose
of (u,−w) finally results in (u, v) and also proves the claim.

Since the vector (f, g) is in the lattice L, we conclude that (f, g) is an integer
linear combination of the columns of M . Furthermore, since the polynomials f
and g have very small L2 norm, the vector (f, g) is much shorter than a random
vector in the lattice L and is in fact likely to be the shortest vector in L.

If an attacker could solve the shortest vector problem (SVP), i.e. given a basis
of a lattice L, find a non-zero vector z such that ||z|| is as small as possible, then
the attacker would be able to recover the secret key (f, g). However, Ajtai [2]
proved that the SVP is NP-hard under randomised reductions, which implies
that an efficient algorithm to solve the SVP is very unlikely.

On the other hand, the LLL-algorithm [30] runs in polynomial time in the
dimension d of the lattice, but is only guaranteed to return a vector b with
||b|| ≤ 2(d−1)/4v(L)1/d, whereas the shortest vector z satisfies ||z|| ≤

√
dv(L)1/d,

i.e. LLL can approximate the shortest vector up to some exponential factor in d.
However, it should be stressed that in practise the LLL-algorithm performs much
better than this theoretical bound. Experiments [18] show that N ' 120 can be
broken using lattice based techniques and Table 1 contains the extrapolation of
these experiments:

Table 1. Bit security of NTRU for various N .

N Bit security

167 57
251 88
500 178
1000 360

The attack as described above is in fact a simplified version: in practise one
would apply the LLL-algorithm to the lattice Lλ with basis(

λIN 0
MH qIN

)
.

Note that (f, g) is no longer in Lλ, but (λf, g) is. The parameter λ is a balancing
constant used to optimise the performance of the LLL algorithm and is normally
chosen to make λf and g have the same length, i.e. λ = |g|2/|f |2.

7.2 Chosen ciphertext attacks

In a chosen ciphertext attack, the adversary has access to a decryption oracle and
can choose many ciphertexts to be decrypted with an unknown key. A chosen
ciphertext attack can be either non-adaptive (CCA1) or adaptive (CCA2); dur-
ing the latter attack, the adversary uses the previous results to select subsequent
ciphertexts. Most textbook descriptions of cryptosystems are not secure against
chosen ciphertext attacks and the same holds for NTRU. The standard defence
against CCA2 is the use of an appropriate padding scheme which prevents the
attacker from constructing valid ciphertexts without knowing the corresponding
plaintext.

However, the existence of decryption failures of validly created ciphertexts
distinguishes NTRU from a classical public key system, since this assumes that
decryption of a validly created ciphertext never fails. An immediate consequence
of this feature is that there exists two types of chosen ciphertexts on NTRU:
the first type uses decryptions of invalid ciphertexts, whereas the second relies
on valid ciphertexts that cause a decryption failure. Furthermore, in the latter
attack it suffices to know whether the ciphertext caused a decryption failure or
not; the attacker does not require to see the decrypted plaintext. This type of
attack is also known as a decipherable ciphertext attack. In this section, we will
give an example of both types of attack.

CCA based on invalid ciphertexts In this section, we present a very simple
attack on a non-padded version of NTRU using the parameter set described in
Section 6.2.

Given a decryption oracle, simply feed in the ciphertext e ≡ p−1
q ?h (mod q).

Since h ≡ p ? g ? f−1
q (mod q), the decryption oracle first computes

a ≡ e ? f ≡ (p−1
q ? h) ? f ≡ g (mod q) .

Since for the chosen parameter set, g is a binary polynomial a will simply be g.
Furthermore, the reduction modulo p is the identity since the polynomial g is
already a binary polynomial. As a result, the decryption oracle simply returns g.

A somewhat more elaborate version of this attack was pointed out to the
authors by J. Silverman. In this attack the oracle cannot recognise the decrypted
text as being special.

Choose a completely random m and ask the oracle to decrypt e ≡ p−1
q ?h+m

(mod q), which returns g + f ? m (mod p). Then repeat this for e ≡ p−1
q ? h−m

to obtain g − f ? m (mod p). Adding both results and dividing by 2 modulo p
also gives g.

More complicated chosen ciphertext attacks are given by Silverman [44] and
Jaulmes and Joux [23].

CCA based on decryption failures The attack described in this section is
based on the work of Howgrave-Graham, Nguyen, Pointcheval, Proos, Silverman,
Singer and Whyte [19].

Recall that a non-recoverable decryption failure occurs when the width of
the polynomial

b = p ? r ? g + m ? f ∈ P

is greater than q, i.e. |b|∞ ≥ q. Note however that the polynomials r, g,m, f are
polynomials of very small width and by Proposition 1 it is very unlikely that
either r ? g or m ? f has width greater than q/2. It is therefore quite natural to
ask the question if r is somehow related to g and m to f .

