# Number Theoretic Functions CS201A Project 

Deepanshu Bansal Mukul Chaturvedi

Department of Computer Science IIT KANPUR

Presentaion, $5^{\text {th }}$ Nov, 2016

## Number Theoretic Functions

We will be talking about the following topics in brief.

- $\tau(n)$, the number of positive divisors of $n$.
- $\sigma(n)$, the sum of positive divisors of n .
- Multiplicative Functions.
- Mobius inversion formula.
- $\phi(n)$, the number of positive integers not exceeding n that are relatively prime to n .
- $\tau(n)$, the number of positive divisors of $n$.
- $\mathrm{n}=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ is prime factorization of $\mathrm{n}>1$, then $\tau(n)=\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)$.
- $\mathrm{d}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$ are divisors of n , where $0 \leq \alpha_{i} \leq \mathrm{k}_{i}$.
- There are $k_{1}+1$ choices for $\alpha_{1} ; k_{2}+1$ choices for $\alpha_{2} \ldots ; k_{r}+1$ choices for $\alpha_{r}$; hence there are $\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)$ number of divisors of $n$.
- $\sigma(n)$, the sum of positive divisors of n .
- $\mathrm{n}=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ is prime factorization of $\mathrm{n} \geq 2$, then $\tau(n)=\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)$.
- $\sigma(n)=\frac{p_{1}^{k_{1}+1}-1}{p_{1}-1} \frac{p_{2}^{k_{2}+1}-1}{p_{2}-1} \ldots \frac{p_{r}^{k_{r}+1}-1}{p_{r}-1}$.
- Consider the product
$\left(1+p_{1}^{1}+p_{1}^{2} \ldots p_{1}^{k_{1}}\right)\left(1+p_{2}^{1}+p_{2}^{2} \ldots p_{2}^{k_{2}}\right) \ldots\left(1+p_{r}^{1}+p_{r}^{2} \ldots p_{r}^{k_{r}}\right)$.
- Every term in the expansion of above product appears once and only once in $\sigma(n)$, so $\sigma(n)$ is equal to above product.
- By sum of finite geometrical series, we get $1+\mathrm{k}_{1}^{1}+k_{1}^{2} \ldots+k_{1}^{r}=\frac{p_{1}^{k_{1}+1}-1}{p_{1}-1}$.
- It follows that
$\sigma(n)=\frac{p_{1}^{k_{1}+1}-1}{p_{1}-1} \frac{p_{2}^{k_{2}+1}-1}{p_{2}-1} \ldots \frac{p_{r}^{k_{r}+1}-1}{p_{r}-1}$.


## Observation

One interesting property of $\tau(n)$ is
$\prod_{d \mid n} d=n^{\tau(n) / 2}$.

- Let d denote arbitrary divisor of $n$, such that $n=d d$ '.
- We have $\tau(n)$ such equations and multiplying all of them we get $n^{\tau(n)}=\prod_{d \mid n} d \prod_{d^{\prime} \mid n} d^{\prime}$.
- As $d$ runs over all divisors of $n$ so does $d^{\prime}$, therefore $\prod_{d \mid n} d=\prod_{d^{\prime} \mid n} d^{\prime}$.
- Thus, $n^{\tau(n)}=\left(\prod_{d \mid n} d\right)^{2}$, or $\prod_{d \mid n} d=n^{\tau(n) / 2}$.


## Multiplicative Functions

Number theoretic functions are called multiplicative if $\mathrm{f}(\mathrm{mn})=\mathrm{f}(\mathrm{m}) \mathrm{f}(\mathrm{n})$ where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$.

- Claim: $\tau(n)$ and $\sigma(n)$ are both multiplicative functions.
- Proof:

If f is a multiplicative function which does not vanish identicaly, then there exist n such that $\mathrm{f}(\mathrm{n}) \neq 0$.But, $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n} .1)=\mathrm{f}(\mathrm{n}) \mathrm{f}(1)$.
Canceling $f(n)$ from both sides we get $f(1)=1$.

- Let $\mathrm{m}, \mathrm{n}$ are relatively prime integers. If $m=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ and $\mathrm{n}=q_{1}^{j_{1}} q_{2}^{j_{2}} \ldots q_{s}^{j_{s}}$ and no $p_{i}$ can occur among $q_{j}$.


