Number Theoretic Functions CS201A Project

Deepanshu Bansal Mukul Chaturvedi

Department of Computer Science IIT KANPUR

Presentaion, 5thNov, 2016

We will be talking about the following topics in brief.

- $\tau(n)$, the number of positive divisors of n.
- $\sigma(n)$, the sum of positive divisors of n.
- Multiplicative Functions.
- Mobius inversion formula.
- φ(n), the number of positive integers not exceeding n that are relatively prime to n.

- $\tau(n)$, the number of positive divisors of n.
- $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ is prime factorization of n > 1, then $\tau(n) = (k_1 + 1)(k_2 + 1)\dots(k_r + 1).$
- d = $p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}$ are divisors of n, where $0 \le \alpha_i \le k_i$.
- There are k₁ + 1 choices for α₁; k₂ + 1 choices for α₂...; k_r + 1 choices for α_r; hence there are (k₁ + 1)(k₂ + 1)...(k_r + 1) number of divisors of n.

• $\sigma(n)$, the sum of positive divisors of n.

• $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ is prime factorization of $n \ge 2$, then $\tau(n) = (k_1 + 1)(k_2 + 1)...(k_r + 1)$.

•
$$\sigma(n) = \frac{p_1^{k_1+1}-1}{p_1-1} \frac{p_2^{k_2+1}-1}{p_2-1} \dots \frac{p_r^{k_r+1}-1}{p_r-1}.$$

- Consider the product $(1 + p_1^1 + p_1^2 ... p_1^{k_1})(1 + p_2^1 + p_2^2 ... p_2^{k_2})...(1 + p_r^1 + p_r^2 ... p_r^{k_r}).$
- Every term in the expansion of above product appears once and only once in σ(n), so σ(n) is equal to above product.

문▶ ★ 문▶ · 문|님 · ?)

- By sum of finite geometrical series, we get $1+k_1^1+k_1^2...+k_1^r=rac{p_1^{k_1+1}-1}{p_1-1}.$
- It follows that $\sigma(n) = \frac{p_1^{k_1+1}-1}{p_1-1} \frac{p_2^{k_2+1}-1}{p_2-1} \dots \frac{p_r^{k_r+1}-1}{p_r-1}.$

○ ▲ 문 ▲ 문 ▲ 문 ▲ 목 ■ ▲ ♥ ♥ ♥

One interesting property of $\tau(n)$ is $\prod_{d|n} d = n^{\tau(n)/2}$.

- Let d denote arbitrary divisor of n, such that n=dd'.
- We have $\tau(n)$ such equations and multiplying all of them we get $n^{\tau(n)} = \prod_{d|n} d \prod_{d'|n} d'$.
- As d runs over all divisors of n so does d', therefore $\prod_{d|n} d = \prod_{d'|n} d'$.
- Thus, $n^{\tau(n)} = (\prod_{d|n} d)^2$, or $\prod_{d|n} d = n^{\tau(n)/2}$.

| ▲ 글 ▶ _ 글| 글

Number theoretic functions are called multiplicative if f(mn) = f(m)f(n) where gcd(m,n) = 1.

• Claim: $\tau(n)$ and $\sigma(n)$ are both multiplicative functions.

• Proof:

If f is a multiplicative function which does not vanish identically, then there exist n such that $f(n) \neq 0$.But, f(n) = f(n.1) = f(n)f(1). Canceling f(n) from both sides we get f(1) = 1.

• Let m,n are relatively prime integers. If $m = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ and $n = q_1^{j_1} q_2^{j_2} ... q_s^{j_s}$ and no p_i can occur among q_j .

< □ > < @ > < E > < E > 差目 のQC

• Now mn =
$$p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} q_1^{j_1} q_2^{j_2} \dots q_s^{j_s}$$
.
• $\tau(mn) = [(k_1 + 1)(k_2 + 1) \dots (k_r + 1)][(q_1 + 1)(q_2 + 1) \dots (q_s + 1)].$
Thus, $\tau(n) = \tau(m)\tau(n)$.
• $\sigma(mn) = [\frac{p_1^{k_1+1}-1}{p_1-1}\frac{p_2^{k_2+1}-1}{p_2-1}\dots\frac{p_r^{k_r+1}-1}{p_r-1}][\frac{q_1^{j_1+1}-1}{q_1-1}\frac{q_2^{j_2+1}-1}{q_2-1}\dots\frac{q_r^{j_s+1}-1}{q_s-1}].$
Thus, $\sigma(mn) = \sigma(m)\sigma(n)$.

-

イロト イヨト イヨト イヨト

For a positive integer n, $\mu = 1$ if n = 1. $\mu = 0$ if $p^2 | n$ for some prime p. $\mu = (-1)^r$ for $n = p_1 p_2 p_3 \dots p_r$ where $p'_i s$ are distinct primes.