Given a polynomial c(X) ∈ P, we can consider the reversal

c̄(X) = c(X−1) ∈ P ,

i.e. if c(X) =
∑N

i=0 ciX
i, then c̄(X) =

∑N
i=0 cN−iX

i, where we define cN = c0.
The autocorrelation polynomial ĉ is then defined as ĉ(X) = c(X) ? c̄(X) and by
definition we have

ĉk =
N−1∑
i=0

ci c(i+k) mod N .

One of the most important properties of the autocorrelation polynomial is that
its constant coefficient ĉ0 is maximal. Indeed, by definition we have

ĉ0 =
N−1∑
i=0

c2
i = ||c||2

whereas the other coefficients are only about ||c|| in size. As a consequence, the
autocorrelation polynomial ĉ if of exceptionally great width compared to the
polynomial c itself.

Applying this to the polynomial b, we can assume that r is correlated signif-
icantly to ḡ and m is correlated significantly to f̄ , which means that r is almost
equal to Xi ? ḡ for some i and m is almost equal to Xj ? f̄ for some j.

The chosen ciphertext attack then proceeds as follows: the attacker encrypts
random messages m with random nonce r until (m, r) causes a decryption failure.
Note that the attacker only needs to know whether or not the decryption failed.
For each such tuple (m, r), the attacker can assume that r is almost equal to
Xi ? ḡ for some i and m is almost equal to Xj ? f̄ for some j. Unfortunately, the

attacker does not know the integer i nor j, but this does not pose a real problem
since

X̂i ? ḡ = ĝ and X̂i ? f̄ = f̂ .

In conclusion, the attacker computes the average of many tuples (m̂, r̂) to obtain
(ĝ, f̂). Given f̂ and ĝ, the polynomials f and g can be easily recovered using an
algorithm due to Gentry and Szydlo [15].

Clearly, the above attack only works when decryption failures are sufficiently
frequent. Therefore, the parameter set S should be chosen such that the prob-
ability of decryption failures is (preferably) smaller than 2−80. Unfortunately,
since this probability is so small, it is also very hard to determine for a given
parameter set.

Remark Two other attacks worth mentioning are: a meet-in-the-middle attack
on the NTRU private key [21], originally due to Odlyzko, which has a complexity
roughly 1√

N

(
N/2
df /2

)
and an attack by Gentry [14], which works for composite N

by reducing low-dimensional lattices to recover a folded version of the private
key.

References

1. L. M. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential algorithm
for discrete logarithms over the rational subgroup of the Jacobians of large genus
hyperelliptic curves over finite fields. In Algorithmic number theory — ANTS I,
volume 877 of Lecture Notes in Comput. Sci., pages 28–40. Springer, Berlin, 1994.

2. M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions.
In STOC, pages 10–19, 1998.

3. D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp.,
48(177):95–101, 1987.

4. Consortium for Efficient Embedded Security. Efficient Embedded Security Stan-
dards #1: Implementation aspects of NTRUEncrypt and NTRUSign, version 2.0
edition, 2003.

5. D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In Advances in
cryptology—EUROCRYPT ’97, volume 1233 of Lecture Notes in Comput. Sci.,
pages 52–61. Springer, Berlin, 1997.

6. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, IT-22(6):644–654, 1976.

7. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory, 31(4):469–472, 1985.

8. FIPS 186-2. Digital Signature Standard. Federal Information Processing Standards
Publication 186-2, February 2000.

9. G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp., 62(206):865–874,
1994.

10. P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptology, 15(1):19–46, 2002.

11. P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic
curves. In Advances in cryptology—EUROCRYPT 2000, volume 1807 of Lecture
Notes in Comput. Sci., pages 19–34. Springer, Berlin, 2000.

12. P. Gaudry and É. Schost. Construction of secure random curves of genus 2 over
prime fields. In Christian Cachin and Jan Camenisch, editors, Advances in Cryp-
tology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 239–256. Springer, 2004.

13. P. Gaudry and E. Thomé. A double large prime variation for small genus hyperel-
liptic index calculus. Cryptology ePrint Archive, Report 2004/153, 2004. Available
at http://eprint.iacr.org/.

14. C. Gentry. Key recovery and message attacks on NTRU-composite. In Advances in
cryptology—EUROCRYPT 2001, volume 2045 of Lecture Notes in Comput. Sci.,
pages 182–194. Springer, Berlin, 2001.

15. C. Gentry and M. Szydlo. Cryptanalysis of the revised NTRU signature scheme.
In Advances in cryptology—EUROCRYPT 2002, volume 2332 of Lecture Notes in
Comput. Sci., pages 299–320. Springer, Berlin, 2002.