## Multiplicative Functions

- Now $m n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}} q_{1}^{j_{1}} q_{2}^{j_{2}} \ldots q_{s}^{j_{s}}$.
- $\tau(m n)=\left[\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)\right]\left[\left(q_{1}+1\right)\left(q_{2}+1\right) \ldots\left(q_{s}+1\right)\right]$. Thus, $\tau(n)=\tau(m) \tau(n)$.
- $\sigma(m n)=\left[\frac{p_{1}^{k_{1}+1}-1}{p_{1}-1} \frac{p_{2}^{k_{2}+1}-1}{p_{2}-1} \ldots \frac{p_{r}^{k_{r}+1}-1}{p_{r}-1}\right]\left[\frac{q_{1}^{j_{1}+1}-1}{q_{1}-1} \frac{q_{2}^{j_{2}+1}-1}{q_{2}-1} \ldots \frac{q_{r}^{j+1}-1}{q_{s}-1}\right]$. Thus, $\sigma(m n)=\sigma(m) \sigma(n)$.


## Mobius $\mu$-function

For a positive integer n ,
$\mu=1$ if $\mathrm{n}=1$.
$\mu=0$ if $p^{2} \mid n$ for some prime p .
$\mu=(-1)^{r}$ for $n=p_{1} p_{2} p_{3} \ldots p_{r}$ where $p_{i}^{\prime} s$ are distinct primes.

- Theorem: $\mu$ is a multiplicative function.
- Proof:

If there exist prime $\mathbf{p}$ such that $p^{2} \mid n$ or $p^{2} \mid m$ then $\mu(\mathrm{mn})=\mu(\mathrm{m}) \mu(\mathrm{n})$ holds trivially. So we can assume m and n to square free integers. Let $m=p_{1} p_{2} \ldots p_{r}$ and $n=q_{1} q_{2} \ldots q_{s}$. the primes $p_{i}$ and $q_{i}$ being all distinct.

- Then $\mu(\mathrm{mn})=\mu\left(p_{1} p_{2} \ldots p_{r} q_{1} q_{2} \ldots q_{s}\right)=(-1)^{r+s}=(-1)^{r}(-1)^{s}$ $=\mu(\mathrm{m}) \mu(\mathrm{n})$, which completes the proof.


## Mobius Inversion Formula

Mobius Inversion Formula: Let F and f are two number theoretic function related by the following relation
$F(n)=\Sigma_{d \mid n} f(d)$.
Then,
$\mathrm{f}(\mathrm{n})=\Sigma_{d \mid n} \mu(\mathrm{~d}) \mathrm{F}(\mathrm{n} / \mathrm{d})=\Sigma_{d \mid n} \mu(\mathrm{n} / \mathrm{d}) \mathrm{F}(\mathrm{d})$.
Proof:
The two sum mentioned in the above formula are seen to be the same upon replacing the dummy index d , by $\mathrm{d}^{\prime}=\mathrm{n} / \mathrm{d}$. As d varies over all the positive divisors of n so does $\mathrm{d}^{\prime}$.

## Proof

- $\Sigma_{d \mid n} \mu(\mathrm{~d}) \mathrm{F}(\mathrm{n} / \mathrm{d})=\Sigma_{d \mid n}\left(\mu(\mathrm{~d}) \Sigma_{c \mid(n / d)} \mathrm{f}(\mathrm{c})\right)$
- It can be seen that $\mathrm{d} \mid \mathrm{n}$ and $\mathrm{c} \mid(\mathrm{n} / \mathrm{d})$ iff $\mathrm{c} \mid \mathrm{n}$ and $\mathrm{d} \mid(\mathrm{n} / \mathrm{c})$. Then we have
- $\Sigma_{d \mid n}\left(\Sigma_{c \mid(n / d)} \mu(\mathrm{d}) \mathrm{f}(\mathrm{c})\right)=\Sigma_{c \mid n}\left(\Sigma_{d \mid(n / c)} \mathrm{f}(\mathrm{c}) \mu(\mathrm{d})\right)$
$=\Sigma_{c \mid n}\left(\mathrm{f}(\mathrm{c}) \Sigma_{d \mid(n / \mathrm{c})} \mu(\mathrm{d})\right)$
- The sum $\Sigma_{d \mid(n / c)} \mu(\mathrm{d})$ vanish except when $\mathrm{n} / \mathrm{c}=1$.
- $\Sigma_{c \mid n}\left(\mathrm{f}(\mathrm{c}) \Sigma_{d \mid(n / c)} \mu(\mathrm{d})\right)=\Sigma_{c=n} \mathrm{f}(\mathrm{c}) .1=\mathrm{f}(\mathrm{n})$.