- Theorem: μ is a multiplicative function.
- Proof:

If there exist prime p such that $p^2 | n$ or $p^2 | m$ then $\mu(mn) = \mu(m)\mu(n)$ holds trivially. So we can assume m and n to square free integers. Let $m = p_1 p_2 \dots p_r$ and $n = q_1 q_2 \dots q_s$. the primes p_i and q_i being all distinct.

• Then
$$\mu(mn) = \mu(p_1p_2...p_rq_1q_2...q_s) = (-1)^{r+s} = (-1)^r(-1)^s$$

= $\mu(m)\mu(n)$, which completes the proof.

300 E E 4 E + 4 E

Mobius Inversion Formula: Let ${\sf F}$ and ${\sf f}$ are two number theoretic function related by the following relation

 $F(n) = \Sigma_{d|n} f(d).$

Then,

$$f(n) = \sum_{d|n} \mu(d)F(n/d) = \sum_{d|n} \mu(n/d)F(d).$$

Proof:

The two sum mentioned in the above formula are seen to be the same upon replacing the dummy index d, by d' = n/d. As d varies over all the positive divisors of n so does d'.

•
$$\Sigma_{d|n} \mu(d) F(n/d) = \Sigma_{d|n}(\mu(d) \Sigma_{c|(n/d)} f(c))$$

 $\bullet\,$ It can be seen that d|n and c|(n/d) iff c| n and d|(n/c) .Then we have

•
$$\Sigma_{d|n}(\Sigma_{c|(n/d)}\mu(d)f(c)) = \Sigma_{c|n}(\Sigma_{d|(n/c)}f(c)\mu(d))$$

= $\Sigma_{c|n}(f(c)\Sigma_{d|(n/c)}\mu(d))$

• The sum $\sum_{d|(n/c)} \mu(d)$ vanish except when n/c=1.

•
$$\Sigma_{c|n}(f(c)\Sigma_{d|(n/c)}\mu(d)) = \Sigma_{c=n}f(c).1 = f(n).$$

・ロ> < 回> < 回> < 回> < 回> < 回

Theorem : If n is a positive integer and p a prime, then the exponent of highest power of p that divides n! is $\sum_{k=1}^{\infty} [n/p^k]$.

Proof: Among the first n positive integers,those which are divisible by p are p,2p,...,tp,where t is the largest integer such that $tp \le n$ or t = [n/p]. Thus, there are exactly [n/p] multiples of p in the product that defines n!.

The exponent of p in the prime factorization of n! is obtained by adding to [n/p], the number of integers in 1,2,...,n divisible by p^2 (which are by above reasoning $[n/p^2]$), and so on.

Thus, the total number of times p divides n! is $\sum_{k=1}^{\infty} [n/p^k]$.

(日) (周) (三) (三) (三) (三) (○)

- \$\phi(n)\$, the number of positive integers not exceeding n and are
 relatively prime to n.
- $\phi(n)$, is also multiplicative function .
- If p is prime and k > 0, then $\phi(p^k) = p^k p^{k-1}$
- For n > 2, $\phi(n)$ is an even integer .
- If $\mathsf{n}=2^k$, then $\phi(\mathsf{n})=\phi(2^k)=2^k(1-1/2)=2^{k-1}$
- Otherwise, $n = p^k m$, where $k \ge 1$ and $gcd(p^k,m) = 1$. $\phi(n) = \phi(p^k)\phi(m) = p^{k-1}(p-1)\phi(m)$ wich is even as 2| p-1.

For n > 1, the sum of the positive integers less then n and are relatively prime to n is $\frac{1}{2}n\phi(n)$.

- Let $a_1, a_2, ..., a_{\phi(n)}$ be integers relatively prime to n.
- Now gcd(a,n) = 1 iff gcd(n-a,n) = 1 . Therefore numbers n-a₁, $n a_2, ..., n a_{\phi(n)}$ are equal in some order to a₁, $a_2, ..., a_{\phi(n)}$.
- Thus,

$$a_1 + a_2 + \dots + a_{\phi(n)} = (n-a_1) + (n - a_2) + \dots + (n - a_{\phi(n)})$$

$$a_1 + a_2 + \dots + a_{\phi(n)} = \phi(n)n - (a_1 + a_2 + \dots + a_{\phi(n)})$$

• Hence, $a_1 + a_2 + ... + a_{\phi(n)} = \frac{1}{2}n\phi(n)$

▲周▶ ▲目▶ ▲目▶ 目目 のなの

For any positive integer n,

$$\phi(n) = \mathsf{n}\Sigma_{d|n} \ rac{\mu(d)}{d}$$

• If we apply inversion formula to

$$F(n) = n = \sum_{d|n} \phi(d) \text{, we get}$$
• $\phi(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}) = \sum_{d|n} \mu(d) \frac{n}{d}$

<ロ> < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

David M. Burton.

Elementary Number Theory.

ThankYou!! Questions!!!

Deepanshu, Mukul (IITK)

-

- ∢ ∃ →