16. R. Harley. Asymptotically optimal p-adic point-counting. e-mail to NMBRTHRY
list, December 2002.

17. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: a ring-based public key
cryptosystem. In Algorithmic number theory – ANTS III, volume 1423 of Lecture
Notes in Comput. Sci., pages 267–288. Springer, Berlin, 1998.

18. J. Hoffstein, J. H. Silverman, and W. Whyte. Estimating breaking times for ntru
lattices. Technical Report #012, Version 2, 2003.

19. N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman,
A. Singer, and W. Whyte. The impact of decryption failures on the security of
NTRU encryption. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 226–246. Springer, 2003.

20. N. Howgrave-Graham, J. H. Silverman, A. Singer, and W. Whyte. NAEP: provable
security in the presence of decryption failures. Cryptology ePrint Archive, Report
2003/172, 2003. http://eprint.iacr.org/.

21. N. Howgrave-Graham, J. H. Silverman, and W. Whyte. A Meet-In-The-Middle
Attack on an NTRU Private Key. Technical Report #004, Version 2, 2003.

22. J. Pipher J. Hoffstein and J.H. Silverman. NTRU: a new high speed public key
cryptosystem. Manuscript, Rump Session Crypto’96, 1996.

23. É. Jaulmes and A. Joux. A chosen-ciphertext attack against NTRU. In Advances in
cryptology—CRYPTO 2000, volume 1880 of Lecture Notes in Comput. Sci., pages
20–35. Springer, Berlin, 2000.

24. K. S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer
cohomology. J. Ramanujan Math. Soc., 16(4):323–338, 2001.

25. K. S. Kedlaya. Computing zeta functions via p-adic cohomology. In Duncan A.
Buell, editor, Algorithmic Number Theory — ANTS-VI, volume 3076 of Lecture
Notes in Computer Science, pages 1–17. Springer, 2004.

26. N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987.
27. N. Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3):139–150, 1989.
28. T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Preprint, 2003.

Available at http://www.ruhr-uni-bochum.de/itsc/tanja/preprints/expl sub.pdf.
29. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for

authenticated key agreement. Des. Codes Cryptogr., 28(2):119–134, 2003.
30. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with

rational coefficients. Math. Ann., 261(4):515–534, 1982.

31. A. J. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Inform. Theory, 39(5):1639–1646, 1993.

32. V. S. Miller. Use of elliptic curves in cryptography. In Advances in cryptology—
CRYPTO ’85, volume 218 of Lecture Notes in Comput. Sci., pages 417–426.
Springer, Berlin, 1986.

33. K. Nagao. Improvement of thleriault algorithm of index calculus for jacobian of
hyperelliptic curves of small genus. Cryptology ePrint Archive, Report 2004/161,
2004. Available at http://eprint.iacr.org/.

34. NTRU Cryptosystems. Peer Review and Independent Scrutiny of
the NTRUEncrypt Public Key Cryptosystem, 2004. Available at
http://www.ntru.com/cryptolab/pdf/review.pdf.

35. S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Information Theory,
IT-24(1):106–110, 1978.

36. J. M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp.,
32(143):918–924, 1978.

37. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Comm. ACM, 21(2):120–126, 1978.

38. H.-G. Rück. On the discrete logarithm in the divisor class group of curves. Math.
Comp., 68(226):805–806, 1999.

39. T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its
point counting. J. Ramanujan Math. Soc., 15(4):247–270, 2000.

40. R. Schoof. Elliptic curves over finite fields and the computation of square roots
mod p. Math. Comp., 44(170):483–494, 1985.

41. R. Schoof. Counting points on elliptic curves over finite fields. J. Théor. Nombres
Bordeaux, 7(1):219–254, 1995. Les Dix-huitièmes Journées Arithmétiques (Bor-
deaux, 1993).

42. I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of
an elliptic curve in characteristic p. Math. Comp., 67(221):353–356, 1998.

43. V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances
in cryptology—EUROCRYPT ’97, volume 1233 of Lecture Notes in Comput. Sci.,
pages 256–266. Springer, Berlin, 1997.

44. J. H. Silverman. Plaintext awareness and the NTRU PKCS, version 2. Technical
Report #007, 2000.

45. J. H. Silverman. Wraps, gaps and lattice constants. Technical Report #011,
Version 2, 2001.

46. N. Thériault. Index calculus attack for hyperelliptic curves of small genus. In
Advances in Cryptology - ASIACRYPT 2003, volume 2894 of Lecture Notes in
Comput. Sci., pages 75–92. Springer, Berlin, 2003.