## Observation

Theorem : If n is a positive integer and p a prime, then the exponent of highest power of $p$ that divides $n!$ is $\sum_{k=1}^{\infty}\left[n / p^{k}\right]$.
Proof: Among the first $n$ positive integers, those which are divisible by p are $p, 2 p, . ., t p$, where $t$ is the largest integer such that $t p \leq n$ or $t=[n / p]$. Thus, there are exactly $[\mathrm{n} / \mathrm{p}]$ multiples of p in the product that defines $n!$. The exponent of $p$ in the prime factorization of $n$ ! is obtained by adding to $[\mathrm{n} / \mathrm{p}]$, the number of integers in $1,2, \ldots, \mathrm{n}$ divisible by $p^{2}$ (which are by above reasoning $\left.\left[n / p^{2}\right]\right)$, and so on.
Thus, the total number of times $p$ divides $n!$ is $\sum_{k=1}^{\infty}\left[n / p^{k}\right]$.

## $\phi(n)$

- $\phi(n)$, the number of positive integers not exceeding n and are relatively prime to $n$.
- $\phi(n)$, is also multiplicative function.
- If p is prime and $\mathrm{k}>0$, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$
- For $\mathrm{n}>2, \phi(\mathrm{n})$ is an even integer.
- If $\mathrm{n}=2^{k}$, then $\phi(\mathrm{n})=\phi\left(2^{k}\right)=2^{k}(1-1 / 2)=2^{k-1}$
- Otherwise, $\mathrm{n}=p^{k} m$, where $\mathrm{k} \geq 1$ and $\operatorname{gcd}\left(p^{k}, \mathrm{~m}\right)=1$. $\phi(\mathrm{n})=\phi\left(p^{k}\right) \phi(\mathrm{m})=p^{k-1}(p-1) \phi(\mathrm{m})$ wich is even as $2 \mid \mathrm{p}-1$.


## Observation

For $\mathrm{n}>1$, the sum of the positive integers less then n and are relatively prime to $n$ is $\frac{1}{2} n \phi(n)$.

- Let $a_{1}, a_{2}, \ldots, a_{\phi(n)}$ be integers relatively prime to $n$.
- Now $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$ iff $\operatorname{gcd}(\mathrm{n}-\mathrm{a}, \mathrm{n})=1$. Therefore numbers $n-a_{1}, n-a_{2}, \ldots, n-a_{\phi(n)}$ are equal in some order to $a_{1}, a_{2}, \ldots, a_{\phi(n)}$.
- Thus,

$$
\begin{aligned}
& \mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{\phi(n)}=\left(\mathrm{n}-\mathrm{a}_{1}\right)+\left(n-a_{2}\right)+\ldots+\left(n-a_{\phi(n)}\right) \\
& \mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{\phi(n)}=\phi(n) \mathrm{n}-\left(\mathrm{a}_{1}+a_{2}+\ldots+a_{\phi(n)}\right)
\end{aligned}
$$

- Hence, $a_{1}+a_{2}+\ldots+a_{\phi(n)}=\frac{1}{2} n \phi(n)$


## $\phi(n)$ in terms of $\mu$ - funtion

For any positive integer $n$,

$$
\phi(n)=\mathrm{n} \Sigma_{d \mid n} \frac{\mu(d)}{d}
$$

- If we apply inversion formula to

$$
\mathrm{F}(\mathrm{n})=\mathrm{n}=\Sigma_{d \mid n} \phi(d), \text { we get }
$$

- $\phi(n)=\Sigma_{d \mid n} \mu(d) F\left(\frac{n}{d}\right)=\Sigma_{d \mid n} \mu(d) \frac{n}{d}$


## For Further Reading I

David M. Burton.
Elementary Number Theory.

ThankYou!! Questions!!!

